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Abstract: Consider {Xε
t : t ≥ 0} (ε > 0), the solution starting from 0 of a stochastic

differential equation, which is a small Brownian perturbation of the one-dimensional ordinary
differential equation x′t = sgn(xt)|xt|γ (0 < γ < 1). Denote by pε

t(x) the density of Xε
t . We

study the exponential decay of the density as ε → 0. We prove that, for the points (t, x) lying
between the extremal solutions of the ordinary differential equation, the rate of the convergence
is different from the rate of convergence in large deviations theory (although respected for the
points (t, x) which does not lie between the extremals). Proofs are based on probabilistic (large
deviations theory) and analytic (viscosity solutions for Hamilton-Jacobi equations) tools.

1991 Mathematics Subject Classifications: 60F10, 60H10, 34F05, 35G20, 35G30, 70H20, 60J65

Keywords: large deviations, small random perturbation, Brownian bridge, viscosity solution, Hamilton-

Jacobi equation

INTRODUCTION

Let 0 < T < ∞, {Bt : t ≥ 0} an one-dimensional Brownian motion, and consider the
stochastic differential equation on [0, T ]:

{
dXε

t = εdBt + b(Xε
t )dt

Xε
0 = x0.

Let us denote by Pε the law of the process Xε
· . It is classical that the family {Pε : ε > 0} is

weakly relatively compact and, as ε tends to zero, every cluster value P has its support contained
in the set of paths x which are solutions of the dynamical system

{
x′(t) = b(x(t))
x(0) = x0.

(1)

If (1) has an unique solution (for instance, if b is a Lipschitz function), then by the large
deviations theory, it is known that Pε is exponentially tight and therefore Pε converges to P
exponentially fast, as ε tends to zero.

If (1) has more than one solution, in [B-B] it is proved that, under suitable conditions, there
is just one limit value in law, concentrated on at most two paths: the extremal solutions of (1)
(see Figure 1).

The aim of this paper is to study the precise convergence of Pε towards P in the following
case: take 0 < γ < 1 and let Pε be the law of the solution of the stochastic differential equation:

{
dXε

t = ε dBt + sgn(Xε
t )|Xε

t |γdt
Xε

0 = 0.
(2)

We can see this equation as a small random perturbation of the dynamical system:
{
x′t = sgn(xt)|xt|γ
x0 = 0.

(3)
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Let us denote by pε
t(·) the density of Xε

t with respect to the Lebesgue measure. We observe
that if |x| 6= (t(1 − γ))1/1−γ , i.e. if (t, x) does not belong to the graph of one of the extremal
solutions of problem (3), then the density tends to zero, corroborating the results in [B-B].

Let us describe our main results. According to the position of the point (t, x), we emphasise
two kinds of rate.

If the point (t, x) is such that |x| > {t(1 − γ)}1/1−γ , there exists a positive function kt such
that:

lim
ε→0

ε2 ln pε
t (x) = −kt(|x|).

This means that the density has an exponential decay with rate ε2, as in large deviations theory.
The rate is the same as in the case when the dynamical system has an unique solution. For
instance, if the drift b is a Lipschitz function the rate agrees to the rate in Freidlin-Wentzell
theorem for random perturbations of the dynamical systems (see, [De-S], p. 31).

If the point (t, x) lies in the domain between the two extremals, that is, if |x| < {t(1−γ)}1/1−γ ,
then the density has an exponential decay with a different rate, namely ε2(1−γ)/(1+γ). Precisely,
we show that, for such points (t, x):

lim
ε→0

ε
2(1−γ)
(1+γ) ln pε

t(x) = λ1

(
x1−γ

1 − γ
− t

)
.

Here λ1 is the first positive eigenvalue of the Schrödinger operator on L2(IR):

−1

2

d2

dx2
+

γ

2|x|1−γ
+

|x|2γ

2
.

t

the upper

extremal solution

the lower

extremal solution

(t(1 − γ))1/1−γ

0

Figure 1: Solutions of the dynamical system

Let us note that, in the particular case γ = 0, the calculation is explicit (see Proposition 3
below).
The plan of the paper is as follows. In the first section we recall some existence results for
stochastic and ordinary equations and also the results of [B-B], for the drift b(x) := sgn(x) |x|γ ,
0 ≤ γ < 1. Moreover we give some representations of the density pε

t . In particular, we give
an expansion in terms of eigenvalues and eigenfunctions of the Schrödinger operator. This was
already studied by Kac [K] for continuous potentials and we adapt this result to our situation.
Section §2 is devoted to the convergence of the density in logarithmic scale with rate ε2. We
compute the limit for the points (t, x) which does not lie between the extremals (see Theorem
1) and we give an upper bound for the other points. In the last section we treat the convergence
of the density in logarithmic scale with the rate ε2(1−γ)/(1+γ), for the points (t, x) lying between
the extremals. The precise limit is obtained in Theorem 2 by the study, developed in §3, of the
viscosity solution of a Hamilton-Jacobi equation (see [B] or [Fl]). Although the ideas are inspired
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by [B], there are several new difficulties, since, for example, b is not a Lipschitz function.

1. PRELIMINARIES

1.1 EXISTENCE RESULTS
In this subsection we recall some existence results for the stochastic differential equation (2), for
the ordinary differential equation and the convergence result of [B-B].

Proposition 1 There exists a unique strong solution of (2). Moreover, for any Borel measurable
function f ,

IE[f(Xε
t )] = IE

[
f(εBt) exp

{ |Bt|γ+1

(γ + 1)ε1−γ
− γ

2ε1−γ

∫ t

0
|Bs|γ−1ds− 1

2ε2−2γ

∫ t

0
|Bs|2γds

}]
(4)

Proof: The existence, weak uniqueness and non explosion results are consequences of Girsanov
theorem and Novikov criterion (which is satisfied here since γ < 1). Pathwise uniqueness is a
consequence of Proposition 3.2 in [R-Y] p. 370. Applying Girsanov theorem, we get

IE

[
f

(
Xε

t

ε

)]
= IE

[
f(Bt) exp

{
1

ε1−γ

∫ t

0
sgn(Bs)|Bs|γdBs −

1

2ε2−2γ

∫ t

0
|Bs|2γds

}]
,

and (4) is a consequence of Itô-Tanaka formula (thanks to convexity) and the occupation time
formula. QED

We study now the dynamical system (3) and the behaviour of the law Pε of the process Xε
· , as

ε→ 0 :

Proposition 2 The equation (3) admits an infinity of solutions:

{
cγ(t− λ)

1/1−γ
+ , λ ≥ 0 ; −cγ(t− λ)

1/1−γ
+ , λ ≥ 0

}

where cγ is a constant. Let us denote by

ρ1,2(t) = ±{(1 − γ)t}1/1−γ

the extremal solutions of the dynamical system. Then Pε tends to 1
2δρ1 + 1

2δρ2 , as ε→ 0.

Proof: The existence result is obvious. By Theorem 5.2 in [B-B], p. 291: if P is any cluster
value of {Pε}, as ε→ 0, then P is concentrated on the extremal solutions ρ1 and ρ2:

P =
1

2
δρ1 +

1

2
δρ2 .

QED

1.2 THE PARTICULAR CASE : γ = 0
Let us note that in the case γ = 0 the calculation is explicit, we compute the density and we
show that the diffusion tends towards the extremal solutions (in a generalized sense, namely a.e.
differentiable) of the following differential equation:

{
x′t = sgn(xt)
x0 = 0,
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which are ρ1,2(t) = ±t. In this particular case, the diffusion Xε
· is solution of the following

stochastic differential equation:

{
dXε

t = εdBt + sgn(Xε
t )dt

Xε
0 = 0,

(2′)

and we can compute the density pε
t (x) of Xε

t with respect to the Lebesgue measure:

Proposition 3 Let us denote ϕ(x) =
∫∞
x e−y2/2dy. Then,

pε
t (x) =

1

ε
√

2πt
exp−

{
(|x| − t)2

2ε2t

}
− 1

ε2
√

2π
ϕ

( |x|
ε
√
t

+

√
t

ε

)
exp

2|x|
ε2

. (5)

Moreover, as ε→ 0,

pε
t (x) ∼

1

ε
√

2πt

(
1 − t

(|x| + t)

)
exp−(|x| − t)2

2ε2t
, if x 6= 0,

pε
t(x) ∼

ε√
2πt3

exp− t

2ε2
, if x = 0.

In particular, for all (t, x) ∈ IR+ × IR∗

lim
ε→0

ε2 ln pε
t(x) = −(|x| − t)2

2t

and

lim
ε→0

ε2 ln IP(||Xε
t | − t| ≥ δ) = −δ

2

2t
.

Proof: Using Girsanov theorem and the Itô-Tanaka formula we get

IE[f(Xε
t )] = IE

[
f(ε|Bt|) exp

{ |Bt|
ε

− 2Lt

ε
− t

2ε2

}]
,

where f is a Borel measurable even function (one can consider only even functions since −Xε

is a solution of (2’) too) and Lt is the Brownian local time at level 0.
Moreover, by Levy’s theorem, (|Bt|, 2Lt) has the same law as (St −Bt, St), where St = sup

0≤s≤t
Bs,

hence

IE[f(Xε
t )] = IE

[
f(ε(St −Bt)) exp

{
−Bt

ε
− t

2ε2

}]

where the law of (Bt, St) is well known (see, for instance, [K-S] Proposition 8.1, p. 95):

IP(Bt ∈ da, St ∈ db) =
2(2b− a)√

2πt3
exp

{
−(2b− a)2

2t

}
dadb, for a ≤ b , b ≥ 0.

Hence

IE[f(Xε
t )] =

∫ ∞

0

∫ b

−∞

2(2b− a)√
2πt3

exp

{
−(2b− a)2

2t
− a

ε
− t

2ε2

}
f(ε(b− a))dadb.
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We make the change of variables x := ε(2b− a) and y := ε(b− a) and we obtain

IE[f(Xε
t )] =

2

ε3
√

2πt3

∫ ∞

0

∫ ∞

y
x exp

{
− x2

2ε2t
+

2y

ε2
− x

ε2
− t

2ε2

}
f(y)dxdy

=
2

ε
√

2πt

∫ ∞

0
f(y) exp

{
2y

ε2
− (y + t)2

2ε2t

}
dy

− 2

ε2
√

2π

∫ ∞

0

(∫ ∞

(y+t)/(ε
√

t)
exp−v

2

2
dv

)
f(y) exp

2y

ε2
dy

From this equality we get the expression of the density (5). Moreover, using the Laplace method
we obtain the equivalents in the statement of the proposition. QED

1.3 SOME REPRESENTATIONS OF THE DENSITY
In this subsection we shall describe some useful representations of the density of Xε

t , solution of
the equation (2), for arbitrary 0 < γ < 1.

Proposition 4 For t > 0, ε > 0, x ∈ IR:

pε
t (x) = 1

ε
√

2πt
exp

{
|x|γ+1

(γ+1)ε2 − x2

2ε2t

}

×IE

[
exp

{
−γt

2

∫ 1

0
|xs+ ε

√
tbs|γ−1ds − t

2ε2

∫ 1

0
|xs+ ε

√
tbs|2γds

}]
,

(6)

where {bt : t ∈ [0, 1]} is the standard Brownian bridge.

Proof: By (4) in Proposition 1 and by the scaling property of the Brownian motion, we obtain

IE[f(Xε
t )] = IE

[
f(ε

√
tB1) exp

{
t(γ+1)/2

(γ + 1)ε1−γ
|B1|γ+1

−γt
(γ+1)/2

2ε1−γ

∫ 1

0
|Bs|γ−1ds− tγ+1

2ε2−2γ

∫ 1

0
|Bs|2γds

}]
.

Let us decompose the Brownian motion as follows:

Bt = g t+ bt,

where g is a standard Gaussian random variable independent of the Brownian bridge b. There-
fore,

IE[f(Xε
t )] =

∫

IR

f(ε
√
ty)√

2π
exp

{
t(γ+1)/2

(γ + 1)ε1−γ
|y|γ+1 − y2

2

}
dy

×IE

[
exp

{
−γt

(γ+1)/2

2ε1−γ

∫ 1

0
|ys+ bs|γ−1ds− tγ+1

2ε2−2γ

∫ 1

0
|ys+ bs|2γds

}]
.

By the change of variable x = ε
√
ty, the above formula becomes

IE[f(Xε
t )] =

∫

IR

f(x)

ε
√

2πt
exp

{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}

×IE

[
exp

{
−γt

2

∫ 1

0
|xs+ ε

√
tbs|γ−1ds − t

2ε2

∫ 1

0
|xs+ ε

√
tbs|2γds

}]
dx

and we obtain the expression of the density (6). QED

Another useful expression of a density is contained in the following:
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Corollary 1 For t > 0, ε > 0 and x ∈ IR,

pε
t (x) =

1

ε
√

2πt
exp

{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}
IE x

ε(s(ε))1/2

[
exp

{
−
∫ t/s(ε)

0

V (Bs)

2
ds

}∣∣∣∣∣B t
s(ε)

= 0

]
(7)

where we denoted s(ε) := ε(2(1−γ))/(1+γ) and the potential V is given by:

V (x) :=
γ

|x|1−γ
+ |x|2γ . (8)

Proof: By conditioning with respect to {Bt = x} in (4) we obtain

IE[f(Xε
t )] =

∫

IR

1√
2πt

f(εx) exp

{
1

(γ + 1)ε1−γ
|x|γ+1 − x2

2t

}
dx

×IE0

[
exp−

{
γ

2ε1−γ

∫ t

0
|Bs|γ−1ds− 1

2ε2−2γ

∫ t

0
|Bs|2γds

}∣∣∣∣Bt = x

]
.

The functional of the Brownian motion which appears in the integral on the right hand side of
the previous equality is time reversal invariant. Therefore we obtain

IE0

[
exp−

{
γ

2ε1−γ

∫ t

0
|Bs|γ−1ds − 1

2ε2−2γ

∫ t

0
|Bs|2γds

}∣∣∣∣Bt = x

]

= IEx

[
exp−

{
γ

2ε1−γ

∫ t

0
|Bs|γ−1ds− 1

2ε2−2γ

∫ t

0
|Bs|2γds

}∣∣∣∣Bt = 0

]

By scaling we get (7). QED

The following result contains an expansion of the density of Xε
t in terms of the eigenvalues

and the eigenfunctions of a Schrödinger operator. This type of expression was already considered
in [K], p. 194 for continuous potentials.

Proposition 5 For t > 0, ε > 0 and x ∈ IR:

pε
t (x) =

1

εs(ε)1/2
exp

{ |x|γ+1

(γ + 1)ε2

} ∞∑

j=1

e
− λjt

s(ε)ψj(0)ψj

( |x|
εs(ε)1/2

)
, (9)

where λj and ψj are the eigenvalues and the normalized eigenfunctions of the operator on L2(IR):

−1

2

d2

dx2
+

1

2
V (x),

where V is given by (8). Moreover the series is uniform convergent for fixed t and x belonging
to a compact set of IR.

Proof: Let us consider the following one-parameter semi-group:

(Ttf)(x) := IEx

[
f(Bt) exp−1

2

∫ t

0
V (Bs)ds

]
,

and we shall denote by at(x, y) the density of the semi-group with respect to the Lebesgue
measure:

at(x, y) :=
e−(x−y)2/2t

√
2πt

IEx

[
exp−1

2

∫ t

0
V (Bs)ds

∣∣∣∣Bt = y

]
.

6



Therefore, by (7) we can write

pε
t(x) =

1

εs(ε)1/2
exp

{ |x|γ+1

(γ + 1)ε2

}
a t

s(ε)

(
0,

x

εs(ε)1/2

)
.

Let us note that, by the definition, the semi-group Tt preserve the positivity. Moreover, the
generator of Tt = e−Ht is −H, with H a positive self-adjoint operator. Indeed, this second
property is true for self-adjoint contraction semi-groups (see, [D2] Theorem 4.6, p. 99) and we
can prove that

‖Tt‖L2(IR),L2(IR) ≤ sup
x∈IR

IEx

[
exp−1

2

∫ t

0
V (Bs)ds

]
≤ 1,

since V (·) ≥ 0 (see, for instance, [Ca], p. 271).
It can be shown (see [D-S] Lemma 2.1 p. 339) that the density of a semi-group satisfying the
previous properties and which is a trace class operator, can be developed as

at(x, y) =

∞∑

j=0

e−λjtψj(x)ψj(y).

Here the λj and ψj are the eigenvalues and the normalized eigenfunctions of the discrete spectrum
of the equation

−1

2
ψ′′(x) +

1

2
V (x)ψ(x) = λψ(x).

Moreover the convergence of the series is uniform over all compact sets of IR × IR.
To obtain the result (9) we shall prove that Tt is a trace class operator. Clearly,

at(x, x) ≤
1√
2πt

IE

[
exp−1

2

∫ t

0
|x+ b0,t

s |2γds

]
=: ãt(x, x), (10)

where b0,t
s is the Brownian bridge from 0 to 0 over [0, t] (thus the standard Brownian bridge is

bs = b0,1
s ) and ãt(x, y) is the density of the semi-group generated by the Schrödinger operator

−1

2

d2

dx2
+

1

2
Ṽ (x), with Ṽ (x) := |x|2γ .

Since Ṽ ∈ L2
loc(IR) and limx→∞ Ṽ (x)/|x|γ = +∞ we can deduce that this operator is a class

trace operator (see also [D1] Theorem 3.2, p. 488). By Mercer’s theorem (see, for instance,
[R-S], p. 65), we get ∫

IR
ãt(x, x)dx <∞,

and then, by (10), ∫

IR
at(x, x)dx <∞.

Again by Mercer’s theorem, we deduce that Tt is a trace class operator. QED

Remark 2 In the particular case γ = 1/2 we can find, by straightforward calculation, an
equivalent of ψj(x):

ψj(x) ∼ exp{−2

3
x3/2 + 2

√
xλj}, as x→ ∞.

This enables to think that ε2/3 ln pε
t(x) tends to λ1(2

√
|x|− t), if (t, x) lies between the extremal

solutions ρ1,2(t) = ±t2/4 (here s(ε) = ε2/3).

The second part of this remark can be proved in the following simple case x = εs(ε)1/2 but
for any 0 < γ < 1 :
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Corollary 2 For t > 0, 0 < γ < 1,

lim
ε→0

s(ε) ln pε
t(εs(ε)

1/2) = −λ1t. (11)

Moreover, the convergence is uniform on any compact subset of IR∗
+.

Proof: By (9) we get

pε
t(εs(ε)

1/2) =
1

εs(ε)1/2
exp

{
1

(γ + 1)

} ∞∑

j=1

e
− λjt

s(ε)ψj(0)ψj(1)

Since V is bounded from below, there exists a constant K > 0 such that

for all j ≥ 1, ‖ψj‖∞ ≤ K‖ψj‖2

(see [D1] Lemma 3.1, p. 488). Therefore, by classical convergence theorems,

pε
t (εs(ε)

1/2) =
1

εs(ε)1/2
exp

{
1

(γ + 1)
− λ1t

s(ε)

}
(ψ1(0)ψ1(1) + o(s(ε)))

and we obtain the announced result. It is not difficult to modify this proof to obtain the uniform
convergence. QED

2. CONVERGENCE OF ε
2 ln p

ε

t
(x)

The purpose of this section is to study the behaviour of ε2 ln pε
t (x). The result will be sharp

if (t, x) does not lie between the two extremal solutions of (3).

Theorem 1 If |x| > {t(1 − γ)}1/1−γ then there exists a positive function kt such that

lim
ε→0

ε2 ln pε
t(x) = −kt(|x|). (12)

Remark 3 We also prove that if |x| ≤ {t(1 − γ)}1/1−γ then

lim sup
ε→0

ε2 ln pε
t(x) ≤ 0, (13)

but this result will be improved in §3.

Proof of Theorem 1: Clearly, by (6) we can write

pε
t (x) =

1

ε
√

2πt
exp

{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}
IE

[
exp

(
−F (εb) − G(εb)

ε2

)]
,

where

F (εb) =
γt

2

∫ 1

0
|xu−

√
tεbu|γ−1du

and

G(εb) =
t

2

∫ 1

0
|xu−

√
tεbu|2γdu.

i) (an upper bound for lim supε→0 ε
2 ln p

ε

t
(x))

We have

pε
t(x) ≤

1

ε
√

2πt
exp

{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}
IE

[
exp−G(εb)

ε2

]
=: rε

t (x).

8



G is a continuous lower bounded functional of the Brownian bridge. Therefore, to study rε
t (x)

we use the Varadhan principle (see for instance [De-S], p. 43). Hence, applying the logarithm
we obtain

lim sup
ε→0

ε2 ln pε
t(x) ≤

|x|γ+1

γ + 1
− x2

2t
− 1

2
inf

φ∈H1
0

A(φ),

where, for φ ∈ H1
0 ,

A(φ) := t

∫ 1

0
|xu−

√
tφ(u)|2γdu+

∫ 1

0
φ′2(u)du. (14)

Here

H1
0 :=

{
φ(t) =

∫ t

0
f(s)ds : f ∈ L2([0, 1]) and φ(1) = 0

}
,

endowed with the norm

‖φ‖H1
0

:=

(∫ 1

0
|φ′(s)|2ds

)1/2

.

We compute the infimum of the functional A in the following:

Proposition 6 There exists a positive function kt such that

inf
φ∈H1

0

A(φ) =






2|x|1+γ

γ+1 − x2

t , if |x| ≤ {t(1 − γ)}1/(1−γ)

2|x|1+γ

γ+1 − x2

t + 2kt(|x|), otherwise.

(15)

We can finish the proof of the theorem and we postpone the proof of Proposition 6. Using (15)
we deduce (13) and

lim sup
ε→0

ε2 ln pε
t (x) ≤ −kt(|x|).

ii) (a lower bound for lim infε→0 ε
2 ln p

ε

t
(x))

Let us just note that F explodes when (t, x) lies between the extremals. In the following we
assume that x > {t(1 − γ)}1/1−γ . Let us denote κ := 1

2(x −
√
tφ′0(0)) > 0. Here φ0 is the

function which minimise the functional A (see the proof of Proposition 6 below). It results from
the proof of Proposition 6 below that φ0 belongs to the following open set

U := {φ ∈ C([0, 1]) : xu−
√
tφ(u) > κu, ∀u ∈ [0, 1]}.

Moreover, there exists η > 0 such that

max
φ∈U

F (φ) ≤ η.

Take δ > 0 and let V be a neighbourhood of φ0 such that

max
φ∈V

G(φ) ≤ G(φ0) + δ.

Let us denote W := U ∩ V. Then we can write

lim inf
ε→0

ε2 ln IE

[
exp−

(
F (εb) +

G(εb)

ε2

)]
≥ lim inf

ε→0
ε2 ln IE

[
exp−

(
F (εb) +

G(εb)

ε2

)
1I{εb∈W}

]

≥ lim inf
ε→0

ε2 ln IP(εb ∈ W) − lim
ε→0

ε2η − max
φ∈W

G(φ).

9



By Schilder’s theorem (see for instance [D-S], p 18), we obtain

lim inf
ε→0

ε2 ln IE

[
exp−

(
F (εb) +

G(εb)

ε2

)]
≥ − inf

φ∈W∩H1
0

1

2

∫ 1

0
|φ′(u)|2du−G(φ0) − δ

≥ −1

2
A(φ0) − δ.

Letting δ → 0 we get

lim inf
ε→0

ε2 ln pε
t(x) ≥

|x|γ+1

γ + 1
− x2

2t
− 1

2
inf

φ∈H1
0

A(φ).

By (15) we obtain the limit (12). This ends the proof of Theorem 1 except for the proof of
Proposition 6. QED

Proof of Proposition 6: First, we can assume that x ≥ 0. Indeed, if x ≤ 0 it suffices to
replace in (6) bu by −bu which are identical in law, to obtain the result.
i) Let φ ∈ H1

0 and let us denote (see also Figure 2)

a = sup

{
0 ≤ u ≤ 1 : φ(u) =

xu√
t

}
.

It is obvious that on [0,1], the straight line l(s) := xs/
√
t minimizes the functional

1a0

l(u)

Figure 2: Description of a

φ 7→
∫ 1

0
|xs−

√
tφ(s)|2γds.

Moreover ∫ a

0
φ′2(u)du ≥ ax2

t
=

∫ a

0
(l′(u))2du, ∀φ ∈ H1

0 .

Indeed
ax√
t

= φ(a) = |
∫ a

0
φ′(u)du| ≤

√
a

(∫ a

0
φ′2(u)du

)1/2

.

ii) We show that there exists φ0 ∈ H1
0 such that A(φ0) = inf A(φ). Take a minimizing sequence

φn of A. Since this sequence is bounded in H1
0 there exists a subsequence, still denoted by

φn, weakly convergent to some φ0. This implies pointwise convergence of φn to φ0, and by
Lebesgue, convergence of the first part of A(φn) to the first part of A(φ0). As a byproduct one
gets convergence of the L2 norm of φ′n to the one of φ′0 and combined with weak convergence it

10



yields strong convergence. Hence A(φn) goes to A(φ0) which, in turn, realizes the infimum.
By i) we see that on [0,a], φ0 = l. Let us notice also that

φ0(u) < l(u) for all u ∈]a, 1]. (16)

For any h ∈ H1
0 compactly supported in ]a, 1]

d

dλ
A(φ0 + λh)

∣∣∣∣
λ=0

= 0

(this differentiation is allowed since, for u ∈]a, 1], xu−
√
tφ0(u) > 0).

By (14) and (16) we obtain

∫ 1

0
γt

3
2 |xu−

√
tφ0(u)|2γ−1h(u)du −

∫ 1

0
φ′0(u)h

′(u)du = 0. (17)

Let us denote y(u) := xu−
√
tφ0(u) > 0. Then from (17) we obtain that y verifies the differential

equation: y′′(u) = γt2y2γ−1(u) in a weak sense on ]a, 1], with y(a) = 0 and y(1) = x (thanks to
continuity of y). We deduce that y verifies in a weak sense

d(y′)2

du
= 2y′y′′ = 2y′(γt2y2γ−1) = 2γt2y2γ−1y′ .

Therefore, for all ε > 0,

(y′(u))2 = (y′(a+ ε))2 + 2γt2
∫ u

a+ε
y(x)2γ−1y′(x)dx

= (y′(a+ ε))2 + t2y(u)2γ − t2y(a+ ε)2γ . (18)

This equality implies that y′ can be extended as a continuous function on the whole [a, 1].
iii) We shall prove that, for a > 0, y satisfies:

u = a+
y(u)1−γ

t(1 − γ)
for all u ∈ [a, 1]. (19)

We need to compute y′(a+). Let us suppose that y′(a+) > 0 then |y(u)|2γ−1 is integrable in
a neighborhood of a and formula (17) extends to any h. Now, this implies that the second
derivative of y is a function. Since y′(a−) = 0, this contradicts y′(a+) > 0. Hence y′(a+) = 0
and we obtain by (18)

y′(u)2 = t2y(u)2γ

or,

u = a+

∫ y(u)

y(a)

dx

txγ
= a+

y(u)1−γ

t(1 − γ)
.

Finally take u = 1, since y(1) = x, we get

a = 1 − x1−γ

t(1 − γ)
, (20)

and the condition a > 0 can be written as

x < {t(1 − γ)}1/(1−γ),

11



namely (t, x) lies between the two extremals.
iv) We need to compute the minimum of A

inf A(φ) = A(φ0) = A(y(·)/
√
t− l(·)) =

t

∫ 1

0
|xu−

√
tφ0(u)|2γdu+

∫ 1

0
φ′20 (u)du =

x2a

t
+ t

∫ 1

a
|xu−

√
tφ0(u)|2γdu+

∫ 1

a
φ′20 (u)du,

since φ0(u) = l(u) on [0,a], or

A(φ0) =
x2a

t
+ t

∫ 1

a
y(u)2γdu+

∫ 1

a

(x− y′(u))2

t
du

=
x2a

t
+ t

∫ 1

a
y(u)2γdu+

x2(1 − a)

t
− 2x

t

∫ 1

a
y′(u)du+

1

t

∫ 1

a
y′2(u)du.

By (19) we obtain:

A(φ0) =
x2

t
+ 2t

∫ 1

a
{t(1 − γ)(u− a)}

2γ
1−γ du− 2x

∫ 1

a
{t(1 − γ)(u− a)}

γ
1−γ du,

which can be written, by change of variable v = t(1 − γ)(u− a) and by (20), as

A(φ0) =
x2

t
+

2

1 − γ

∫ x1−γ

0
v

2γ
1−γ dv − 2x

t(1 − γ)

∫ x1−γ

0
v

γ
1−γ dv.

Then we get the first part of (15) by straightforward calculation.

v) Assume now a = 0 which means, by iii), that:

x ≥ (t(1 − γ))1/(1−γ).

As in iii), the solution of the problem (18) satisfies

y′(u)2 = t2y(u)2γ + y′(0)2. (21)

However in this case (a=0) we have not the explicit value of y′(0), as in iii).

vi) We need to compute the minimum of A

inf A(φ) = A(φ0) = t

∫ 1

0
y(u)2γdu+

∫ 1

0

(x− y′(u))2

t
du

=
2

t

∫ 1

0
y′(u)2du− y′(0)2

t
− x2

t
.

Since y is positive on ]0, 1], y′ does not vanish thanks to the differential equation (21) thus is
positive. Therefore it is allowed to apply the following change of variable

du

dy
=

1√
y′(0)2 + t2y2γ

, (22)

and we get

A(φ0) =
2

t

∫ x

0

√
y′(0)2 + t2y2γdy − y′(0)2

t
− x2

t
.

12



By straightforward calculation we obtain

A(φ0) =
2x
√
y′(0)2 + t2x2γ

(1 + γ)t
+

(γ − 1)y′(0)2

(1 + γ)t
− x2

t

=
2xγ+1

1 + γ
− x2

t
+ 2kt(x),

where

t(1 + γ)kt(x) := x
√
y′(0)2 + t2x2γ − tx1+γ +

γ − 1

2
y′(0)2.

Let us prove that kt(x) > 0.
By the change of variable (22), we get

1 =

∫ x

0

du

dy
dy =

∫ x

0

dy√
y′(0)2 + t2y2γ

.

Therefore as a function of x, y′(0) is continuous, strictly increasing and differentiable for x ≥
{t(1 − γ)}1/1−γ . Moreover the derivative is equal to

γy′(0)

x+ (γ − 1)
√
y′(0)2 + t2x2γ

≥ 0.

Therefore we can compute k′t(x) for x > {t(1 − γ)}1/1−γ :

k′t(x) =
1

t
(
√
y′(0)2 + t2x2γ − txγ) > 0, since y′(0) > 0.

Observe that kt({t(1 − γ)}1/1−γ) = 0 by iv) and that k′t(x) is positive for x > {t(1 − γ)}1/1−γ ,
so kt(x) > 0.
This ends the proof of the second part of (15). QED

Remark 4 Using a probabilistic method (see [H]), we can obtain an upper bound in the par-
ticular case γ = 1/2. Precisely we can prove that, for |x| ≤ t2/4,

lim sup
ε→0

ε2/3 ln pε
t(x) ≤ a′1(t/2 −

√
|x|),

where a′1 is the greater negative zero of the derivative of the Airy function Ai. In the proof of
this upper bound we use the following result concerning a functional of the standard Brownian
bridge {bu, u ∈ [0, 1]}, which can be interesting in itself. For 0 ≤ a < 1,

lim
ε→0

ε2/3 ln IE

[
exp−1

ε

∫ a

0
|bu|du

]
=
a′1a

21/3

(see also [Sh], [Ri]).
The improvement of the upper bound in the general case will be presented in the following
section.

3. VISCOSITY SOLUTION OF A HAMILTON-JACOBI EQUATION

In Theorem 1 we obtained the behaviour of pε
t(x), if (t, x) does not lie between the extremals.

The aim of this section is to study the behaviour for (t, x) lying between the extremals, namely
we study s(ε) ln pε

t (x), with s(ε) = ε(2(1−γ))/(1+γ).

13



Theorem 2 If (t, x) belongs to the domain contained between the extremal solutions of (3), then

lim
ε→0

s(ε) ln pε
t(x) = −λ1

(
t− |x|1−γ

1 − γ

)
. (23)

Here λ1 is the first positive eigenvalue of the Schrödinger operator on L2(IR):

−1

2

d2

dx2
+

γ

2|x|1−γ
+

|x|2γ

2
.

Our study is based on a particular tool: the viscosity solutions of parabolic partial differential
equations. For a study of these solutions the reader may consult the book of Barles [B] or the
one of Fleming [Fl].
First we shall introduce some domains of the first quadrant plane:

T

{(1 − γ)T}1/1−γ

Ωε

εs(ε)1/2

the extremal

solution

0

Figure 3: The domain Ωε

Ω := {(t, x) : 0 < t < T , 0 < x < {(1 − γ)t}1/1−γ},
Ω̃ := {(t, x) : 0 < t ≤ T , 0 < x < {(1 − γ)t}1/1−γ},
Ω̂ := {(t, x) : 0 < t ≤ T , 0 ≤ x < {(1 − γ)t}1/1−γ},

Ωε := {(t, x) : (1 − γ)ε4/(1+γ) < t < T , εs(ε)1/2 < x < {(1 − γ)t}1/1−γ},
Ω̃ε := {(t, x) : (1 − γ)ε4/(1+γ) < t ≤ T , εs(ε)1/2 < x < {(1 − γ)t}1/1−γ},
Ω̂ε := {(t, x) : (1 − γ)ε4/(1+γ) < t ≤ T , εs(ε)1/2 ≤ x < {(1 − γ)t}1/1−γ}.

Let us consider the following parabolic partial differential equation in U ⊂ IR2 (we shall precise
U below):

∂u

∂t
+H(t, x, u,

∂u

∂x
,
∂2u

∂x2
) = 0 , (24)

where H is a real Hamiltonian defined on IR×U × IR× IR. We assume that H is elliptic in the
following sense:

H(t, x, u, p, q1) ≤ H(t, x, u, p, q2), if q2 ≤ q1.

We recall the notion of viscosity solution for (24) and we need a slightly different definition than
the one in [B] (see Definition 2.1, p. 11 or Definition 4.1, p. 80), since the domains which we
consider are not open nor closed.

14



Definition 1 Let u be a bounded upper semi-continuous (u.s.c.) (respectively lower semi-
continuous (l.s.c.)) function on a connected set U with connected boundary. u is a viscosity
sub-solution (respectively super-solution) of (24) on U , if for all ϕ ∈ C2(U), whenever (t0, x0) ∈ U
is a point of local maximum (local minimum) of u− ϕ, then

∂ϕ

∂t
(t0, x0) +H(t0, x0, u(t0, x0),

∂ϕ

∂x
(t0, x0),

∂2ϕ

∂x2
(t0, x0)) ≤ 0 (respectively ≥ 0). (25)

Proposition 7 Let us define

uε(t, x) := −s(ε) ln(pε
t(x) + e−D/s(ε)), (26)

where D > 0. Then uε is a viscosity solution of

∂uε

∂t
+Hε(t, x, u

ε,
∂uε

∂x
,
∂2uε

∂x2
) = 0 in Ω̃ε, (27)

corresponding to the Hamiltonian:

Hε(t, x, u, p, q) := −ε
4γ

1+γ

2
q +

ε
4γ

1+γ

2
p2 + xγp− γxγ−1s(ε)

(
1 − exp

u−D

s(ε)

)
. (28)

Remark 5 The reason to introduce the exponential term, with D > 0, in the definition of
uε is that this last function is bounded. Clearly, by choosing D large enough, this term in the
logarithm scale will not change the limit as ε→ 0.

Proof of Proposition 7:
a) First, we shall prove that the equation (27) is verified on Ωε in classical sense.
Since V , the potential given by (8) of the Schrödinger operator in the statement of Theorem 3,
is uniformly Hölder continuous on a neighbourhood of any x 6= 0 (see [Ro] Definition 2 p. 122),
by Theorem 1 p. 127 in [Ro] we deduce that the function

(t, x) 7→ 1√
2πt

exp(−x
2

2t
)IE

[
exp−1

2

∫ t

0
V (Bs)ds

∣∣∣∣Bt = x

]

is a classical solution of the equation

∂u

∂t
=

1

2

∂2u

∂x2
− 1

2
V u on ]0, T ] × IR∗.

Thus, by similar arguments, using (7) we obtain that pε ∈ C1,2(Ωε). By logarithmic transform,
we get that uε is a classical solution of

∂u

∂t
+Hε(t, x, u,

∂u

∂x
,
∂2u

∂x2
) = 0 on Ωε,

where Hε is given by (28).
b) Moreover all classical solutions are viscosity solutions, hence uε is a viscosity solution on Ωε.
It suffices to verify that uε is a viscosity solution on Ω̃ε \ Ωε. Take now ϕ ∈ C2(Ω̃ε) such that
(T, x0) ∈ Ω̃ε is a local maximum of uε − ϕ. Replacing ϕ by ϕ + (x − x0)

4 + (t − T )2 the first
and the second derivative at (T, x0) do not change, and so we can assume that (T, x0) is a point
of local strict maximum. The idea is to adapt the reasoning for the points of Ωε to the point
(T, x0). To do this, we need the following :
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Lemma 1 Let (uη)η be a sequence of u.s.c. functions which converges towards u, uniformly
over all compact subsets of a bounded set U . We suppose that u can be extended to an u.s.c.
function on Ū . If (τ, ξ) is a local strict maximum of u then there exists (τη, ξη) ∈ Ū which is a
point of local maximum of uη such that limη→0(τη, ξη) = (τ, ξ).

We can finish the proof of Proposition 8. Let us consider the function:

Ξη(t, x) := uε(t, x) − ϕ(t, x) − η

T − t
, η > 0.

By Lemma 1 applied on Ωε, there exists a sequence (tη, xη) ∈ Ω̃ε of local maxima of Ξη which
converges to (T, x0), as η → 0. Clearly, limt→T Ξη(t, x) = −∞. Hence tη < T and for η small
enough (tη, xη) ∈ Ωε.
Since uε is a viscosity sub-solution on Ωε we get:

η

(T − tη)2
+
∂ϕ

∂t
(tη, xη) +Hε(tη, xη , u

ε(tη, xη),
∂ϕ

∂x
(tη, xη),

∂2ϕ

∂x2
(tη, xη)) ≤ 0.

By the continuity of uε, letting η → 0 we obtain

∂ϕ

∂t
(T, x0) +Hε(T, x0, u

ε(T, x0),
∂ϕ

∂x
(T, x0),

∂2ϕ

∂x2
(T, x0)) ≤ 0.

The same argument can be used to prove that uε is a super-solution. This ends the proof of
Proposition 8 except for the proof of Lemma 1. QED

Proof of Lemma 1: The result is clear for (τ, ξ) ∈ U (see [B] Lemma 4.2 p.88). Let us
suppose that (τ, ξ) ∈ ∂U . Take r > 0 and we define the compact set Kr = B((τ, ξ), r) ∩ U ,
where B is an Euclidean ball centred in (τ, ξ) with radius r such that (τ, ξ) is a global strict
maximum on Kr. The u.s.c. function uη reaches its maximum on the compact set Kr at (τη, ξη).
We extract a sub-sequence, denoted for simplicity again by (τη, ξη), which converges to (τ̄ , ξ̄),
as η → 0. Assume that (τ̄ , ξ̄) 6∈ ∂U . Since u is u.s.c. and since (τ, ξ) is a strict maximum, there
exists (t, y) ∈ Kr such that

u(τ, ξ) > u(t, y) > u(τ̄ , ξ̄)

This inequality can not be true ! Indeed, uη(τη, ξη) tends to u(τ̄ , ξ̄) and uη(t, y) tends to
u(t, y), these two convergences being uniform. Hence, (τ̄ , ξ̄) ∈ ∂U . Moreover, we know that
‖(τ̄ , ξ̄) − (τ, ξ)‖ ≤ r. We can choose a sequence (τ̄ r, ξ̄r) which tends to (τ, ξ), as r → 0. By
diagonalization, we can find a sequence (τη, ξη) ∈ Ū which converges to (τ, ξ), as η → 0. QED

Our aim is to take the limit as ε → 0 in the Hamilton-Jacobi equation (27). We prove the
following stability result:

Proposition 8 Let us denote

ū(t, x) := lim sup
ε→0, s→t, y→x, (s,y)∈bΩε

uε(s, y), for all (t, x) ∈ Ω̂. (29)

Then ū is a viscosity sub-solution of the equation

∂u

∂t
+H0

(
x,
∂u

∂x

)
= 0 on Ω̃, (30)

with the Hamiltonian
H0(x, p) := xγp. (31)

If we denote u = lim inf uε, with a limit taken as previously, then u is a viscosity super-solution
of (30).
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The proof of this result is similar to that of Theorem 4.1 p.85 in [B], except for the fact that
the stability result is stated on a closed set. Here we only need the following:

Lemma 2 Let (vε)ε be a sequence of u.s.c. functions having a local uniform bound on Ω̂ε. Let
us denote by v̄ = lim sup vε as in (29). We assume that v̄ has a local strict maximum on Ω̂.
Then, there exists a sub-sequence (vε′)ε′ of (vε)ε and a sequence (rε′ , zε′)ε′ ∈ Ω̂ε such that:
for all ε′ > 0, vε′ reaches a local maximum on Ω̂ε at (rε′ , zε′) and

lim
ε′→0

(rε′ , zε′) = (r, z), lim
ε′→0

vε′(rε′ , zε′) = v̄(r, z).

The proof of this lemma is similar to the proof of Lemma 4.2, p. 88 in [B].

We also prove an uniqueness result contained in the following:

Proposition 9 For all (t, x) ∈ Ω̂,
ū(t, x) = u(t, x). (32)

Proof of Proposition 9:
i) First, we prove (32) for (t, x) ∈]0, T ] × {0}. Take ϕ ∈ C2(Ω̂) such that (t0, 0) is a local
maximum of ū − ϕ. By Lemma 2, there exists a sequence of points (tε, xε) of local maxima of

uε on Ω̂ε such that:
lim
ε→0

(tε, xε) = (t0, 0).

We take a sub-sequence if necessary and we study then two different situations:
a) either (tε, xε) ∈ Ω̃ε and taking the limit as ε→ 0 in equation (27) we get

∂ϕ

∂t
− 1 ≤ 0; (33)

b) or (tε, xε) ∈ Ω̂ε \ Ω̃ε. Since, for D large enough,

uε(tε, xε) = −s(ε) ln(pε
tε(εs(ε)

1/2) + e−D/s(ε))

tends to λ1t0 as ε→ 0 (see Corollary 2), we get ū(t0, 0) = λ1t0.
Take a particular function ϕ0 which does not verify (33):

ū(t, x) − ϕ0(t, x) := ū(t, x) − x

η
− η2 cosh(

t− t0
η2

) − t− t0
η

, (34)

denote by (tη, xη) the point of maximum of ū − ϕ0 on Ω̂ and we shall prove that (tη, xη) /∈ Ω̃.
Clearly

(ū− ϕ0)(tη , xη) ≥ (ū− ϕ0)(t0, 0) = ū(t0, 0) − η2.

Since ū is bounded, we obtain, by (34) limη→0 xη = 0, limη→0 tη = t0 and limη→0
tη−t0

η = 0.

Moreover since ū is a viscosity sub-solution, if (tη, xη) ∈ Ω̃, we get

∂ϕ0

∂t
(tη, xη) + xγ

η

∂ϕ0

∂x
(tη, xη) ≤ 0. (35)

Clearly, by (34),

∂ϕ0

∂t
(tη, xη) = sinh(

tη − t0
η2

) +
1

η
and

∂ϕ0

∂x
(tη, xη) =

1

η
.
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It is obvious that neither equation (33) nor equation (35) can be verified by ϕ0 with η small
enough. Hence (tη , xη) 6∈ Ω̃ and so (tη, xη) ∈]0, T ] × {0}. Moreover, since we are in case b),
ū(tη, 0) = λ1tη. We deduce that

ū(t0, 0) ≤ λ1tη + η − ϕ0(tη, 0).

As η → 0 we get
ū(t0, 0) ≤ λ1t0.

Using the same reasoning for u we obtain that ū = u on ]0, T ] × {0}.
ii) Second, we prove (32) for (t, x) ∈ Ω̃. It suffices to verify (32) on the compact set

Kδ = {(t, x) : x ≤ ((t− δ)(1 − γ))1/1−γ} ∩ Ω̃

for any δ > 0. Let us note that the inequation

∂ϕ

∂t
(t, x) + xγ ∂ϕ

∂x
(t, x) ≤ 0

is verified on the boundary {(t, x) : x = {(t− δ)(1−γ)}1/1−γ}∩ Ω̃. To show this fact we proceed
as in the proof of Proposition 7 b) by taking ϕ ∈ C2(Kδ) and the sequence of functions

Ξη(t, x) := ū(t, x) − ϕ(t, x) +
η

x1−γ − (t− δ)(1 − γ)
.

We shall compute
M := sup

Kδ

(ū− u). (36)

Let us assume that M > 0 and, as we have already seen, this maximum can not be reached for
x = 0. Take α > 0. The function

ūα(t, x) := ū(t, x) − αt

is a sub-solution of the equation

∂u

∂t
+H0(x,

∂u

∂x
) + α = 0.

Let us denote

Ψη(t, s, x, y) := ūα(t, x) − u(s, y) − (x− y)2

η2
− (t− s)2

η2
, (37)

and let (tη, sη, xη, yη) be a point where Ψη reaches a local maximum. Then ūα − χ1 reaches a
local maximum at (tη, xη), where χ1 denotes the function

χ1(t, x) := u(sη, yη) +
(x− yη)

2

η2
+

(t− sη)
2

η2
.

By the same argument, χ2 − u reaches a local maximum at (sη′ , yη′) where χ2 denotes the
function

χ2(s, y) := ūα(tη, xη) −
(xη − y)2

η2
− (tη − s)2

η2
.

To finish the proof we need the following:

18



Lemma 3 There exists ρ > 0 and (tη, sη, xη, yη), a sequence of maxima of the function Ψη given
by (37), such that

lim
η→0

(xη − yη)
2/η2 = 0, (38)

xη > ρ and yη > ρ for η small enough. (39)

We return to the proof of Proposition 9. By Lemma 3, there exists a sub-sequence (tη′ , sη′ , xη′ , yη′ )
of (tη, sη, xη, yη), such that xη′ > 0. Since ūα is a viscosity sub-solution, we get

∂χ1

∂t
(tη′ , xη′ ) +H0

(
xη′ ,

∂χ1

∂x
(tη′ , xη′ )

)
+ α ≤ 0,

hence
2(tη′ − sη′ )

η′ 2
+H0

(
xη′ ,

2(xη′ − yη′ )

η′ 2

)
+ α ≤ 0. (40)

By the same argument, since u is a viscosity super-solution we get

2(tη′ − sη′ )

η′ 2
+H0

(
yη′ ,

2(xη′ − yη′ )

η′ 2

)
≥ 0. (41)

Subtracting (41) from (40) we obtain

−2(xη′ − yη′ )

η′ 2
(xγ

η′ − yγ
η′ ) = H0

(
xη′ ,

2(xη′ − yη′ )

η′ 2

)
−H0

(
yη′ ,

2(xη′ − yη′ )

η′ 2

)
≤ −α.

Taking the limit as η → 0, and using (38) and (39), we get 0 ≤ −α. This is in contradiction
with the assumption α > 0. The proof is complete except for the proof of Lemma 3. QED

Remark 6. Obviously,

u(t, x) = λ1

(
t− x1−γ

1 − γ

)

is a classical solution of (30), which verify u(t, 0) = λ1t. Hence, by the proof of Proposition 9,
we deduce an uniqueness result and we get that ū = u = u.

Proof of Lemma 3: Put Mη = supKδ
Ψη = Ψη(tη, sη, xη, yη). Then, by (37), for any (t, x) and

(s, y) belonging to Kδ,

ūα(t, x) − u(s, y) − (x− y)2

η2
− (t− s)2

η2
≤Mη.

Taking (t, x) = (s, y) we get
(ūα − u)(t, x) ≤Mη,

hence
Mα := sup

Kδ

(ūα − u) ≤Mη.

Since

Mα ≤ ūα(tη, xη) − u(sη, yη) −
(xη − yη)

2

η2
− (tη − sη)

2

η2
,

and by the fact that Mα, ūα and u are bounded, there exists k > 0, such that

(xη − yη)
2

η2
+

(tη − sη)
2

η2
≤ k, for all η > 0.
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We can extract a sub-sequence (tη′ , sη′ , xη′ , yη′ ) which converges to (t, s, x, y) ∈ Kδ and such
that

{
(xη′ − yη′ )2/η′ 2 : η′ ≥ 0

}
converges. Since xη′ − yη′ → 0 and tη′ − sη′ → 0, as η′ → 0,

we deduce that t = s and x = y.
Furthermore,

Mα ≤ lim infMη′ ≤ lim supMη′

≤ ūα(t, x) − u(t, x) − lim
η′ →0

(xη′ − yη′ )2

η′ 2
− lim inf

η′ →0

(tη′ − sη′ )2

η′ 2
≤Mα.

Hence

lim
η′ →0

Mη′ = Mα and lim
η′ →0

(xη′ − yη′ )2

η′ 2
= 0.

Assume that (t, x) ∈]0, T ] × {0}. The preceeding inequality yields

Mα ≤ ūα(t, x) − u(t, x) = −αt

since ū = u on ]0, T ] × {0}. For α small enough Mα is positive which contradicts our last
inequality and (39) is justified. QED

Finally, by the symmetry of pε
t(·), the result of Theorem 2 is an easy consequence of Remark 6

and of the following:

Proposition 10 For (t, x) ∈ Ω̃,

lim
ε→0

s(ε) ln pε
t (x) = λ1

(
x1−γ

1 − γ
− t

)
, (42)

and the convergence is uniform on each compact subset of Ω̃. Moreover,

lim
ε→0

s(ε) ln pε
t(0) = −λ1t, ∀t > 0.

Proof of the Proposition 10: This proof is an adaptation of the proof of a result in [B] (see
Lemma 4.1, p. 86).
Let K be a compact subset of Ω̃. First, we show that limε→0 u

ε = u, uniformly on K. By
Proposition 9, ū = u = u on K. This means that u is a continuous function (since ū is u.s.c.
and u is l.s.c.). Hence, by (26) uε − u is also a continuous function and Mε := supK(uε − u) is
reached at (tε, xε) ∈ K.
Since uε is bounded, we can extract a sub-sequence (tε′ , xε′), such that (tε′ , xε′) → (t, x) ∈ K
and Mε′ → (lim supεMε), as ε′ → 0.
By (29) we get

lim sup
ε′→0

uε′(tε′ , xε′) ≤ ū(t, x).

Hence

lim sup
ε→0

sup
K

(uε − u) = lim sup
ε′→0

(
uε′(tε′ , xε′) − u(tε′ , xε′)

)

≤ ū(t, x) − u(t, x) = 0.

By similar arguments, we obtain:

lim sup
ε→0

sup
K

(u− uε) ≤ 0.

Therefore,
lim sup

ε→0
sup
K

(u− uε) = 0.
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On the other hand,

lim sup
ε→0

uε(t, x) = min

{
lim sup

ε→0
(−s(ε) ln pε

t (x)),D

}

lim inf
ε→0

uε(t, x) = min
{
lim inf

ε→0
(−s(ε) ln pε

t(x)),D
}
.

We deduce that, for D large enough, the term exp(−D/s(ε)) will not change the limits as ε

tends to zero, since u(t, x) = λ1(t− x1−γ

1−γ ) is bounded. Hence, s(ε) ln pε
t (x) converges uniformly

on each compact set of Ω̃ to λ1(
x1−γ

1−γ − t).
Finally, for x = 0, we use formula (9) which we proved in Proposition 5:

pε
t(0) =

1

εs(ε)1/2

∞∑

j=1

e
− λjt

s(ε)ψ2
j (0).

By a similar reasoning as in the proof of Corollary 2, we can show that:

lim
ε→0

s(ε) ln pε
t(0) = −λ1t.

QED
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