Bessel-type functions of matrix variables
Salem Ben Said

To cite this version:
Salem Ben Said. Bessel-type functions of matrix variables. Hiroshima Mathematics Journal, 2005, 35, pp.31-45. hal-00095019

HAL Id: hal-00095019
https://hal.archives-ouvertes.fr/hal-00095019
Submitted on 15 Sep 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
BESSEL-TYPE FUNCTIONS OF MATRIX VARIABLES

SALEM BEN SAÏD

Abstract. We compute explicitly a certain type of hypergeometric function of matrix variables given as an integral of a Gaussian-type kernel. In the case of one variable, this function is related to the modified Bessel function of the third kind.

1. Introduction

This paper deals with explicit computations of certain hypergeometric functions of matrix variables associated with the linear groups $U(p, q)$ and $Sp(2n, \mathbb{R})$. Further, integral formulas over the group of unitary matrices are given. To be more specific about our result, let us take the case of $U(p, q)$.

For $p, q \in \mathbb{N}$ and $n = p + q$, let $I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$ be the diagonal matrix with p copies of $(+1)$ and q copies of (-1) along the diagonal. Define $U(p, q)$ as the set of invertible matrices $g \in M(n, \mathbb{C})$ such that $gI_{p,q}g^* = I_{p,q}$, where $g^* = \overline{g}^t$.

For diagonal matrices $\alpha = \text{diag}(\alpha_1, \ldots, \alpha_p)$ and $\beta = \text{diag}(\beta_1, \ldots, \beta_q)$, such that $\alpha_i + \beta_j \neq 0$, we define

$$\zeta_{p,q}(\alpha, \beta) = \int_{U(p,q)} \exp\left[-\text{tr}(\text{diag}[\alpha, \beta](gg^*)^{-1})\right]dg.$$

Here “tr” means the usual trace of a matrix, and “exp” is the exponential function. If $p = q = 1$, we can easily show that

$$\zeta_{1,1}(\alpha, \beta) = c_0(\alpha + \beta)^{-1/2}K_{1/2}(\alpha + \beta),$$

where $K_\nu(z)$ is the modified Bessel function of the third kind

$$K_\nu(z) = \sqrt{\frac{\pi}{2z}} e^{-z/2} \Gamma\left(\nu + \frac{1}{2}\right) \int_0^\infty e^{-t}t^{\nu-\frac{1}{2}} \left(1 + \frac{t}{z}\right)^{-\frac{\nu}{2}} dt,$$

for $\text{Re}\left(\nu + \frac{1}{2}\right) > 0$ and $|\arg z| < \pi$. As we can see, the function $\zeta_{p,q}$ is a multivariate analogue of the modified Bessel function. To compute $\zeta_{p,q}$, the main idea is to write $\zeta_{p,q}$ as an integral over the unit ball $D_{p,q} \equiv \{z \in M(p, q; \mathbb{C}) \mid \det(I_p - zz^*) > 0\}$.

Key Words: Matrices and Determinant, Computation of special matrix functions.
Mathematics Subject Classification: 11T35, 65D20.
and to use the polar decomposition of $\mathcal{D}_{p,q}$. In doing this, we also obtain the explicit formula of

$$
q_0 F_0(S, T) \equiv \int_{U(m)} \exp[\text{tr}(u Su^*T)]du
$$

for $m \times m$-diagonal matrices S and T. Here $U(m)$ denotes the set of unitary matrices $u \in M(m, \mathbb{C})$. It turns out that $q_0 F_0(S, T)$ was introduced by A. T. James in [James, 1964] as a generalization of the usual hyperfunction $q_0 F_0(S) = \exp[\text{tr}(S)]$.

The family of $\xi_{p,q}$ was introduced by Sahi [Sahi, 1992] in a more general setting. These are Sahi's $e_{p,q}$ Gaussian functions. These functions play an essential role in Sahi's construction of small representation. Also, this family of hypergeometric functions was investigated, in the general setting, by the author and Barchini in [Barchini-Ben Saïd, 2002], where we obtained lower and upper bounds that give information about the growth and singularities of the functions $e_{p,q}$.

The following notations will be used throughout the paper. For a matrix x we write $x^* = \overline{x}'$ where x' is the transpose of x. If x_1, x_2, \ldots, x_r are complex numbers, $\text{diag}(x_1, x_2, \ldots, x_r)$ denotes the diagonal matrix of size $r \times r$. If x and y are two square matrices of size $r \times r$ and $s \times s$, respectively, $\exp[\text{tr}(x + y)]$ denotes $\exp[\text{tr}(x)] \exp[\text{tr}(y)]$ where “exp” is the exponential function. For $r, s \in \mathbb{N}$, the element $I_{r,s}$ is the diagonal matrix $\text{diag}[I_r, -I_s]$, where I_N is the $N \times N$ identity matrix. For $r \in \mathbb{N}$, S_r denotes the group of permutations.

2. The $U(p, q)$-case

Let $p, q \in \mathbb{N}$, and assume that $q \geq p$. We define

$$
U(p, q) = \{ g \in GL(n, \mathbb{C}) \mid gI_{p,q}g^* = I_{p,q} \} \quad (n = p + q),
$$

where $GL(n, \mathbb{C})$ denotes the set of $n \times n$-invertible matrices. For $g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in U(p, q)$, the defining condition of $U(p, q)$ implies the following relations

(a) $AA^* - BB^* = I_p$ \quad (e) $C = DB^*A^{*-1}$

(b) $CC^* - DD^* = -I_q$ \quad (f) $B = AC^*D^{*-1}$

(c) $A^*A - C^*C = I_p$ \quad (g) $C = D^{*-1}B^*A$

(d) $B^*B - D^*D = -I_q$ \quad (h) $B = A^{*-1}C^*D$.

For all $\alpha = \text{diag}(\alpha_1, \ldots, \alpha_p)$ with $\alpha_i > 0$, and $\beta = \text{diag}(\beta_1, \ldots, \beta_q)$ with $\beta_i > 0$, let

$$
\zeta_{p,q}(\alpha, \beta) = \int_{U(p,q)} \exp[-\text{tr} \left(\text{diag}[\alpha, \beta](gg^*)^{-1} \right)]dg.
$$
For \(g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \),

\[
\text{diag}[\alpha, \beta](gg^*)^{-1} = \begin{bmatrix} \alpha(AA^* + BB^*) & \alpha(-AC^* - BD^*) \\ \beta(-CA^* - DB^*) & \beta(CC^* + DD^*) \end{bmatrix}
\]

Therefore, by the relations (a) and (b) we have

\[
\text{tr} (\text{diag}[\alpha, \beta](gg^*)^{-1}) = \text{tr} (\alpha(AA^* + BB^*) + \beta(CC^* + DD^*)) = \text{tr} (\alpha(2AA^* - I_p) + \beta(2DD^* - I_q)).
\]

Let \(\mathcal{D}_{p,q} \) be the domain defined by

\[
\mathcal{D}_{p,q} = \{ T \in M(p, q, \mathbb{C}) \mid \det(I_p - TT^*) > 0 \}.
\]

The measure \(d\mu(T) = \det(I_p - TT^*)^{-p-q}dT \) is the \(U(p, q) \)-invariant measure on \(\mathcal{D}_{p,q} \) where \(dT \) is the Lebesgue measure on \(\mathcal{D}_{p,q} \).

The map \(U(p, q) \rightarrow \mathcal{D}_{p,q} \) defined by

\[
g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \mapsto T = BD^{-1}
\]

is a homeomorphism. Using the relations (a),..., (g) and (h), we can write \(AA^* = (I_p - TT^*)^{-1} \) and \(DD^* = (I_q - T^*T)^{-1} \).

Next, we write \(U(N) \equiv U(N, 0) \). It is well known that for all functions \(F \) defined on \(U(p, q) \), such that \(F(gk) = F(g) \) for all \(k \in \begin{bmatrix} U(p) & 0 \\ 0 & U(q) \end{bmatrix} \), there exists a function \(F^\#: \mathcal{D}_{p,q} \rightarrow \mathbb{C} \) defined by \(F^\#(T) = F(g) \) such that

\[
\int_{U(p,q)} F(g) dg = \int_{\mathcal{D}_{p,q}} F^\#(T)d\mu(T).
\]

Therefore, if \(F(g) = \exp[-\text{tr}(\text{diag}[\alpha, \beta](gg^*)^{-1})] \), there exists a complex valued function \(F^\# \) on \(\mathcal{D}_{p,q} \) such that

\[
F^\#(T) = \exp[-\text{tr}(\alpha(2I_p - TT^*)^{-1} - I_p) + \beta(2I_q - T^*T)^{-1} - I_q)]
\]

\[
= \exp[-\text{tr}(\alpha(I_p - TT^*)^{-1}(I_p + TT^*) + \beta(I_q - T^*T)^{-1} - I_q)]
\]

\[
= \exp[-\text{tr}(\alpha + \beta + 2\alpha(I_p - TT^*)^{-1}TT^* + 2\beta(I_q - T^*T)^{-1}TT^*)].
\]

By [HUA, 1963], for \(T \in \mathcal{D}_{p,q} \), there exists \(u \in U(p) \) and \(v \in U(q) \) such that \(T = u\Lambda v \), where

\[
\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_p & 0 & \cdots & 0 \end{bmatrix} \in M(p, q; \mathbb{R})
\]
and 1 > \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0. Hence
\[TT^* = u \operatorname{diag} \left[\lambda_i^2, \ldots, \lambda_p^2 \right] u^*, \quad T^*T = v^* \operatorname{diag} \left[\lambda_1^2, \ldots, \lambda_p^2, 0, \ldots, 0 \right] v. \]
Therefore \(F^\sharp \) can be written in terms of \(u, v \) and \(\Lambda \) as
\[
F^\sharp(T) = \exp[-\operatorname{tr}(\alpha + \beta)] \exp\left(-2\operatorname{tr}(u^{-1}\alpha u(I_p - \Lambda\Lambda^*)^{-1}\Lambda\Lambda^*)\right) \\
\quad \cdot \exp\left(-2\operatorname{tr}(v^{-1}\beta v(I_q - \Lambda^*\Lambda)^{-1}\Lambda^*\Lambda)\right).
\]
Consider the map \(\psi : \mathcal{D}_{p,q} \rightarrow \Upsilon \) taking each \(T \in \mathcal{D}_{p,q} \) to the collection of the eigenvalues of \(\sqrt{TT^*} \). The image of the Lebesgue measure \(dT \) on \(\mathcal{D}_{p,q} \) with respect to the map \(\psi \) is the measure on \(\Upsilon \) given by
\[
c \prod_{1 \leq i < j \leq p} (\lambda_i^2 - \lambda_j^2)^2 \prod_{i=1}^{p} \lambda_i^{2(q-p)+1} d\lambda_i,
\]
for some constant \(c \). Thus, the image of the measure \(d\mu(T) = \det(I_p - TT^*)^{-p-q}dT \) is
\[
\sum_{p,q} \zeta_{p,q}(\alpha, \beta) = c \prod_{1 \leq i < j \leq p} (\lambda_i^2 - \lambda_j^2)^2 \prod_{i=1}^{p} \lambda_i^{2(q-p)+1} (1 - \lambda_i^2)^{-p-q} d\lambda_i.
\]
Hence, the function \(\zeta_{p,q}(\alpha, \beta) \) is given by
\[
\zeta_{p,q}(\alpha, \beta) = c \exp[-\operatorname{tr}(\alpha + \beta)] \int_{U(p)}\int_{U(q)}\int_{\Upsilon} \exp\left(-2\operatorname{tr}(u^{-1}\alpha u(I_p - \Lambda\Lambda^*)^{-1}\Lambda\Lambda^*)\right) \\
\quad \cdot \exp\left(-2\operatorname{tr}(v^{-1}\beta v(I_q - \Lambda^*\Lambda)^{-1}\Lambda^*\Lambda)\right) \\
\quad \cdot \prod_{1 \leq i < j \leq p} (\lambda_i^2 - \lambda_j^2)^2 \prod_{i=1}^{p} \lambda_i^{2(q-p)+1} (1 - \lambda_i^2)^{-p-q} \prod_{i=1}^{p} d\lambda_i dudv.
\]
Let
\[
A := 2(I_p - \Lambda\Lambda^*)^{-1}\Lambda\Lambda^* = \operatorname{diag} \left[\frac{2\lambda_i^2}{1 - \lambda_i^2}, \ldots, \frac{2\lambda_p^2}{1 - \lambda_p^2} \right]_{p \times p},
\]
and
\[
B := 2(I_q - \Lambda^*\Lambda)^{-1}\Lambda^*\Lambda = \operatorname{diag} \left[\frac{2\lambda_i^2}{1 - \lambda_i^2}, \ldots, \frac{2\lambda_p^2}{1 - \lambda_p^2}, 0, \ldots, 0 \right]_{q \times q}.
\]
It will be convenient for us to define new coordinates \(x_i = \frac{2\lambda_i^2}{1 - \lambda_i^2} \). Then the set \(\Upsilon = \{ \Lambda \mid 1 > \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0 \} \) becomes the set
\[
\mathcal{X} := \{ \operatorname{diag}(x_1, x_2, \ldots, x_p) \mid x_1 \geq x_2 \geq \cdots \geq x_p \geq 0 \}.
\]
The measure (2.1) in the coordinates x_i has the form
\[c \prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{i=1}^{p} x_i^{q-p} dx_i, \]
and the function $\zeta_{p,q}(\alpha, \beta)$ can be written as
\[
\zeta_{p,q}(\alpha, \beta) = c \exp[-\text{tr}(\alpha + \beta)] \int_{U(p)} \int_{U(q)} \int_{X} \exp(-\text{tr}(u^{-1} \alpha u A)) \exp(-\text{tr}(v^{-1} \beta v B))
\prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{i=1}^{p} x_i^{q-p} dx_i dudv,
\]
where A and B are given by (2.2) and (2.3).

Now we turn our attention to the integral formula over $U(p)$ and $U(q)$. For this we need to introduce some terminology.

For a multi-parameter $t = (t_1, t_2, \ldots, t_N)$, the Vandermonde polynomial is defined by
\[D(t) = \prod_{1 \leq i < j \leq N} (t_i - t_j). \]
Let $\ell = (\ell_1, \ldots, \ell_N) \in \mathbb{N}^N$. The Schur polynomial $S_{\ell}(t_1, \ldots, t_N)$ is defined by
\[S_{\ell}(t_1, \ldots, t_N) = \frac{\det(t_i^{\ell_j + N - j})_{1 \leq i, j \leq N}}{D(t)}. \]

For more details on Schur polynomials, we refer to [MACDONALD, 1979, Chapter I]. We also need the following lemma.

Lemma 2.1. (cf. [HUA, 1963], Theorem 1.2.1) Let the power series
\[f_i(y) = \sum_{\kappa=0}^{\infty} a^{(i)} \kappa y^\kappa. \]
Then for all (y_1, y_2, \ldots, y_N) the following identity holds
\[\det(f_i(y_j))_{1 \leq i, j \leq N} = \sum_{\ell_1 > \ell_2 > \cdots > \ell_N \geq 0} \det\left(a^{(i)}_{\ell_j}\right)_{1 \leq i, j \leq N} \det\left(y_i^{\ell_j}\right)_{1 \leq i, j \leq N}, \]
where $\ell_1, \ell_2, \ldots, \ell_N$ are integers.

Now we are in position to compute the integral over the compact groups $U(p)$ and $U(q)$.

Proposition 2.2. (i) For $A = \text{diag}(x_1, \ldots, x_p)$, and for $\alpha = \text{diag}(\alpha_1, \ldots, \alpha_p)$, we have
\[
\int_{U(p)} \exp[-\text{tr}(u^{-1} \alpha u A)] du = (-1)^{\frac{p(p-1)}{2}} \prod_{i=1}^{p} (i-1)! \frac{\det(e^{-x_i \alpha_j})_{1 \leq i, j \leq p}}{\prod_{1 \leq i < j \leq p} (x_i - x_j)(\alpha_i - \alpha_j)}.
\]
(ii) For $B = \text{diag}(x_1, x_2, \ldots, x_p; 0, \ldots, 0)$, and for $\beta = \text{diag}(\beta_1, \beta_2, \ldots, \beta_q)$, we have

$$\int_{U(q)} \exp[-\text{tr}(u^{-1} \beta v B)] dv = \prod_{1 \leq i < j \leq p} (x_i - x_j) \prod_{1 \leq i < j \leq q} (\beta_i - \beta_j) \cdot \sum_{\ell_1 > \ell_2 > \cdots > \ell_p \geq 0} \frac{\det(x_i^{\ell_j})}{\prod_{j=1}^p (\ell_j + q - p)!} \left| \begin{array}{cccc} (-\beta_1)^{\ell_1+q-p} & \cdots & (-\beta_q)^{\ell_1+q-p} \\ \vdots & \ddots & \vdots \\ (-\beta_1)^{\ell_p+q-p} & \cdots & (-\beta_q)^{\ell_p+q-p} \\ 1 & \cdots & 1 \end{array} \right|$$

where ℓ_1, \ldots, ℓ_p are integers.

Proof. (i) First, let us write the Taylor series of $\exp[-\text{tr}(u^{-1} \alpha u A)]$ as a series of Schur polynomials S_ℓ, in the form

$$\exp[-\text{tr}(u^{-1} \alpha u A)] = \sum_{\ell_1 \geq \cdots \geq \ell_p \geq 0} d_\ell \frac{\delta!}{(\ell + \delta)!} S_\ell(\varphi(-u^{-1} \alpha u A)),$$

where $\ell = (\ell_1, \ldots, \ell_p)$, $\delta = (p-1, p-2, \ldots, 0)$, $d_\ell = \frac{D(\ell + \delta)}{D(\delta)}$, and $\varphi(g)$ stands for the collection (z_1, \ldots, z_p) of the eigenvalues of g. Therefore,

$$I(\alpha, A) = \int_{U(p)} \exp[-\text{tr}(u^{-1} \alpha u A)] du$$

$$= \sum_{\ell_1 \geq \cdots \geq \ell_p \geq 0} d_\ell \frac{\delta!}{(\ell + \delta)!} \int_{U(p)} S_\ell(\varphi(-u^{-1} \alpha u A)) du$$

$$= \sum_{\ell_1 \geq \cdots \geq \ell_p \geq 0} \frac{\delta!}{(\ell + \delta)!} S_\ell(\alpha) S_\ell(-A).$$

To obtain the latter equality, we used the following well known functional equation

$$\int_{U(p)} \chi_\ell(xuyu^{-1}) du = \frac{1}{d_\ell} \chi_\ell(x) \chi_\ell(y)$$

where χ_ℓ is the central function on $U(p)$ whose restriction to the set of diagonal matrices in $U(p)$ is equal to S_ℓ (for instance see [MACDONALD, 1979, Chapter I]).
Using the determinant formula of S_ℓ, we deduce

$$I(\alpha, A) = \frac{\delta!}{D(\alpha)D(-A)} \sum_{\ell_1 \geq \ldots \geq \ell_p \geq 0} \frac{\det(\alpha_{ij}^{\ell_j+p-j})_{1 \leq i,j \leq p} \det(-x_{ij}^{\ell_j+p-j})_{1 \leq i,j \leq p}}{(\ell_1 + p - 1)!(\ell_2 + p - 2)! \cdots \ell_p!}.$$

Let

$$f_i(\alpha) = e^{-x_i\alpha} = \sum_{\kappa = 0}^{\infty} \frac{(-x_i)^\kappa}{\kappa!} \alpha^\kappa.$$

Using Lemma 2.1 where $a_n^{(i)} = \frac{(-x_i)^\kappa}{\kappa!}$, we obtain

$$\det(e^{-x_i\alpha_j})_{1 \leq i,j \leq p} = \det(f_i(\alpha_j))_{1 \leq i,j \leq p} = \prod_{\ell_1 \geq \ldots \geq \ell_p \geq 0} \det(\frac{(-x_i)^{\ell_j}}{\ell_j!})_{1 \leq i,j \leq p} \det(\alpha_i^{\ell_j})_{1 \leq i,j \leq p}.$$

Therefore, statement (i) holds.

(ii) Let $\beta = \text{diag}(\beta_1, \ldots, \beta_q)$ and let $X = \text{diag}(x_1, \ldots, x_p; x_{p+1}, \ldots, x_q)$. Using statement (i), we have

$$\int_{U(q)} \exp[-\text{tr}(v^{-1}\beta vX)]dv = c_q \frac{\det(e^{-x_i\beta_j})_{1 \leq i,j \leq q}}{\prod_{1 \leq i<j \leq q} (x_i - x_j) \prod_{1 \leq i<j \leq q} (\beta_i - \beta_j)},$$

where $c_q = (-1)^{q(q-1)/2} \prod_{i=1}^{q} (i-1)!$. Also, from the proof of statement (i), we have

$$\prod_{1 \leq i<j \leq q} (x_i - x_j) = \sum_{\ell_1 \geq \ldots \geq \ell_q \geq 0} \prod_{j=1}^{q} \frac{1}{\ell_j!} \prod_{1 \leq i<j \leq q} (x_i - x_j) \det((-\beta_i)^{\ell_j})_{1 \leq i,j \leq q}.$$

(2.4)
Now we set $x_q = 0$ in (2.4). Then all terms with $\ell_q > 0$ vanish, and we get

\[
(2.4) \Big|_{x_q=0} = \sum_{\ell_1, \ldots, \ell_{q-1} > 0} \prod_{j=1}^{q-1} \frac{1}{\ell_j!} \prod_{1 \leq i < j \leq q-1} (x_i - x_j) \det \left(x_i^{\ell_j} \right)_{1 \leq i,j \leq q-1} \left| \begin{array}{cccc} (-\beta_1)^{\ell_1} & \cdots & (-\beta_q)^{\ell_1} \\ \vdots & \ddots & \vdots \\ (-\beta_1)^{\ell_{q-1}} & \cdots & (-\beta_q)^{\ell_{q-1}} \end{array} \right|.
\]

After substituting ℓ_i by $\ell_i + 1$, we obtain

\[
(2.4) \Big|_{x_q=0} = \sum_{\ell_1, \ldots, \ell_{q-1} \geq 0} \prod_{j=1}^{q-1} \frac{1}{(\ell_j + 1)!} \prod_{1 \leq i < j \leq q-1} (x_i - x_j) \det \left(x_i^{\ell_j} \right)_{1 \leq i,j \leq q-1} \left| \begin{array}{cccc} (-\beta_1)^{\ell_1+1} & \cdots & \beta_{\ell_1+1} \\ \vdots & \ddots & \vdots \\ (-\beta_1)^{\ell_{q-1}+1} & \cdots & \beta_{\ell_{q-1}+1} \end{array} \right|.
\]

Setting now $x_{q-1} = 0$ and repeating this process $(q - p - 1)$-times, we arrive at the following sum: if $x_q = 0, x_{q-1} = 0, \ldots, x_{p+1} = 0$, then

\[
\int_{U(q)} \exp[-\text{tr}(\nu^{-1} \beta v X)] dv \bigg|_{x_q=\cdots=x_{p+1}=0} = \frac{c_q}{\prod_{1 \leq i < j \leq q} (\beta_i - \beta_j)} \sum_{\ell_1 > \ell_2 > \cdots > \ell_p \geq 0} \prod_{j=1}^{p} \frac{1}{(\ell_j + q - p)!} \prod_{1 \leq i < j \leq p} (x_i - x_j) \det \left(x_i^{\ell_j} \right)_{1 \leq i,j \leq p} \left| \begin{array}{cccc} (-\beta_1)^{\ell_1+q-p} & \cdots & (-\beta_q)^{\ell_1+q-p} \\ \vdots & \ddots & \vdots \\ (-\beta_1)^{\ell_p+q-p} & \cdots & (-\beta_q)^{\ell_p+q-p} \\ (-\beta_1)^{q-p-1} & \cdots & (-\beta_q)^{q-p-1} \\ 1 & \cdots & 1 \end{array} \right|.
\]

\[\Box\]

(After the work on this paper was completed, we learned that the argument presented above for statement (i) was used earlier by G. Olshanski and A.M. Vershik in [OLSHANSKI-VERSHIK, 1996].)
Remark 2.3. The first statement of Proposition 2.2 can be proved in a number of different ways. For instance, it can be obtained by using the Harish-Chandra integral formula (sometimes also called HIZ integral) [Harish-Chandra, 1957], [Gross-Richards, 1989]. Another interesting way is to obtain the integral formula over $U(p)$ from the spherical function on $GL(p, \mathbb{C})$ by a passage to the limit. For more about the latest way described above, and in a general setting of compact Lie groups, we refer to the preprint [Ben Saïd-Ørsted, 2003].

Next we turn to the computation of $\zeta_{p,q}(\alpha, \beta)$. The proof of the following lemma is obvious.

Lemma 2.4. Let μ be a measure on \mathbb{R}. Then

$$\int_{\mathbb{R}^N} \det \{ f_k(x_\ell) \}_{k,\ell} \det \{ g_k(x_\ell) \}_{k,\ell} \, d\mu(x_1) \cdots d\mu(x_N) = N! \det \left\{ \int_{\mathbb{R}} f_k(x) g_m(x) \, d\mu(x) \right\}_{k,m},$$

whenever the right-hand side of the equation makes sense.

Using Proposition 2.2, the function $\zeta_{p,q}(\alpha, \beta)$ is given by

$$\zeta_{p,q}(\alpha, \beta) = \frac{c \exp\left[-\text{tr}(\alpha + \beta)\right]}{\prod_{1 \leq i < j \leq p} (\alpha_i - \alpha_j) \prod_{1 \leq i < j \leq q} (\beta_i - \beta_j)} \cdot \sum_{\ell_1 > \cdots > \ell_p \geq 0} \prod_{j=1}^p \frac{1}{(\ell_j + q - p)!} \begin{vmatrix} (-\beta_1)^{\ell_1 + q - p} & \cdots & (-\beta_q)^{\ell_1 + q - p} \\ \vdots & \ddots & \vdots \\ (-\beta_1)^{\ell_q + q - p} & \cdots & (-\beta_q)^{\ell_q + q - p} \\ (-\beta_1)^{q-p-1} & \cdots & (-\beta_q)^{q-p-1} \\ 1 & \cdots & 1 \end{vmatrix} \times \int_{\mathcal{X}} \det(e^{-x_1^i \alpha_j})_{1 \leq i, j \leq p} \det(x_i^{\ell_j})_{1 \leq i, j \leq p} \, \prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{i=1}^p x_i^{q-p} \, dx_i.$$
Using Lemma 2.3, we deduce that

\[
\int \mathcal{X} \frac{\det(e^{-x_i \alpha_j})_{1 \leq i, j \leq p} \det(x_i^\ell)_{1 \leq i \leq p} \prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{i=1}^p x_i^{q-p} \, dx_i}{\prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{i=1}^p x_i^{q-p}}
\]

\[
= c \det \left(\int_0^\infty e^{-x_\ell_j x_i^{\beta_j+q-p}} \, dx \right)
\]

\[
= c \det \left(\Gamma(\ell_j + q - p + 1) \frac{\alpha_i^{\ell_j+q-p+1}}{\beta_i^{\ell_j+q-p+1}} \right)_{1 \leq i, j \leq p}
\]

where \(c \) is a constant. Therefore

\[
\zeta_{p,q}(\alpha, \beta) = \frac{c \exp[-\text{tr}(\alpha + \beta)]}{\prod_{1 \leq i < j \leq p} (\alpha_i - \alpha_j) \prod_{1 \leq i < j \leq q} (\beta_i - \beta_j)} \sum_{\ell_1, \ldots, \ell_p \geq 0} \prod_{j=1}^p \frac{1}{(\ell_j + q - p)!} \times \frac{(-\beta_1)^{\ell_1+q-p} \ldots (-\beta_q)^{\ell_1+q-p}}{(-\beta_1)^{\ell_p+q-p} \ldots (-\beta_q)^{\ell_p+q-p}} \frac{(-\beta_1)^{q-p-1} \ldots (-\beta_q)^{q-p+1}}{1 \ldots 1} \det \left(\frac{(\ell_j + q - p)!}{\alpha_i^{\ell_j+q-p+1}} \right)_{1 \leq i, j \leq p}
\]

\[
= \frac{c \exp[-\text{tr}(\alpha + \beta)]}{\prod_{1 \leq i < j \leq p} (\alpha_i - \alpha_j) \prod_{1 \leq i < j \leq q} (\beta_i - \beta_j) \prod_{i=1}^p \alpha_i^{q-p+1}} \sum_{\ell_1, \ldots, \ell_p \geq 0} \prod_{i=1}^p \frac{1}{\alpha_i^{\ell_i}} \times \frac{(-\beta_1)^{\ell_i+q-p} \ldots (-\beta_q)^{\ell_i+q-p}}{(-\beta_1)^{\ell_p+q-p} \ldots (-\beta_q)^{\ell_p+q-p}} \frac{(-\beta_1)^{q-p-1} \ldots (-\beta_q)^{q-p+1}}{1 \ldots 1} \det \left(\frac{1}{\alpha_i^{\ell_i}} \right)_{1 \leq i, j \leq p}.
\]
Lemma 2.5. (cf. [Hua, 1963], Theorem 1.2.3) Let \(q \geq p > 0 \). The following identity holds

\[
\sum_{\ell_1 > \cdots > \ell_p \geq 0} \det \left(x_i^{\ell_j} \right)_{1 \leq i, j \leq p} = \prod_{1 \leq i < j \leq p} \frac{(x_i - x_j)}{1 - x_i y_j} \prod_{1 \leq i \leq q} \prod_{1 \leq j \leq q} \frac{(y_i - y_j)}{(1 - x_i y_j)}.
\]

Using the above lemma, we obtain the following explicit expression for \(\zeta_{p,q} \).

Theorem 2.6. Let \(c_0 \) be a constant. For \(\alpha = \text{diag}(\alpha_1, \ldots, \alpha_p) \) and \(\beta = \text{diag}(\beta_1, \ldots, \beta_q) \) such that \(\alpha_i + \beta_j \neq 0 \), the Bessel-type function \(\zeta_{p,q}(\alpha, \beta) \) is given by

\[
\zeta_{p,q}(\alpha, \beta) = c_0 \exp[-\text{tr}(\alpha + \beta)] \prod_{i=1}^{p} \prod_{j=1}^{q} (\alpha_i + \beta_j).
\]

3. THE \(Sp(2n, \mathbb{R}) \)-CASE

Let

\[
Sp(2n, \mathbb{R}) = \left\{ g = \begin{bmatrix} A & B \\ B^t & A \end{bmatrix} \in M(2n, \mathbb{C}) \mid gI_{n,n}g^* = I_{n,n} \right\},
\]

where \(A \in GL(n, \mathbb{C}) \) and \(B \in M(n, \mathbb{C}) \).

A simple calculation shows that all elements \(\begin{bmatrix} A & B \\ B^t & A \end{bmatrix} \in Sp(2n, \mathbb{R}) \) satisfy

\[
AA^* - BB^* = I_n, \quad \text{and} \quad A^*A - B^tB = I_n.
\]

For a diagonal matrix \(\alpha = \text{diag}(\alpha_1, \ldots, \alpha_n) \), such that \(\alpha_i \neq 0 \), we write

\[
\zeta_n(\alpha) = \int_{Sp(2n, \mathbb{R})} \exp[-\text{tr}(\text{diag}[\alpha; \alpha] (gg^*)^{-1})] \, dg.
\]

Remark 3.1. For \(n = 1 \) and \(\alpha > 0 \)

\[
\zeta_1(\alpha) = c_0(4\alpha)^{-1/2} K_{\frac{1}{2}}(4\alpha),
\]

where \(K_{\nu}(z) \) is the modified Bessel function of the third kind.

Let

\[
\mathcal{D}_n = \left\{ T \in \text{Sym}(n, \mathbb{C}) \mid \det(I_n - T^T) > 0 \right\},
\]

where \(\text{Sym}(n, \mathbb{C}) \) denotes the set of \(n \times n \)-symmetric matrices. The \(Sp(2n, \mathbb{R}) \)-invariant measure \(d\mu(T) \) on \(\mathcal{D}_n \) is given by \(d\mu(T) = \det(I_n - T^T)^{-(n+1)}dT \), where \(dT \) is the Lebesgue measure on \(\mathcal{D}_n \).
Using the same method used in section 2, we can deduce that if
\[F(g) = \exp[-\text{tr}(\text{diag}[\alpha, \alpha] (gg^*)^{-1})], \quad g \in \text{Sp}(2n, \mathbb{R}), \]
then there exists a function \(F^\sharp : \mathcal{D}_n \to \mathbb{C} \) such that
\[F^\sharp(T) = \exp[-2\text{tr}(\alpha)] \exp[-4\text{tr}(\alpha(I_n - T\overline{T})^{-1}T\overline{T})]. \]

By [Hua, 1944], every symmetric matrix \(Z \in \text{Sym}(n, \mathbb{C}) \) can be written as
\[Z = u\Lambda u^t, \]
where \(u \in \text{U}(n) \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \) with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0 \). Therefore the function \(F^\sharp \) can be written as
\[F^\sharp(T) = \exp[-2\text{tr}(\alpha)] \exp[-4\text{tr}(\alpha u(I_n - \Lambda^2)^{-1} \Lambda^2 u^*)], \]
where \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \) with \(1 > \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0 \) and \(u \in \text{U}(n) \).

As in section 2, we consider the map \(\psi : \mathcal{D}_n \to \Upsilon \). The image of the Lebesgue measure \(dT \) on \(\mathcal{D}_n \) with respect to \(\psi \) is the measure on \(\Upsilon \) given by
\[c \prod_{1 \leq i < j \leq n} (\lambda_i^2 - \lambda_j^2) \prod_{i=1}^{n} \lambda_i d\lambda_i, \]
for some constant \(c \). Thus the image of \(d\mu(T) = \det(I_n - T\overline{T})^{-(n+1)}dT \) is
\[c \prod_{1 \leq i < j \leq n} (\lambda_i^2 - \lambda_j^2) \prod_{i=1}^{n} \lambda_i(1 - \lambda_i^2)^{-(n+1)}d\lambda_i. \]

Using the above notations and Proposition 2.2(i) for \(U(n) \), we obtain
\[\zeta_n(\alpha) = c \exp[-2\text{tr}(\alpha)] \int_{U(n)} \int_{\Upsilon} \exp[-4\text{tr}(\alpha u(I_n - \Lambda^2)^{-1} \Lambda^2 u^*)] \prod_{1 \leq i < j \leq n} (\lambda_i^2 - \lambda_j^2) \prod_{i=1}^{n} \lambda_i(1 - \lambda_i^2)^{-(n+1)}d\lambda_i du \]
\[= c \exp[-2\text{tr}(\alpha)] \int_{\mathcal{X}} \left\{ \int_{U(n)} \exp[-\text{tr}(\alpha u \text{diag}[x_1, \ldots, x_n] u^*)] du \right\} \prod_{1 \leq i < j \leq n} (x_i - x_j) dx_1 \cdots dx_n. \]
\[= c \exp[-2\text{tr}(\alpha)] \int_{\mathcal{X}} \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j) \det(e^{-\alpha_i x_j})_{1 \leq i, j \leq n} dx_1 \cdots dx_n, \]
where
\[\mathcal{X} = \{ \text{diag}(x_1, x_2, \ldots, x_n) \mid x_1 \geq x_2 \geq \cdots \geq x_n \geq 0 \}. \]
To obtain the above second equality, we used the change of variable \(x_i = \frac{4\lambda^2_i}{1 - \lambda^2_i} \).

Since \(\det(e^{-\alpha x})_{1 \leq i,j \leq n} = \sum_{\tau \in S_n} \epsilon(\tau) \prod_{i=1}^n e^{-\alpha_{\tau(i)} x_i} \), where \(S_n \) is the group of permutations, then

\[
\zeta_n(\alpha) = c \exp[-2 \text{tr}(\alpha)] \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j) \int_0^1 \cdots \int_0^1 \sum_{\tau \in S_n} \epsilon(\tau) \prod_{i=1}^n e^{-\alpha_{\tau(i)} x_i} dx_i
\]

\[
= c \exp[-2 \text{tr}(\alpha)] \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j) \sum_{\tau \in S_n} \epsilon(\tau) \frac{1}{\alpha_{\tau(1)}(\alpha_{\tau(1)} + \alpha_{\tau(2)}) \cdots (\alpha_{\tau(1)} + \cdots + \alpha_{\tau(n)})}.
\]

To finish the computation of \(\zeta_n(\alpha) \), we need the following lemma.

Lemma 3.2. (cf. [HUA, 1963], Lemma 6.3.1)

\[
\sum_{\tau \in S_N} \epsilon(\tau) \frac{1}{\ell_{\tau(1)}(\ell_{\tau(1)} + \ell_{\tau(2)}) \cdots (\ell_{\tau(1)} + \cdots + \ell_{\tau(N)})} = (-1)^{N-1} 2^N \prod_{1 \leq i < j \leq N} \frac{(\ell_i - \ell_j)}{(\ell_i + \ell_j)}.
\]

Using Lemma 3.2, the following theorem holds.

Theorem 3.3. Let \(c_0 \) be a constant. For \(\alpha = \text{diag}(\alpha_1, \ldots, \alpha_n) \) such that \(\alpha_i \neq 0 \), the Bessel-type function \(\zeta_n(\alpha) \) is given by

\[
\zeta_n(\alpha) = c_0 \exp[-2 \text{tr}(\alpha)] \prod_{1 \leq i < j \leq n} (\alpha_i + \alpha_j).
\]

References

[HUA, 1963] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, AMS, Providence, Rhode Island (1963)

Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

E-mail address: ssaid@imada.sdu.dk