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Abstract

Image registration consists in estimating geometric and photometric transfor-

mations that align two images as best as possible. The direct approach con-

sists in minimizing the discrepancy in the intensity or color of the pixels. The

inverse compositional algorithm has been recently proposed for the direct es-

timation of groupwise geometric transformations. It is efficient in that it per-

forms several computationally expensive calculations at a pre-computation

phase.

We propose the dual inverse compositional algorithm which deals with

groupwise geometric and photometric transformations, the latter acting on

the value of the pixels. Our algorithm preserves the efficient pre-computation

based design of the original inverse compositional algorithm. Previous at-

tempts at incorporating photometric transformations to the inverse composi-

tional algorithm spoil this property.

We demonstrate our algorithm on simulated and real data and show the

improvement in computational efficiency compared to previous algorithms.

1 Introduction

Image registration is the task of applying some transformations to two images so that

they match as best as possible. This can be seen as the computation of some geometric

transformation, for example an homography, used to deform the images to model camera

pose, and some photometric transformation, applied to the intensity or color of the pixels,

to account e.g. for lighting change.

Image registration has been an important research topic for the past decades. It is cen-

tral to many tasks in computer vision, medical imaging, augmented reality and robotics.

Applications include image mosaicing [7, 10], object and feature tracking, e.g. [5, 8].

Broadly speaking, two approaches have been proposed: The feature-based and the di-

rect approaches. The feature-based approach, see e.g. [11], relies on abstracting the input

images by the geometric location of a set of carefully chosen, salient features. The direct

approach, see e.g. [7], uses the value of all pixels of interest. The inverse compositional

algorithm of Baker et al. [2] estimates groupwise geometric transformations such as ho-

mographies1. It has been shown to be one of the most reliable and computationally effi-

1To be precise, transformations parameterized such that there is a group structure on the parameter vector.



cient registration method. The efficiency stems from the so-called inverse compositional

trick, making constant the Hessian matrix involved in the linear least squares problem to

be solved at each iteration. This makes it possible to pre-compute its inverse.

This paper is about the registration of two images related by a geometric and a pho-

tometric transformation. An example of photometric transformation is ‘gain and bias’

which rescales and offsets the value of the pixels. We propose the dual inverse com-

positional algorithm which uses the inverse compositional trick for both the geometric

and photometric counterparts of the registration, thereby preserving the possibility of pre-

computing the inverse of the Hessian matrix.

Paper organization. We formally state the problem and review previous work in §2.

We present as background material the inverse compositional algorithm of Baker et al. in

§3. We propose the dual inverse compositional algorithm in §4. We report experimental

results on simulated and real data in §5. A conclusion is provided in §6.

Notation. Vectors are denoted using bold fonts, e.g. q, matrices using sans-serif fonts,

e.g. E, and scalars in italics, e.g. a. The two-norm of a vector r is written ‖r‖. The

gradient of a scalar-valued function f , in other words, its partial derivative vector, with

respect to vector x, is denoted ∇x f . It is evaluated at 0, unless specified as in ∇ f |xO
.

For vector-valued functions, H gives the Jacobian matrix, i.e. the matrix containing all the

partial derivatives of the function. Columnwise matrix vectorization is written vect.

The source and target images to be registered are denoted S and T respectively.

They are seen as functions from R
2 to R

c where c is the number of channels, i.e. c = 1

in the grey-level case and c = 3 in the color case. For instance, T [q] is the image value

at pixel q ∈ R
2. Bilinear interpolation is used for sub-pixel coordinates. The unit column

vector is denoted 1 with length obvious from the context. The geometric and photometric

transformations are respectively denoted G and P , with respective parameter vectors g

and p. The geometric transformation is also called the warp. By ‘Hessian matrix’ we

mean the Gauss-Newton approximation to the true Hessian matrix.

2 Problem Statement and Previous Work

The geometric registration problem is the minimization of a nonlinear least squares error

function, given by the discrepancy in the value of the pixels, between the source image

S and the target image T warped onto the first one by the unknown geometric transfor-

mation. The geometric transformation maps a pixel q in the region of interest R defined

in the source image to the corresponding pixel G (q;g) in the target image. We expect that

given an ‘appropriate’ parameter vector g, S [q] is ‘close to’ T [G (q;g)], for all q ∈R:

This is the brightness constancy assumption, see e.g. [6]. The direct image registration

problem is thus formally posed as:

min
g

∑
q∈R

‖S [q]−T [G (q;g)]‖2
. (1)

Note that other error functions can be used, to deal for example with occlusions, see

e.g. [5]. Most algorithms linearize each term in the transformation parameters g, and

iteratively update an initial guess by solving linear least squares problems. The popular



Lucas-Kanade algorithm [9] falls into this category. Sawhney et al. [10] show how lens

distortion can be estimated along with homographies. In [2], Baker et al. propose the

efficient inverse compositional algorithm for solving problem (1). More details are given

in the next section.

Problem (1) does not take into account photometric changes, i.e. changes in the pixel

values. These changes occur for example when lighting change between the acquisition

of the two images or when two different cameras are used. Incorporating a photometric

transformation gives:

min
g,p

∑
q∈R

‖S [q]−P(T [G (q;g)];p)‖2
. (2)

A commonly employed photometric model P is an affine transformation modeling gain

and bias, and accounting for global intensity change:

P(v;p) = av+b1 with pT = (a b). (3)

For instance, Jin et al. [8] uses this model for feature tracking in grey-level images.

Baker et al. extend the inverse compositional algorithm in [1] to deal with linear ap-

pearance variations of the source image. Their simultaneous inverse compositional al-

gorithm can be straightforwardly specialized to estimate gain and bias. In their frame-

work however, and since the photometric transformation is applied to the source image,

the Hessian matrix varies accross the iterations, thereby spoiling the computational effi-

ciency of the inverse compositional algorithm: The simultaneous inverse compositional

algorithm re-estimates and inverts the Hessian matrix at each iteration. Baker et al. also

propose several approximations to reduce the computational cost. They show that these

approximations do not behave well for high gain values. Bartoli [3] shows that the Hes-

sian matrix has a block structure with blocks constant up to some scale factors, depending

on the gain. From this analysis, he derives an algorithm allowing one to pre-compute a

blockwise inverse of the Hessian matrix. The normal equations are then solved by simply

multiplying the right hand side by some constant, appropriately rescaled matrices, which

is computationally efficient. Unfortunatelly, this algorithm does not extend to color im-

ages.

3 The Inverse Compositional Algorithm

This section is devoted to the description of the inverse compositional algorithm of Baker

et al. [2] for the computation of groupwise geometric registrations. This algorithm forms

the basis for our dual inverse compositional algorithm, presented in the next section.

The algorithm is illustrated in figure 1. Its advantages are two-fold. First, it converges

rapidly compared to other optimization schemes. Second, as already mentioned, each

iteration is performed efficiently.

3.1 Derivation

The inverse compositional algorithm iteratively updates an initial guess of the sought-after

transformation. The key idea is to express the updated transformation as the composition

of the current transformation G (·;g) and an incremental transformation G−1(·;δ g). The
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Figure 1: The inverse compositional algorithm efficiently computes a geometric transfor-

mation G (·;g) by iterating the three main steps mentioned in the figure.

optimization is performed over δg, the parameter vector of the incremental warp, instead

of g. The geometric registration problem (1) is thus rewritten as:

min
δ g

∑
q∈R

‖S [q]−T [G (G−1(q;δ g);g)]‖2
.

Let W be the warped target image, i.e. W [q] = T [G (q;g)]. The incremental transforma-

tion is then applied to the source image, instead of the target one, leading to:

min
δ g

∑
q∈R

‖S [G (q;δ g]−W [q]‖2
. (4)

Note that problem (4) is an approximation to the original problem (1) since the error func-

tion is expressed within the warped and not within the source image. The error function is

linearized by first order Taylor expansion in δ g, forming a Gauss-Newton approximation,

minδ g ∑q∈R ‖S [q] + L
T

g [q]δ g−W [q]‖2. This is a linear least squares problem, that is

solved via its normal equations. Defining (HS )|q as the (2× c) Jacobian matrix of the

source image at q and (HgG )|
q;0

as the Jacobian matrix of the warp, evaluated at q and at

warp parameters 0, representing the identity warp, see below, the Jacobian matrices Lg[q]

are obtained using the chain rule as L
T

g [q] = (HS )|q
T (HgG )|

q;0
. They only depend on

the source image at the pixels of interest, and are thus constant over the iterations. Let

D [q] = W [q]−S [q] be the difference image, the normal equations are:

Egδ g = bg with Eg = ∑
q∈R

Lg[q]LT

g [q] and bg = ∑
q∈R

Lg[q]D [q].

The solution δ g = E
−1
g bg for the local warp parameters is thus computed very efficiently

since the Jacobian matrices Lg[q] as well as the inverse of the Hessian matrix Eg can be

pre-computed.

Once δ g has been computed, parameters g are updated by composing the current warp

with the incremental warp. We write the warp update rule as g← Ug(g,δ g), see below.



The process is iterated until convergence, determined, in our experiments, by thresholding

‖δ g‖ by ε = 10e−8.

3.2 Parameterizing Homographies

Groupwise geometric transformations include translations, rotations, affinities and homo-

graphies. We describe the case of homographies. They have 8 degrees of freedom, and

can be represented by (3× 3) homogeneous matrices (i.e. defined up to scale). Let H

be such an homography matrix, representing the current estimate of the geometric regis-

tration. Following [2], the local homography matrix is parameterized by an 8-vector δ h

as:

∆H∼ I+





δh,1 δh,2 δh,3

δh,4 δh,5 δh,6

δh,7 δh,8 0





.

This parameterization is such that δ h = 0 gives ∆H = I, as required. The inverse com-

position is performed by multiplying the current homography matrix to the right by the

inverse of the incremental one: Ug(H,δ h) = H · (∆H)−1
. The (2×8) Jacobian matrix of

the warp is straightforward to derive.

4 The Dual Inverse Compositional Algorithm

We extend the inverse compositional algorithm to estimate a groupwise photometric trans-

formation along with a geometric one, as stated in problem (2). The algorithm is summa-

rized in table 1 and illustrated in figure 2.

G(·
;g)G(·; δ

g )

G(G−1(·; δg);g)

3. Updating

1. Warping2. Local registration

Source image S Target image T

Warped image W

P−1(P(·;p); δp)

P(·;δ
p ) P(

·;p
)

Region of interest R

Figure 2: The dual inverse compositional algorithm extends the inverse compositional

algorithm to jointly compute a geometric and a photometric registration , G (·;g) and

P(·;p), by iterating the three main steps mentioned in the figure.



4.1 Derivation

Considering problem (2), and applying the inverse compositional trick as in the previous

section, but for both the geometric and photometric transformations gives:

min
δ g,δ p

∑
q∈R

‖S [q]−P
−1(P(T [G (G−1(q;δ g);g)];p);δ p)‖

2
. (5)

The optimization is now to be performed on the incremental parameters δ g and δ p, the

latter representing the updating transformation for the photometric registration. Note that

the update rule employed for the photometric registration is different from the one used

for the geometric registration, i.e. the composition is in the reverse order. Let W be the

warped image, in the geometric and photometric sense, i.e. W [q] = P(T [G (q;g)];p).
Applying the incremental transformations to the source image instead of the target image

gives:

min
δ g,δ p

∑
q∈R

‖P(S [G (q;δ g)];δ p)−W [q]‖2
. (6)

We show below that the normal equations induced by the Gauss-Newton approximation

have a constant Hessian matrix. Linearizing using first order Taylor expansion yields:

min
δ g,δ p

∑
q∈R

‖S [q]+ (LT

g [q] L
T

p [q])δ gp−W [q]‖2
.

We denote the joint incremental parameter vector δT

gp = (δT

g δT

p ) and the joint Jacobian

matrices by L
T

gp[q] = (LT

g [q] L
T

p [q]). The Jacobian matrices Lp[q] for the photometric

parameters are Lp[q] = (HpP)|
S [q];0. As in the original inverse compositional algorithm,

the Jacobian matrices only depend on the source image at the pixels of interest. They are

thus constant as well as the Hessian matrix Egp of the normal equations:

Egpδ gp = dgp with Egp = ∑
q∈R

Lgp[q]LT

gp[q] and dgp = ∑
q∈R

Lgp[q]D [q].

The warp is updated as in the inverse compositional algorithm: g← Ug(g,δ g). The

photometric transformation update rule is written p←Up(p,δ p). Note that the incremen-

tal transformation is composed to the left and not to the right of the current transformation,

contrarily to the case of the warp. As an example, the update rule and the Jacobian matri-

ces for the gain and bias photometric registration (3) are:

(

a

b

)

←
1

1+δa

(

a

b−δb

)

and L
T

p [q] = (S [q] 1).

4.2 Some Groupwise Photometric Models

We mention some global photometric transformations that can be employed within our
framework. The most common photometric transformation for grey-level images is the
aforementioned gain and bias. In the color image case, we use affine transformations,
i.e. transformations that can be witten as P(v;p) = Av + b, where A is a (3×3) matrix
combining the three color channels, and b is a 3-vector, modeling a per-channel bias.
Finlayson et al. [4] show that linear transformations are well adapted for color constancy
in practice. We have tried several variants, summarized below:



Model P(v;p) pT Number of parameters

Single gain and bias av+b1 (a b) 2

Per-channel gain and bias diag(a)v+b
(

aT bT
)

6

Full affine channel mixing Av+b
(

(vect(A))T bT

)

12

The update rules are formulated by multiplying the incremental transformation to the

left of the current one. Deriving the Jacobian matrices is then straightforward.

OBJECTIVE

Register a target image T to a source image S by computing the parameters g of a geometric

registration G (·;g) and the parameters p of a photometric registration P(·;p) by minimizing the

error in intensity or color. Other inputs are the region of interest R in the source image and an

initial value for g and p. Upon convergence, ∑q∈R ‖S [q]−P(T [G (q;g)];p)‖2 is minimized.

ALGORITHM

Pre-computations

1. The Jacobian matrices Lgp[q] =
(

(HS )|q
T (HgG )

∣

∣

q;0
(HpP)

∣

∣

S [q];0

)

for q ∈R

2. The Hessian matrix Egp = ∑q∈R Lgp[q]LT
gp[q] and its inverse

Iterations

1. Warp the target image T to W using the estimates g and p, i.e. W [q] = P(T [G (q;g)];p)

2. Compute the incremental transformations:

• Compute the error image D [q] = W [q]−S [q]

• Compute the right hand side of the normal equations bgp = ∑q∈R Lgp[q]D [q]

• Solve for the incremental transformations δ gp = E
−1
gp bgp

3. Update the estimates: g←Ug(g,δ g) and p←Up(p,δ p)

Table 1: The proposed dual inverse compositional algorithm for groupwise geometric and

photometric registration of grey-level or color images.

5 Experimental Results

Our experiments are designed to compare the converge properties and the computational

cost of the proposed algorithm compared to other algorithms in various conditions. All

comparisons are done by estimating homographies. The region of interest is found by

extracting edges and dilating them using a circular element with 2 pixel radius.

5.1 Simulated Data

Algorithms compared. This set of experiments aims at comparing the behaviour in

terms of rate of convergence and computational cost of ‘SIC-LAV’, the simultaneous in-

verse compositional algorithm for linear appearance variation of Baker et al. [1], ‘SIC-

GB’, the simultaneous inverse compositional algorithm specialized to gain and bias by



Bartoli [3] and ‘DIC’, the proposed dual inverse compositional algorithm. Note that SIC-

LAV and SIC-GB produce exactly the same results but with different computation times.

Source Target

Geometric

transformation

Photometric

transformation

Corruption

by noise

Texture

Corruption

by noise

Figure 3: Synthetic data generation scheme.

Simulation setup. The image generation process is illustrated on figure 3. Given a tex-

ture image, we simulate a 2D homography by displacing four points in random directions

by some magnitude γ with default value γ = 5 pixels. This is used to generate the target

image in conjunction with a gain α and a bias β with default values α = 1.2 and β = 15.

Finally, centred Gaussian noise with variance σ is added to the pixel value in the source

and target images, with default value σ = 10%, i.e. 25.5 over 255. Finally, the pixel values

are clamped between 0 and 255 in order to simulate sensor saturation. We measure the

geometric error, defined as the RMS of the distance between the four displaced points and

the points transferred by the computed homography. Convergence to the right solution is

declared if the geometric error is below one pixel within 20 iterations. We also measure

the photometric error defined as the mean of the difference image D . The source image

is 600×800, and the region of interest is made of 25,392 pixels.

Results. We performed comparisons of the algorithms for numerous combinations of

the parameters governing the simulated images. We show part of these results concerning

computational time in figure 4.

We make the following observations:

• DIC converges slightly more often than SIC-LAV and SIC-GB, in particular for large

geometric transformation magnitudes (γ ≥ 8 pixels).

• When they converge, the three methods give the same estimate.

• DIC requires slightly less iterations than SIC-LAV and SIC-GB.

• DIC has computation time slightly lower than SIC-GB, and much lower than SIC-

LAV.

5.2 Real Data

We tried the algorithms on several datasets. We report detailed results for the ‘poster’

image pair shown in figures 1 and 2. The source and target image size is 640×480. The

region of interest is made of 42,295 pixels.
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Figure 4: Computational time versus (left) the variance of added noise on the pixel values

and (right) the magnitude of the geometric transformation.

Figure 5 shows the evolution of the photometric error through the iterations for several

methods and photometric models. We observe that the error increases, usually over the

first few iterations, and then decreases. The magnitude of error variation, both at the

increasing and decreasing phases, is strongly related to the number of parameters in the

photometric model. In other words, the more flexible the photometric model, the steepest

the error variation.
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Figure 5: Photometric error through the iterations for the ‘poster’ image pair, (left) using

intensity only and (right) using color, with the dual inverse compositional algorithm.

We see that for grey-level images, DIC performs slightly better than SIC-GB and SIC-

LAV. For color images, DIC successfully estimates various photometric models. In par-

ticular, it estimates a full affine channel-mixing transformation. We observe from figure 6

that this model fits the images clearly better than the simpler ones, namely the single and

per-channel gain and bias, since, in addition to the fact that the photometric error is lower,

convergence requires far less iterations.



No photometric registration

Diverged – Error: 91.83

Single gain and bias

86 iterations – Error: 27.09

Per-channel gain and bias
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Full affine channel mixing

53 iterations – Error: 18.70

Figure 6: Difference image, number of iterations and photometric error for the proposed

dual inverse compositional with various photometric models.

6 Conclusion

The proposed dual inverse compositional algorithm extends the inverse compositional

algorithm to deal with photometric transformations. Efficiency stems from the fact that, as

the geometric transformation, the photometric one is dealt with using inverse composition.

Experimental results shows that the proposed algorithm slightly outperforms the si-

multaneous inverse compositional algorithm optimized for, but limited to, gain and bias

computation in convergence rates and terms of computational cost. Its main advantage is

thus its ability to deal with color and any groupwise geometric and photometric models.

The MATLAB code used to produce the experimental results in this paper is available

on the web homepage of the author.
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