
HAL Id: hal-00090944
https://hal.science/hal-00090944v3

Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sign-free stochastic mean-field approach to strongly
correlated phases of ultracold fermions.

O. Juillet

To cite this version:
O. Juillet. Sign-free stochastic mean-field approach to strongly correlated phases of ultracold fermions..
New Journal of Physics, 2007, 9, pp.163. �10.1088/1367-2630/9/6/163�. �hal-00090944v3�

https://hal.science/hal-00090944v3
https://hal.archives-ouvertes.fr


 
 
Sign-free stochastic mean-field approach to strongly 
correlated phases of ultracold fermions. 
 

O JUILLET 
LPC/ENSICAEN, Boulevard du Maréchal Juin, F-14050 Caen Cedex, France 

 
E-mail: juillet@lpccaen.in2p3.fr 

 
Abstract. We propose a new projector quantum Monte-Carlo method to investigate the ground 
state of ultracold fermionic atoms modeled by a lattice Hamiltonian with on-site interaction. 
The many-body state is reconstructed from Slater determinants that randomly evolve in 
imaginary-time according to a stochastic mean-field motion. The dynamics prohibits the 
crossing of the exact nodal surface and no sign problem occurs in the Monte-Carlo estimate of 
observables. The method is applied to calculate ground-state energies and correlation functions 
of the repulsive two-dimensional Hubbard model. Numerical results for the unitary Fermi gas 
validate simulations with nodal constraints. 
 
PACS. 03.75.Ss, 05.30.Fk, 71.10.Fd 
 

 
 
1. Introduction. Since the experimental achievement of Fermi degeneracy [1] with an atomic vapor, a 
considerable attention has been attracted by the physics of dilute ultracold fermions. The ability to 
tune many parameters, such as temperature, density or inter-particle interactions, makes atomic Fermi 
gases ideal candidates to understand a wealth of phenomena relevant for physical systems ranging 
from nuclear matter to high-temperature superconductors. Of particular interest is the strongly 
interacting regime in the transition from Bardeen-Cooper-Schrieffer (BCS) superfluidity of Cooper 
pairs to Bose-Einstein condensation (BEC) of atomic dimers. In the crossover regime, Fermi 
condensates have been observed on both the BCS and the BEC sides of a magnetically controlled 
Feshbach resonance [2-4]. The unitary regime, where the scattering length diverges, is particularly 
studied [5-7] to investigate the universal features of the fermionic quantum many-body problem. 
Using several standing laser beams, ultracold atoms can also be loaded in optical lattices where they 
experience all the strong many-body correlations described by the Hubbard model of solid-state 
physics [8,9]. Optical lattice setups may allow for engineering quantum spin models [10], fractional 
quantum Hall effect [11], non-Abelian gauge potentials [12] or quantum information processing [13]. 
In this paper, we investigate a new Monte-Carlo scheme to study strongly correlated ground states of 
ultracold fermions interacting on a lattice. The projection onto the ground state is performed through a 
reformulation of the imaginary-time Schrödinger equation in terms of Slater determinants undergoing 
a Brownian motion driven by the Hartree-Fock Hamiltonian. Such exact stochastic extensions of the 
mean-field approaches have been recently proposed for boson systems [14,15]. Up to now, the 
fermionic counterpart uses Slater determinants whose orbitals evolve under their own mean-field, 
supplemented with a stochastic one-particle-one-hole excitation [16,17]. Unfortunately, the sampling 
generally suffers from negative weight trajectories that cause an exponential decay of the signal-to-
noise ratio, which is known as the sign problem. The convergence issue of such a Monte-Carlo 
calculation plagued by negative “probabilities” belongs to the class of NP hard problems and a 
polynomial complexity solution can be probably ruled out [18]. Here, we extend the stochastic 
Hartree-Fock approach to remove negative weight paths in the Monte-Carlo calculation of any 
observable. 
 



2. The sign-free stochastic mean-field scheme. For a system of fermions interacting through a binary 
potential, we first introduce a set of hermitian one-body operators sÂ  ( )L,1,0=s  allowing to rewrite 
the model Hamiltonian Ĥ  as a quadratic form: 
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ii aa ˆ,ˆ+  are the Fermi creation and annihilation operator in a single-particle mode i . Let us now 
consider two N-particle Slater determinants ψ , ϕ  of orbitals satisfying the biorthogonality relations 

pnpn ,δϕψ = . Any matrix element ϕψ Â  can then evaluated by using Wick’s theorem with the 

set of contractions ∑== +

n
nnijij jiaa ψϕϕψ ˆˆR . The non-hermitian one-body density matrix R  
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R
H

R
∂
∂
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( ) ϕψ Ĥ=RH  is the matrix element of the Hamiltonian. Under the Hamiltonian (1), it is shown in 

Appendix that the Slater determinant ϕ  transforms according to: 
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1,0̂h  is defined by ( )[ ] ji
ji

ij aahh ˆˆ 1ˆ
,

1,0
+∑ −= RR  and 1,0,

ˆ
sA  is given by similar expression: 
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ji

ijs aaAA ˆˆ 1ˆ
,

1,0,
+∑ −= RR s . If the two Slater determinants ψ , ϕ  were identical, 1,0ĥ  and 2

1,0,
ˆ

sA  

would represent physically one-particle-one-hole and two-particle-two-holes excitations. After an 
infinitesimal time step   dτ , during which ϕ  evolves to ( ) ϕτ  ˆexp Hd− , the last term of the expansion 
(2) causes departures of the propagated state from a single Slater determinant. However, introducing 
random fields according to the Hubbard-Stratonovich transformation can linearize the dynamics [19-
21].  The detailed derivation is reported in Appendix. Finally, the exact imaginary-time evolution is 
recovered through the stochastic average of Brownian trajectories in the subspace of Slater 
determinants states ϕ : 
 

( ) ( ) ( )( ) ( )[ ]τϕτϕτ   exp0 ˆexp SEH =−  (3) 
 

where ( )LE  is the average over a random functional; the evolution of S  and the orbitals nϕ  is 
governed by the following equations in the Itô sense:  
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The sdW  are infinitesimal increments of independent Wiener processes: ( ) 0=sdWE , 

ssss ddWdW ′′ = , δτ . We emphasize that the dynamics (5) exactly preserves the biorthogonality 



properties between the two Slater determinants ψ , ϕ : indeed, the left-eigenvalue equation 

nn =R ψψ  implies npd δϕϕψ =+ ppn  and therefore 1=ϕψ  at any time. This feature 

guarantees that sign problems will not occur as long as S  remains real during the imaginary-time 
motion, as we detail below.  
 
 Consider a walker ( )oτϕ  at time oτ . Its overlap with the exact many-body ground-state 

gΨ  can be obtained from the representation (3) in the limit of large τ , provided that the trial state 

ψ  is not orthogonal to gΨ : 
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where gE  is the ground-state energy and where the phase of  ψ  can be chosen  to have gΨψ  real 

and positive. With the dynamics (5) of the Hartree-Fock orbitals,  1=ϕψ  and no walker can cross 
the exact nodal surface if S  is real. In contrast, the standard auxiliary-field projector quantum Monte-
Carlo method [22], as well as our previous stochastic mean-field scheme [16,17], generally leads to 
Slater determinants ϕ  whose overlap ϕψ  exhibits a varying sign. As a consequence, a walker can 
reach the nodal surface and it then generates stochastic paths that do not contribute to the ground-state:  

( ) ( ) ( ) ( )[ ] 0 (exp ˆexp =Ψ=−Ψ τϕττϕτ gog SEH  as long as ( ) 0=Ψ og τϕ . Such trajectories 

only increase the statistical error and are responsible of the sign-problem. Thus, one is forced to 
perform the constrained-path approximation [23] where walkers are eliminated “by hand” when their 
overlap with a ground-state ansatz wave-function becomes negative. 
 
 Numerically, the stochastic differential equations (5) are solved, in the Stratonovich form, by 
an embedded Runge-Kutta (5,4) algorithm with adaptive stepsize control. We take ( ) ψϕ =0  as 
initial condition and the spreading of the weights ( )Sexp  is avoided through standard population 
control techniques.  In practice, we use the stochastic reconfiguration method [24] that deals with a 
fixed-number of walkers ϕ  among which some are killed and others are cloned according to their 
relative weight in the population. Observables are estimated from the representation (3) of the many-
body state. For instance, the ground-state energy Eg  is be obtained according to  
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where the amplitudes ( )( )τSexp  are now all real positive. Moreover, when the Slater determinant 
ansatz ψ  and the ground-state share a common symmetry, the stochastic paths are automatically 
projected onto this symmetry sector in the estimate (7). Otherwise, the sampling can be improved by 
projection techniques [25,26]. These conclusions also hold true for any observable commuting with 
the Hamiltonian. In other cases, one obtains an approximate ground-state expectation value, known as 
the mixed estimate [27].  It can be corrected by the following extrapolated estimate that is one order 
better in the difference gΨ−ψ [27]: 
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Note that these observable estimates are biased in standard projector quantum Monte-Carlo methods 
by the nodal constraints introduced to circumvent sign problems. The stochastic Hartree-Fock 
approach (3-5) removes this systematic error. The exact expectation value would require obtaining the 
ground-state density matrix by a double propagation in imaginary-time: 
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. For such calculations, our scheme can be extended 

by expanding the density-matrix in terms of dyadics ( ) ( )ba ϕϕ  that are formed by biorthogonal 

Slater determinants, both undergoing a Brownian motion similar to Eq. (5). We emphasize that the 
method then becomes the equivalent, at fixed particle-number, of the recent Gaussian Monte-Carlo 
technique [25,28], which is more suited for thermodynamical studies in the grand-canonical ensemble.  
 
3. Application to ultracold atomic Fermi gases. First, we concentrate on the single-band ( )2SU  
Hubbard model that describes the low-energy physics of two-component ultracold fermions trapped in 
optical lattices: 
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Here +

σ,ˆrar  creates one atom at site rr  in the internal state ↓↑= ,σ  and σσσ ,,, ˆˆˆ rrr aan rrr +=  is the 

corresponding number operator; t  is the hopping matrix element between nearest neighboring sites 
rr rr ′, ; U  is the amplitude of the on-site interaction between two atoms. Analytical solutions only 

exist in one dimension. For higher dimensional problems, standard auxilliary-field quantum Monte-
Carlo calculations are limited to the repulsive model at half filling and to the attractive model with 
symmetric populations in the two spin channels ↓↑ , .  In other cases, one experiences severe sign 

problems that practically prohibit studying large lattices, strongly interacting systems or open shells 
configurations [22]. In contrast, our new stochastic Hartree-Fock scheme (3-5) does not manifest 
explicit sign problems regardless of the lattice topology, band filling and sign of the interaction. 
Indeed, a quadratic form (1) can be recovered from the Hamiltonian (9) by using the local density or 
magnetization depending on the sign of the interaction parameter  U :   
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where we have omitted a constant term proportional to the total number of particles. All the one-body 
operators sÂ  defined by Eq. (10) are real in the representation σ,rr . For real orbitals of the trial 
Slater determinant ψ  in this basis, their biorthogonal partners nϕ , stochastically propagated by the 
dynamics (5), are real at any imaginary-time as well. Therefore, ( )RH  and ( )τS  are also real, and 
positive weights trajectories are guaranteed. For the positive-U  model (9), our ansatz ψ  is a spin-
singlet Slater determinant for free-fermions Fψ  or an antiferromagnetic Hartree-Fock mean-field 
solution AFψ .  
 



As an example, we consider an unpolarized system of 12 atoms interacting on a   4× 4 lattice: 
if tU 4= , the exact ground-state energy is tEg  73.17−=  [29] and the stochastic Hartree-Fock 

propagation of   ψF  ( )AFψ resp.  leads to the value ( )7709.17−  ( )( )617.710 resp.−  for the energy 
estimator (7) at the imaginary-time t20=τ . Other results are displayed on Fig. 1 for two-dimensional 
lattices with a hole doping 125.0=δ  from half-filling. This density generates the most important sign 
problem in auxiliary-field approaches [22]. The antiferromagnetic mean-field state is very efficient 
and the exact ground-state energy of the 44×  lattice at tU 4=  is recovered to within less than 0.2% if 
the sampling is improved by projecting onto the spin-singlet sector. For the larger on-site repulsion 

tU 8= , the stochastic Hartree-Fock estimate of the ground-state energy is tEg  )1(845.11−=  
( t20=τ ) as compared to the exact value tEg  872.11−= .  The simulations on the 88×  lattice, 
presented on the right panel of Fig. 1, are in agreement to less than 0.5% with the constrained-path 
approach [23]. This is fully consistent with the error usually observed in constrained-path calculations 
of the ground-state energy on small clusters [23]. But, we emphasize that such small discrepancies can 
originate from the numerical error in the integration of the stochastic differential equations (5) and 
from the unavoidable bias that is introduced by the population control algorithm.  

 
On contrary, the finite-time simulations with the free-atom trial wave-function Fψ  does not 

achieve to filter out all the excited states near half-filling. Indeed, Fψ  is quasi-orthogonal to the 

ground-state gΨ : for the 44×  cluster with tU 4= , we have estimated the overlap 
2

gF Ψψ  to be 

around   0.0008 by approximating the ground-state vector to the stochastic mean-field results with the 
ansatz AFψ  at t5=τ . As a consequence, the imaginary-time projection drives walkers into 
directions almost orthogonal to Fψ . This can be illustrated through the angle θ  between a walker 
ϕ  and the trial state Fψ : ϕϕϕψθ 1cos == F  and one obtains [ ] 0228.0cos =θE for the 

time t5=τ . Unfortunately, such relevant trajectories with 0cos ≈θ  can only appear when the norm 
ϕ  reaches large values, leading to numerical errors both in the dynamical evolution of the wave-

function and in the calculation of observables. The Monte-Carlo sampling can also become incorrect if 
a power-law tail develops in the walkers’ distribution. This scenario would then be identical to the one 
encountered in real-time simulations of boson systems in the context of positive-P representation [30]. 
 

In the half-filling limit, our calculations confirm the emergence of an antiferromagnetic phase 
[31], as shown in Fig. 2 through the extrapolated estimate (8) of the space spin-spin correlation 

function rSS rr
rr ˆ.ˆ

0 . The antiferromagnetic order is destroyed by hole doping or by a geometrical 

frustration induced via a large next-nearest neighbor hopping (see Fig.2), in agreement with Ref. [32]. 
The extrapolated values (8) of the magnetic and charge structure factors, defined by 
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are consistent with the diagonalization results on the 44×  lattice [33]: at the corner ( )ππ ,=qr  of the 
Brillouin zone, one obtains ( ) ( )63872.0 ,4681.3 == cm SS  and ( ) ( )14236.0 ,1254.2 == cm SS  compared 
to the exact values 385.0 ,64.3 == cm SS  and 424.0 ,18.2 == cm SS   for a doping 0=δ  (half-filling) 
and 125.0=δ , respectively.  
 

We finally address the unitary Fermi gas limit. In this ideal regime of strong interaction via a 
two-body potential of zero range and infinite scattering length, fermions are among the most intriguing 
physical systems since they are believed to exhibit universal many-body states. For instance, at zero 



temperature, the energy must be a universal fraction η  of the Fermi energy that is the only relevant 
energy scale in the system. From experiments with trapped atomic gases [5-7], the measured values for 
this ratio η  vary from 10

1332.0 +
−  to ( )451.0 . We model a spatially homogeneous Fermi gas by a lattice 

Hamiltonian with a two-body discrete delta potential whose coupling constant is adjusted to reproduce 
the physical scattering length a  [34]: 
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Here periodic boundary conditions are assumed in each direction; rrT ′rr,  are the matrix elements of the 
single-particle kinetic energy operator in the representation position;  M  is the atomic mass,   l  denotes 
the grid spacing and K44275.2=K  is a numerical constant. In the unitary limit, a  goes to infinity 
but the coupling constant on the lattice remains finite and negative, so that the gas clearly experiences 
attraction. Our sign-free simulation method with the model Hamiltonian (12), transformed as in Eq. 
(10), has been checked from the known solutions of the two- and three-body problem in an harmonic 
trap at the unitarity point [35,36]: in all cases, the discrepancy does not exceed one percent. For 
different systems, up to 42=N  atoms on a 888 ××  lattice, we plot in Fig. 3 the convergence of the 
ratio ( )τη  between the mean energy ( )τĤ  of the unitary gas at the imaginary-time τ  and the non-

interacting ground-state energy 0,gE  on the lattice. In the limit of large τ , all the results essentially 
concentrate around the same value and the emergence of a universal regime thus clearly appears. 
Fitting ( )τĤ  by ωτκ −

∞ + eEg , , we estimate the ground-state energy ∞,gE  at unitarity and find, for 

even particle-number, )9(449.00,, ≈= ∞ gg EEη  from the numerical values of Table 1. This result is 
consistent with recent exact Monte-Carlo calculations at finite-temperature [37,38]. It also validates 
fixed-node approaches that predict )1(44.0≈η  in the region 4010 ≤≤ N  and )1(42.0≈η  for larger 
systems [39,40]. For odd particle-number, we obtain similarly ( ) ( ) Fgg EE ε 3442.0 444.0 0,, +=∞  
where   εF  is the Fermi level. Therefore, the empirical gap 
( ) ( ) ( ) ( )( ) 211 ,,, ++−−= ∞∞∞ NENENEN gggδ  displays the odd-even staggering characteristic of a 

superfluid. The odd-  N  value of δ , i.e. ( ) Fε 3442.0 , gives an estimate of the pairing gap that is also of 
the same order as the fixed-node result ( )Fε 54.0 .  
 
4. Conclusion. In summary, we have introduced a new stochastic Hartree-Fock scheme that allows 
quantum Monte-Carlo ground-state calculations of interacting fermions. For a wide class of ultracold 
fermions models, including the repulsive Hubbard model, positive weights trajectories are guaranteed 
and the sampling does not exhibit explicit sign problems. The method is in principle exact for the 
ground-state energy and for the mixed estimate of any observable. However, systematic errors can 
occur when the trial Slater determinant, that drives the stochastic motion, is closed to the nodal 
surface. Otherwise, the numerical simulations are very encouraging and accurate results have been 
obtained in situations that traditionally experience severe convergence problems. Further investigation 
on unbalanced resonant Fermi gases and doped Mott insulators are under development to provide new 
insights into the physics of strongly correlated fermions.  
 
We acknowledge fruitful discussions with Y. Castin, R. Frésard and F. Gulminelli. 
 
 
 
 
 
 



Appendix. Derivation of the sign-free stochastic Hartree-Fock equations. 
 
Consider, at a given imaginary-time (omitted for simplicity), two  N -particle Slater determinants 
ψ , ϕ  with biorthogonal orbitals:. 

 

pnpn ,δϕψ =  (A.1) 

 
 In a single-particle orthonormal basis { }  i , the generalized one-body density matrix 
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where Ω  is a non-singular matrix and kJ  a kk dd ×  bi-diagonal matrix: 
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Taking into account the idempotency of R , i.e. RR =2 , forces all the Jordan blocks kJ  to be one-

dimensional ( )1=kd  with 1,0=kλ . So, the column vectors of Ω  and the line vectors of 1−Ω  
respectively correspond to the right eigenvectors kω  and to the left eigenvectors kω

~  of the non-
hermitian diagonalizable matrix R :  
 

kkk ωλω =R , kkk ωλω ~~ =R  (A.4) 
and 

kllk δωω =~ , 1~ =∑
k

kk ωω  (A.5) 

 
Since ( ) Ntr =R , there are N  eigenvalues kλ  equal to 1 that we will label with Nk ,,2,1 L=  and all 
the others are equal to zero. Finally, the definition of   R  and the constraints (A.1) immediately give: 
 

nn ϕϕ = R , nn ψψ =R  (A.6) 
 

It is thus possible to choose the orbitals of the two Slater determinants as the biorthogonal right and 
left eigenvectors of R  associated to the unit eigenvalue: kk ϕω =  and kk ψω =~  for 

Nk ,,2,1 L= . In addition, the anticommutation rule { } 1̂ 1̂ ~ˆ,ˆ ~ kllklk
aa δωωωω ==+  between Fermi 

creation and annihilation operators directly imposes the identity: 
 

0ˆ ~ =ϕωk
a ,  for any Nk > . (A.7) 

 



Conversely, the action of any one-body operator ji
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+∑=  on the Slater determinant ϕ  can be 

worked out through a decomposition of the single-particle states in the non-orthonormal eigenbasis of 
  R  according to the closure relation (A.5): 
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With the help of (A.7), only values of the integer l  ranging from  1 to  N  give a non-zero contribution, 
and for Nk ≤  the single-particle wave-function kk ϕω =  belongs to the Fermi sea ϕ , so that 

ϕδϕωω kllk
aa =+ ~ˆˆ . One is finally left with: 
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where 1,0Â  is the observable component that couples eigenspaces of   R  associated to different 
eigenvalues: 
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By using this relation and [ ] [ ] ji
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+∑=  for one-body operators BA ˆ,ˆ , one can immediately 

check that a general two-body Hamiltonian (1) transforms the Slater determinant ϕ   into: 
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=  which exactly characterizes the Hartree-Fock Hamiltonian. Up to order τd , the 

imaginary-time infinitesimal propagation of the Slater determinant ϕ  then also reads as  
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This dynamics can be linearized with the Hubbard-Stratonovich transformation [19-21] allowing us to 
interpret each evolution under a quadratic form of one-body operators as the ensemble average  

( )( )LE denoted  over one-body evolutions in fluctuating auxiliary fields: 
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where the   Ws  are independent Wiener processes in the Itô stochastic calculus: 
 

( ) 0=sdWE , ssss ddWdW ′′ = δτ   (A.15) 
 

The one-body propagators, obtained after application of the stochastic decoupling (A.14), now 
transform Slater determinants into new ones. Indeed, for any one-body operator Â , ( )   ˆexp ϕϕ ′=A  
where ϕ′  is the Slater determinant with orbitals ( ) nn A ϕϕ  exp=′ . Finally, to the first order in the 
imaginary-time step τd , the infinitesimal dynamics (A.13) can be reformulated as the weighted 
average of stochastic Slater determinants:  
 

( ) ( )[ ]ϕϕτϕτ ddEHd +−=−   exp ˆ exp H  (A.16) 
 

with the following variation of the Hartree-Fock orbitals: 
 

( ) ( ) n
s

sssn AdWhdd ϕωτϕ   2  1
1









+−−= ∑

≥
RR  (A.17) 

 
Here, we have used the idempotency of   R  that implies ( ) 01 =−RR . Note that he evolution process 
(A.17) preserves the biorthogonality constraints (A.1). Therefore, the propagation scheme (A.16) can 
be iterated for an arbitrary number of imaginary-time steps τd  and one is naturally led to the 
stochastic mean-field approach (3-5). 
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Figure 1. Estimate (7) of the energy as a function of the imaginary-time τ  for the two-dimensionnal 
Hubbard model with a hole doping 125.0=δ  from half-filling and an interaction parameter     U = 4t . 
The trial Slater determinant for stochastic Hartree-Fock calculations (SHF) is indicated in parentheses. 
The results have been averaged over several hundred of runs of 100 trajectories. When not shown, 
statistical error bars are smaller than the symbol size. The black line gives on the left the exact ground-
state energy [32] and on the right the constrained-path Monte-Carlo result [23].  

 

 
 

 
Figure 2. Extrapolated estimate (8) of the real space spin-spin correlation function for the  4× 4 
Hubbard model. δ  is the hole doping and t′  denotes a next-to-nearest hopping. An antiferromagnetic 
mean-field solution was used as trial wave-function in all cases. Stochastic paths have been projected 
onto the spin-singlet sector. We averaged quantum Monte-Carlo results at the imaginary-time t20=τ  
with 100 trajectories over several hundred of runs. Statistical error bars are smaller than the size of the 
points. 
 

 
 

 
 



Figure 3. Stochastic Hartree-Fock calculations of the ground-state energy of a unitary Fermi gas with 
2NNN == ↓↑  atoms in each spin state. ( )τη  is the ratio between the mean-energy of at “time” τ  

and the ground-state energy of the non-interacting gas on the lattice. The trial state is a spin-singlet 
Slater determinant for the free gas. We show the average result over many runs of 100 paths. We use a 

666 ××  lattice, except for     N ≥ 40 where the calculations were performed on a 888 ××  grid. The 
imaginary-time τ  is expressed in units of 22 hml , where  l  is the lattice spacing.  

 
 

 
 

 
 
Table 1: Numerical values of the ratio 0,, gg EE ∞=η  for  N  interacting fermions in the unitarity 
limit. agE ,  is the ground-state energy corresponding to a physical scattering length a .  

 
 

Number N  
of atoms 

Ratio η 

6 0.42551 
8 0.44382 
10 0.45316 
12 0.45717 
14 0.46012 
16 0.45473 
18 0.45273 
40 0.45211 
42 0.446 

 
 
 
 
 


