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Abstract: Today industrial systems are characterized by a set of dependencies among the 
components and the environment of the system. To address these difficulties, this paper 
presents a method for modelling and analyzing the reliability of a complex system based 
on Dynamic Bayesian Networks (DBN). This method allows to take into account the 
influence of time or exogenous variables on the failure (degradation) modes of the 
system. The DBN graphical structure provides an easy way to specify the dependencies 
and, hence, to provide a compact representation of the model. In addition, the DBN 
formalism is associated to simulation tools that enable an efficient processing for the 
models. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
The reliability assessment of complex systems is 
usually realized thanks to combinatorial methods 
such as Fault Tree (FT) or Reliability Block 
Diagram (RBD). However, these methods are not 
very useful to model firstly, the influence of time 
and exogenous variables on the degradation 
processes and secondly, the interdependencies 
among the components. Consequently, practical 
applications to industrial systems remain limited in 
number (Labeau, et al., 2000). 
To make these methods more applicable, one 
promising solution consists in using Bayesian 
Networks (BN) to obtain some additional power 
both at the modelling and analysis levels (Bobbio, 
et al., 2001). BN provide a framework for handling 
probabilistic events and they have proven to be a 
powerful formalism to express complex 
dependencies between random variables. 
Recently, their popularity started to grow among 
system reliability analysts. Bobbio explains, for 

example, how the Fault Tree (FT) can be achieved 
using BN. In the same way, (Torres-Toledano, et 
al., 2003) present the potential benefits given by 
Dynamic Bayesian Networks (DBN) formalism to 
improve the efficiency of Reliability Block 
Diagram (RBD). (Boudali and Dugan, 2005) 
describe the relation between dynamic FT and DBN. 
(Weber and Jouffe, 2006) propose an Object 
Oriented Dynamic Bayesian Network model of 
system reliability formalized from a dual 
functioning/dis-functioning modelling approach.  
In our previous work we have shown that DBN is 
an extension of Markov Chains (MC) (Weber and 
Jouffe, 2003), Hidden Markov Model (HMM) and 
Input Output Hidden Markov Model (IOHMM) 
(Weber et al., 2004), which decreases the effect of 
combinatorial explosion by a more synthetic 
description of a complex system. For this reason, 
DBN can be considered as a dynamic reliability 
method (Labeau, et al., 2000) capable of handling 
the component aging, the maintenance operations 
and the evolution of the environment.  



This paper introduces a modelling approach based 
on DBN to analyse reliability of complex systems. 
Thus, this study shows how DBN can be used for 
modelling reliability systems. Following this 
introduction, section 2 outlines the major concepts, 
proprieties and tools of the stochastic modelling of 
reliability. To overcome some stochastic modelling 
difficulties, section 3 presents the discrete-time 
DBN reliability framework proposed. Finally, a 
conclusion including some perspectives is 
developed in section 4. 
 

2. STOCHASTIC MODEL OF SYSTEM 

RELIABILITY 
 
Representing system failure in a probabilistic way 
is attractive because it naturally accounts for the 
uncertainty and ambiguity. To make such 
representation, the process behaviour is considered 
as a random variable that takes its values from a 
finite state space corresponding to the possible 
process states.  
 
2.1 Time-independent Markov process  

 

Deterioration can be modelled by a discrete time-
dependent stochastic process { }0, ≥kX k  where 

kX  is a random quantity for all 0≥k  . The 

reliability of systems is usually assumed to be a 
Markov process. 
 

Markov process is a stochastic process evolving 
under the Markov property. Given a value of Xk, 
the values of Xk+i where i>0 are independent of 
values of Xk-j where j>0. In the case of finite or 
countable state space, Markov processes can be 
represented by a graphic called Markov Chain 
(Ansell, et al., 1994). Markov chain models a 
sequence of random variables { }...2,1,0, =kXk  for 

which the Markovian property is held. Let 
{ }Mss ,...,1  be a finite set of the possible mutually-

exclusive states of each kX . The probability 

distribution over these states is represented by the 
vector p(Xk ):  
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In this section, only systems having constant failure 
rates are considered. Homogenous Markov chains 

are used for this case because of the stationarity of 
transition probabilities. In such model, transition 
probabilities are time invariant and depend only on 
values states: 
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In a homogeneous discrete-time MC, the transition 
matrix PMC between the states is defined from 
failure rate parameters. For instance let us consider 
a system with two states {1,2}, then: 
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Where tp ∆≅ λ12 : λ  presents a constant failure 

rate and t∆  is the time interval. The probability 

12p can be interpreted as the probability that the 

component fails after the timet∆ . 
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Fig. 1. Markov Chain for modelling deterioration 

model 
 

Given an initial distribution over states )( 0Xp , the 

probability distribution over states after k stage 
)( kXp is obtained from the Chapman-Kolmogorov 

equation:  

MC

K

i
k PXpXp

0
0)()(

=
∏=  (4) 

Assuming that { }li ...0∈  represents the functioning 

states, system reliability is defined as:  
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The use of classic MC to model deterioration in 
systems needs to enumerate all possible states 
which lead sometimes to a huge transition matrix. 
Indeed, parameters quickly increase exponentially 
with respect to the number of reachable system 
states. Unfortunately, it is often infeasible to do this 
sort of exhaustive enumeration to determine the 
transition matrix. 
 

2.2 Time-dependent Markov process 
 
The basic assumption of discrete-time Markovian 
models is that the sojourn time in each state is 
geometrically distributed. Under this assumption, 
the failure rate of a component is considered as 
independent of time. Unfortunately, the geometric 
distribution is unsuitable for the majority of 
engineering problems because it does not reflect 
the fact that most component continuously 
deteriorates due to usage, wear or age.  
To take it into account, the matrix defined in eq.3 
becomes time-dependant and the MC is not 
homogeneous anymore.  

 








 −
=− 10

)()(1
)( 1212

1

kpkp
XX kkMCP  (6) 

 
One solution to model a time-dependent Markov 
process (e.g. Semi-Markov process (Limnios, 
2001)) consists in an approximation of the initial 
process by an equivalent time-independent MC. 
This transformation is usually provided by 
approaches such as the supplementary variables 
(Cox, 1955a) or equivalent rate methods as phase 
type distribution approximation (also called state 
space expansion or method of stages). The method 
consists in increasing the number of system states 
to model the dynamics or degradations (Cox, D.R., 
1955b). Discrete phase type distributions (DPH) 



have been introduced and formalized by (Neuts, 
1981). They are used in the numerical solution of 
non-markovian processes (Janssen et al., 2001), or 
closely related to physical observations.  
 
According to the structure of the transition matrix 
PMC and the initial probability vector )( 0Xp , many 

(discrete or continuous) distributions can be 
approximated by the absorbing-time distribution of 
the MC (Fig. 1). Nevertheless, the fitting problem 
for the DPH class has received very little attention 
and precautions must be taken in order to know the 
accuracy and the restrictions of the method (Bobbio 
et al., 2004).  
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Fig. 2 - Canonical form CF3 (Bobbio et al., 2004). 

 
2.3 Non observable degradation model  
 
In the previous sections stochastic processes Xk are 
supposed to be completely observable. In practice 
this is seldom the reality because the physical 
degradations of a component result in a change of 
its state which is observed only through a variation 
in the component functionality. Therefore a failure 
is an event impacting the component state which is 
modelled as a stochastic process Xk, nevertheless 
the only one phenomenon observed is the 
occurrence of failure modes in the component 
function which could be modelled as stochastic 
processes Yk.  
 
To model such processes with unobservable states 
or if the observation of this information is too 
expensive to be acquired, we propose to use a 
substitution variable Xk to characterize the 
deterioration level and the component states. The 
random variables Xk are assumed to be hidden 
stochastic process. In this case, model could be 
described as a Hidden Markov Model (HMM) 
where p(Yk|Xk) is the emission distribution. Usually 
used in speech recognition (Rabiner, 1989) or 
financial analysis, HMM is doubly stochastic 
process with an underlying stochastic process that 
is not observable (hidden). The process is observed 
through another set of stochastic processes that 
produces the sequence of observations. Therefore 
the general model of component degradation can 
then be formalized from HMM.  
 

2.4 Modelling under exogenous events  
 
Failure times are often considered as the only factor 
that can explain the reliability characteristics of the 
system. This may be insufficient (Singpurwalla, 
1995). Operating and environmental conditions 
(e.g. humidity, temperature) may also influence the 
reliability of a system. All those factors are referred 
to as covariates or explanatory variables 
(Bagdonavicius, et al., 2001). The reliability 
characteristics of a system can be then explained in 
a better way by considering the effects of 
covariates. To take into account exogenous events, 
several models represent each situation according 
to an environmental context, and models become 
complex when the system is composed by n 
components with several failure modes. 
 
Markov Switching Models (MSM) are introduced 
to model this kind of stochastic process with 
exogenous events. These models are also viewed as 
conditional MC where the selection of transition 
distributions is dependent on exogenous variables. 
The MSM models the non-stationary due to abrupt 
changes in the functioning modes of the system 
(Bengio Y., 1999). A MSM represents the 
conditional distribution p (Xk | Uk) given the input 
sequence Uk = [u0, u1,…, uk] where uk represents the 
exogenous constraint with states { }u

M
u ss ,...,
1

. 
 
The simulation of MSM is based on switching and 
initialisation procedure of MC depending on the 
state of the exogenous variable. It is unsuitable to 
obtain the analytic solution of this kind of hybrid 
differential system. 
 

Moreover if it is a distribution over the states of the 
exogenous variable Uk (input) which condition the 
solution, then we proposed the formalism of Input-
Output HMM (IOHMM) to model the stochastic 
process.  Let Yk represent the observations (output), 
Xk the hidden variables and the external exogenous 
observable variables denoted as Uk which induces 
several behaviours of the hidden process Xk.  
Moreover, the result of the hidden process is 
observed through the failure modes of the 
component defined as outputs Yk. To model this 
complex stochastic process p(Yk | Uk, Xk), the 
formalism of Input-Output HMM (IOHMM) is well 
suitable. 
 

3. BAYESIAN NETWORK MODELLING 
 
The MC, HMM, MSM or IOHMM are well suited 
models in the reliability analysis of a complex 
entity or system of low dimension. However, 
within the framework of general complex systems, 
the combinatorial explosion of states makes these 
methods unmanageable. To overcome this problem, 
a method based on DBN formalism is presented in 
the next section. 
 

3.1 Bayesian Network notation 
 

Bayesian networks (BN) (Pearl, 1988) are directed 
acyclic graphs (DAG) representing a joint  
 



probability density function (Pdf). Nodes represent 
variables and directed arcs indicate causal relations 
between the connected nodes. According to d-
connexion notion, the lack of arc between two 

nodes jX and lX (Fig. 3) means that the 

knowledge of lX  is irrelevant to estimate the state 

value of jX when the state of iX is known. 
Whereas the existence of arc between two variables 
indicates a direct probability dependency between 

them as iX and jX in Fig. 2. For more details see 
(Jensen, 1996). 
 

 iX  
jX  

lX  
 

Fig. 3. Example of BN 
 
Nodes which has not parent are described by a 
marginal distribution: unconditional probability. So 
they are characterized by a probability table (PT) 
composed of the class belonging probabilities 

)( iXp  over the all possible states of iX . 

Whereas, nodes having one parent at least (children 
nodes) are characterized by conditional 
distributions probabilities. So, Conditional 
Probabilities Tables (CPT) are associated with 
these type of nodes. PT and CPT together with the 
independence assumption defined by the graph, 
present a unique joint distribution over all the 
variables. Thus, it is possible to quantify 
probabilities for each variable conditioned on all 
the possible values the others variables in the 
graph.  
 

3.2 Dynamic Bayesian Network  
 

In this section, special case of BN named Dynamic 
Bayesian Networks (DBN) is proposed to model 
different types of time-dependent process.  
 
DBN includes a temporal dimension managed by 
time-indexed random variables. The process is 

represented at time step k by a node i
k

X  with a 

finite number of states { }ii

i
X
M

X
X

ssS ,...: 1  and arcs 

represent dependencies across time points. The 
state space Ω is the cross product of the value 
spaces for individual states variables: 

∏ ==Ω N

i X iS
1

. Let )( i
kXp denotes the probability 

distribution over the variables states at time step k. 
Nodes correspond to the state variables can be 
partitioned into two sets: those corresponding to 
state of the variable at the current time step (k), and 
those corresponding to state system at the 
following time step (k+1). In this case, the variable 
is represented at successive times. In the DBN, 
shows in (Fig. 4), the temporal evolution is 
represented in two slices of time k and k+1, so 
network is called by (Boyen and Koller, 1998) a 
two-Time slices Bayesian Network (2-TBN). 
Defining the transition-probabilities between the 
states of the variable at time step k and time step 

k+1 leads to define CPT relatively to inter-time 

slices. So, given any )( i
kXp  at time step k, the 

network induces a unique distribution )( 1
i
kXp +  at 

time k+1 which is calculated by inference. Starting 

at time k=0 with the distribution )( 0
iXp , 

computation of )( i
TXp can be realized by iterative 

inferences.  
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Fig. 4. A 2-TBN modelling MC with node Xk 
 
A) Markov Chain model: The knowledge of the 
distribution probabilities and the CPT allows the 
calculation of the distribution probabilities at time 
k+1 by making inference. So, with this model, the 
future (k+1) is conditionally independent of the 
past given the present (k), which means that the 
CPT or p(Xk+1|Xk) respects the Markov property 
(Kjaerulff, 1995). In the classical MC 
representation (§2.1), parameters are calculated for 
all the possibilities of states variables leading to the 
state space Ω, and the notion of independence 
between variables is unexploited. Contrary to this, 
DBN allows to take into account this consideration 
to represent joint Pdf in a factorized manner. In real 
world, the number of system states is very 
important, so a matrix representation is fastidious 
and usually unfeasible. The use of DBN modelling 
to analyse the deterioration system is more suitable 
to solve this problem, it permits to minimize 
considerably the number of parameters to stand for 
a joint Pdf (Weber and Jouffe, 2003). 
 
B) N-order Markov model: For many stochastic 
processes, the first order MC is not sufficient to 
describe the deterioration model. Thus, usually we 
need to know more than one state in the past to 
predict the future. DBN offer an elegant way to 
model such hypothesis. The concept of 2-TBN can 
be generalized to higher order. Indeed, (N-1) order 
Markov property can be modelled by N-Time slices 
Bayesian Network (N-TBN) (Ben Salem, et al., 
2004). In this case, the past is resumed in the N last 
times slices. Distribution probabilities are obtained 
by inference using CPT containing the state 
evolution over N-time slices. The degree of the 
temporal regression is not bounded and it is 
possible to use any past instance information to 
determine probabilities distribution of the future.  

 

 kX  

 1+kX  

 1−kX  

 
Fig. 5. A 3-TBN modelling second order MC. 
 
Fig. 5 shows, how a second order MC can be 
modelled by a 3-TBN. Unfortunately, more the 
degree of the regression is important more complex 



is the CPT of the node 1+kX . Nevertheless this 

model is interesting to take into account the 
dynamic comportment of the behaviour of the 
distribution of the probability of 1+kX . This model 

provide an alternative solution to the problem 
described in § 2.2. 
 
C) semi-Markov model: with DBN the CPT models 
the dependence between the past and the future as 
the conditional probability p(Xk+1|Xk). This CPT can 
be indexed by time then the CPT is not constant but 
involve according to k. In this way a 2-TBN is able 
to simulate a semi Markov process. 
 
D) Non observable degradation model: with DBN 
it is also possible to model non observable system 
through emission distribution )|( kk XYp  with kY  

the observed variable and kX  the hidden variable. 

In this case when all the temporal nodes are 
independent, an exact inference algorithm is still 
used to simulate the model. A 2-TBN model of 
HMM is presented as a compact DBN form in 
(Fig.6). This framework provide a graphical 
modelling solution to the problem explained in 
§2.3. 

 

 kX  

 kY  

 1+kX  

 
Fig. 6. A 2-TBN modelling MC with temporal node 

kX  and exogenous observations kU . 
 
E) Exogenous event model: in DBN non 
homogeneous stochastic model is able to be 
computed with taking into account the effect of the 
exogenous events on systems (like accidentally 
rupture of a component). The formalism to realize 
this are MSM and IOHMM as it is presented in 
§2.4. (Bengio and Frasconi, 1995) demonstrate 
how it is possible to model IOHMM with DBN. 
Weber et al. (2004), show an example of system 
reliability analysis formalised as MSM with DBN. 
 

 

 kX  

 1+kX  

 1+kY  

 kU  

 
Fig. 7. A 2-TBN modelling IOHMM with temporal 
node kX  and exogenous observations kU  and 1+kY . 
 
Let’s conceder the covariate as a (exogenous) 
discrete random variable Uk. This variable is 
modelled by a node containing information about 
exogenous events see (Fig. 7.). The node is realised 
in the current time slice k and can be introduced as 
(hard) evidence or probability distributions 
observations. So, the introduction of the context 
made by the means of Uk governs the behaviour of 

kX . Observations at time k condition the state 

probabilities distributions at time k+1, because of 

the CPT which are conditioned by the exogenous 
variables.  
 
3.3 DBN to model failure dependencies 
 
The reliability of component can be modelled as a 
DBN made of some nodes as presented in the §3.2. 
Thus independent components in the system are 
modelled using DBN equivalent to independent 
MC/HMM/IOHMM. The power of this method is 
that the DBN allows to merge the MC, HMM or 
IOHMM through a factorised form (Murphy, 
2002). This aggregation is made in the time slice 
(k+1) with a method similar to the fault tree but 
without the limitation of independent elementary 
event and the variables can be described over n 
states (several failures or degradations), Fig. 8. 
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Fig. 8. DBN model of a system composed from tow 
independent stochastic processes. 
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Fig. 9. DBN model of a system composed from 
dependent stochastic processes 
 

One of the most difficult tasks in reliability analysis 
is to model a simultaneous failure processes. Two 
cases appear: interconnected failures processes or 
independent failure processes. Original solutions 
can be proposed based on DBN to model both 
cases. For the first case of system, the idea consist 
to develop N models of (number of interconnected 
failure process) DBN evolving at the same time and 
connected by node representing the global system 
state. Fig. 8 gives an example of model with two 
independent failure processes modelled by DBN. 
This formalism leads to model global system 
reliability in spite of the independence between 
some of their failure subsystems (Weber and Jouffe 
2006). Algorithms as junction tree are used to make 
exact inference. The time increment is carried out 
by setting the computed marginal probabilities of 
the node at time step k+1 as observations for its 
corresponding node in the previous time slice. 
Nevertheless, if dependences exist in the stochastic 



processes (Fig. 9.) then exact inference algorithms 
can not by employed because it leads to errors. 
Therefore approximate inference algorithms are 
proposed for instance the (Boyen and Koller, 1998) 
inference algorithm allows providing a bounded 
error or other approximate inference methods, as for 
example particle filtering (Koller and Lerner, 2000). 
 
This approach represents a useful method to 
decrease the complexity of the model by grouping 
interconnected subsystems in a global deterioration 
model. So, through this method, it is possible to 
analyse in one time both of the entire system and its 
subsystems. For example, instead of including 
distinct technical components with dependencies, 
this structure could be represented as one entity. 
Under this method, the BN leads to model 
independent stochastic process as IOHMM then the 
global model of the system is simplified. If the 
dynamics of process are independent, then the 
exact inference method based on junction tree 
compute the simulation of the system reliability.  
 

CONCLUSION AND FURTHER WORK 
 

The proposed method, based on the Dynamic 
Bayesian Networks theory, easily allows designing 
DBN structures for the modelling of temporal 
evolution of complex systems. The correspondence 
between Markov Chains and DBN is presented and 
applied to the system reliability estimation. 
 
The proposed method is a good solution to model 
the reliability of complex stochastic process. 
Indeed, the number of states needed to model a 
complex system with MC increases exponentially. 
As the DBNs representation is based on the 
modelling of process entities, the obtained model is 
more compact and readable than MC.  
 

In future works, in order to achieve this modelling 
technique we have to define how the learning 
algorithms of BN can contribute to model the 
dynamics of the system reliability and how the 
parameters behaviour can be then modelled. 
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