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Brief overview

Research in astronomical image deconvolution has recently seen considerable work, partly triggered by the
Hubble space telescope (HST) optical aberration problem at the beginning of its mission that motivated as-
tronomers to improve current algorithms or develop new and more efficient ones. Since then, deconvolution of
astronomical images has proven in some cases to be crucial for extracting scientific content.

There is an extensive statistical literature on deconvolution problems. The Wiener filter is the best filter
(amongst the linear ones) for signal/image deconvolution [1]. It is equivalent to the maximum a posteriori
(MAP) and posterior conditional mean bayesian estimators if both the signal and the noise are mutually
independent gaussian. Stochastic approaches with ML estimators or within a bayesian framework have also
been extensively studied (e.g. Markov random fields [2–5]). In order to confine candidate solutions to some
particular functional spaces, several variational approaches have been developed in the literature to tackle
the deconvolution problem either with linear (e.g. Tikhonov [6]) or nonlinear edge-preserving regularization
(e.g. potential functions on the TV norm) [7–11]. If no prior information is available on the solution, except
its positivity, maximum entropy method (MEM) is a possible course of action to derive the prior probability
density function (pdf). The wavelet domain multiscale extension off the MEM has been proposed in [12,13].

Wavelet-based deconvolution methods have received considerable attention over the last decade. Donoho in
[14] gave the first discussion of wavelet thresholding in linear inverse problems and introduced the wavelet-
vaguelette decomposition; see also [15]. The approach was refined in [16] who proposed a mirror wavelet basis
adapted to capture the singularity of the spectrum of the inverse of h. Authors in [17] advocated a hybrid
approach coined ForWaRD. Deconvolution methods with sparsity promoting regularization over wavelet coeffi-
cients have been recently proposed, either by adopting a bayesian expectation-maximization framework [18–20],
or by introducing surrogate functionals [21]. These algorithms were concerned with wavelet ortho-bases and
generalization to frames was proposed in [22]. In [23–25], regularization from the multiresolution support was
proposed. To the best of our knowledge, Starck et al. [26] were the first to introduce a combined deconvolution
method using the wavelet and the curvelet transforms in order to benefit from the advantages of each. The
interested reader may refer in [27] for an excellent overview.

This paper

We here propose some image deconvolution algorithms with overcomplete sparse representations and fast
iterative thresholding algorithms. The image to be recovered is assumed to be sparsely represented in a re-
dundant dictionary of transforms. Such representations differ from the more traditional basis representation
because they offer a wider range of generating elements; potentially, this wider range allows more flexibility in
image representation and adaptativity to its morphological content, and hence more effectiveness at tasks like
image restoration. The deconvolution inverse problem is formulated as the minimization of an energy functional
with a sparsity-promoting regularization. As opposed to quadratic programming solvers based on the interior
point method, here, several Stagewise Iterative Thresholding algorithms are proposed to solve the optimization
problem and provide fast and good image recovery results. Some of them have appealing finite-stopping prop-
erties and do not require the choice of auxiliary regularization hyperparameters. Theoretical aspects as well as
computational and practical issues are discussed.

This paper is organized as follows. In Section 2, we will introduce the necessary ingredients of sparse rep-
resentations and concepts from modern harmonic analysis. In Section 3, we state the optimization problem
underlying the deconvolution problem, give the different algorithms to solve it, and investigate their properties.
Section 4 is devoted to presenting and discussing experimental results. We conclude with a brief summary of
our work and some perspectives on its likely future development.

2. Sparse image representation

2.1. Sparse representations

Suppose x ∈ H. An
√
n ×√

n image x can be written as the superposition of (a few) elementary functions
φγ(s) (atoms) parameterized by γ ∈ Γ such that (Γ is countable):

x(s) =
∑

γ∈Γ

αγφγ(s), Card Γ = L (3)

2



Popular examples of Γ include: frequency (Fourier), scale-translation (wavelets), scale-translation-frequency
(wavelet packets), translation-duration-frequency (cosine packets), scale-translation-angle (e.g. curvelets, ban-
dlets, contourlets, wedgelets, etc.). The dictionary Φ is the n × L matrix whose columns are the generating
atoms (φγ)γ∈Γ, which are supposed to be normalized to a unit ℓ2-norm. The forward transform is defined via

a non-necessarily square full rank matrix T = ΦT ∈ R
L×n, with L ≥ N . When L > n the dictionary is said to

be redundant or overcomplete.
Owing to recent advances in modern harmonic analysis, many redundant systems, like the undecimated

wavelet transform, curvelet, contourlet, steerable or complex wavelet pyramids, were shown to be very effective
in sparsely representing images. By sparsity, we mean that we are seeking a good representation of x with only
very few non-zero coefficients, i.e. ‖α‖0 ≪ n. In most practical situations, the dictionary is built by taking
union of one or several (sufficiently incoherent) transforms, generally each corresponding to an orthogonal basis
or a tight frame. In the case of a simple orthogonal basis, the inverse transform is trivially Φ = TT . Whereas
assuming that T is a tight frame implies that the frame operator satisfies TTT = cI, where c > 0 is the tight
frame constant. Hence, TT = Φ is the Moore-Penrose pseudo-inverse transform (corresponding to the minimal
dual synthesis frame), up to the constant c. In other words, the pseudo-inverse reconstruction operator T+

reduces to c−1Φ.

2.2. Choosing a dictionary

Choosing an appropriate dictionary is a key step towards a good sparse representation, hence restoration. A
core idea here is the concept of morphological diversity. When the transforms are amalgamated in one dictionary,
they have to be chosen such that each leads to sparse representations over the parts of the images it is serving.
Thus, for example (see Fig. 1), to represent efficiently isotropic structures in an image, a qualifying choice is the
wavelet transform [28]. The curvelet system [29,30] is a very good candidate for representing piecewise smooth
(C2) images away from C2 contours. The ridgelet transform [31,32] has been shown to be very effective for
representing global lines in an image. The local DCT (LDCT) [28] and the Wave Atom [33] are well suited to
represent warped locally stationary or oscillatory textures. These transforms are also computationally tractable
particularly in large-scale applications, and never explicitly implementing Φ and T. The associated implicit
fast analysis and synthesis operators have typical complexities of O(n) (e.g. orthogonal or bi-orthogonal wavelet
transform) or O(n log n) (e.g. ridgelet, curvelet, LDCT, wave atom transforms). Another desirable requirement
that the merged transforms have to satisfy is that when a transform sparsely represents a part in the image, it
yields non-sparse representations on the other content type. This is intimately related to the concept of mutual
incoherence which plays a fundamental role in the solution of overcomplete (redundant) sparse linear systems.
For a given dictionary, it is defined as the maximum in magnitude of the off-diagonal elements of its Gram
matrix. See e.g. [34–38] for more details.

3. Sparse Iterative-Thresholding Deconvolution

Let’s consider the following minimization problem:

(Lψ,σ) : min Ψ (α) s.t. ‖y − HΦα‖H ≤ σ (4)

This problem can also be written in the augmented Lagrangian form,

(Pψ,λ) : min
1

2
‖y − HΦα‖2

H + λ
∑

γ∈Γ

ψ (αγ) (5)

Note that (Pψ,λ) is equivalent to the MAP/MPLE with independent and identically distributed coefficients. ψ is
commonly assumed non-negative, continuous, even-symmetric, and non-decreasing on R

+, but is not necessarily
smooth at point zero to produce sparse solutions.

For the ℓ1 penalty, (Lℓ1,σ) can be cast as a convex program and solved using e.g. Iteratively-Reweighted
Least-Squares, second order cone programming with interior point algorithms, or active set methods. (Pℓ1,λ)
corresponds to the Basis Pursuit Denoising (BPDN) [39]. However, these solvers become rapidly time-consuming
and intractable in most large-scale practical problems such as those arising in image processing.
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Dictionary Φ

width = length2

O t h e r s O t h e r sC u r v e l e t s( P i e c e w i s e s m o o t h w i t h c o n t o u r s )
C

2

W a v e l e t s( P o i n t w i s e s i n g u l a r i t i e s , i s o t r o p i c s t r u c t u r e s ) L o c a l D C T , W a v e A t o m( L o c a l l y o s c i l l a t o r y , s t a t i o n a r y t e x t u r e s )

Fig. 1. Example of a typical dictionary in image processing applications.

3.1. Proximal forward-backward splitting

The following sequence of iterates solves (Pψ,λ):

α
(t+1) = proxµt,λ,ψ

(

α
(t) + µtΦ

∗H∗
(

y − HΦα
(t)

))

(6)

with appropriate µt, proxµt,λ,ψ
is the Moreau proximity operator associated with the function ψ (see [40] for

an introduction to proximal calculus). This proximity operator can be expressed analytically for a wide class
of sparsity penalties [41] (i.e. soft thresholding for the ℓ1 penalty).

Theorem 1 Suppose that ψ satisfies:
H 1. ψ is even-symmetric, non-negative and non-decreasing on [0,+∞), and ψ(0) = 0.
H 2. ψ is twice differentiable on R \ {0} but not necessarily convex.
H 3. ψ is continuous on R, it is not necessarily smooth at zero and admits a positive right derivative at zero

ψ′
+(0) = lim

h→0+

ψ(h)
h

> 0.

H 4. The function α+ λψ′(α) is unimodal on (0,+∞).
Then, the proximity operator proxδ,ψ

(
z(t)

)
has exactly one continuous solution decoupled in each coordinate zl:

α̂l(zl) =

{

0 if |zl| ≤ δψ′
+(0)

zl − δψ′(α̂l) if |zl| > δψ′
+(0)

(7)

A proof can be found in [41].

3.1.1. Convergence analysis
In this section, we shall give the convergence properties of the iterative sequence in Eq.6. Convergence is

examined in both the weak and strong topologies.

Theorem 2

Let the dictionary be a finite union of K frames, each frame with an upper-bound Bk. Suppose that ψ is
coercive and proper convex (but not necessarily smooth). Moreover, suppose that 0 < ‖H‖2 ≤ C and 0 < µt <
2/ (C

∑

k Bk). Then the following holds:
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(i) Problem (Pψ,λ) has at least one solution.
(ii) Problem (Pψ,λ) has exactly one solution if ψ is strictly convex.
(iii) The instance of coefficient iterates {α(t), t ≥ 0} is asymptotically regular and converges weakly to a

solution of the deconvolution algorithm.
(iv) If ψ(α) = |α|p , 1 ≤ p ≤ 2, the sequence of coefficient iterates converges strongly to a solution of the

deconvolution problem.

The proof follows from [41] and [40, Theorem 5.5] using the canonical basis of R
L.

Remark 1

a. The above result generalizes formally to multi-frames the work of [18,21,20]. It also bears similarities with
an independent work of [22].

b. If the frequency response of the PSF does not vanish, then HΦ is bounded below and the solution to (Pψ,λ)
is unique.

c. The sequence of iterates is asymptotically regular. This furnishes a simple stopping rule test, typically
∥
∥
α

(t+1) − α
(t)

∥
∥ < δ.

d. The case of a single basis:
• In this case, Φ is a bijective bounded linear operator. The solution in terms of coefficients is equivalent to

the solution in terms of image.
• If one has additional constraints to be imposed on the solution such as forcing the image to lie in some

closed convex subset of H (e.g. positive cone), the iteration in Eq. 6 can be easily adapted by incorporating
the projector onto the constraint set.

e. The case of a frames:
• It is less straightforward (at least theoretically) to impose some side constraints on the solution such as

positivity.
• When the dictionary is a union tight frames, the algorithm is fast only involving fast implicit analysis and

synthesis operators. This will be discussed in Section 3.3.

The proximal approach is simple, competitive and faster than interior-point-based solvers (see Table.3 for its
computational complexity). It presents, however, several drawbacks:
– We can only ensure convergence behavior for convex penalties. But typically, soft thresholding, which is

associated to the convex ℓ1-penalty is known to yield biased estimates.
– The choice of the regularization hyperparameter λ is delicate and not intuitive. Finding its optimal value

necessitates the use of model selection criteria such as GCV or stochastic sampling approaches (MCMC).
These methods are computationally expensive and may produce smoothed images. This second point can be
a real problem when we seek compact structures such as is the case in astronomical imaging.

3.2. Stagewise Iterative Hard Thresholding

In recent years, considerable attention has focused on the Sparse Solutions Problem (SSP) of linear (i) un-
derdetermined systems; see e.g. [39,35,38,42], and (ii) overdetermined systems (statistical community [43–45]).
But, some of the most powerful theoretical results are associated with some of the most computationally inten-
sive methods (e.g. greedy such as OMP, or moderately greedy LARS/Lasso, BPDN). Recent wave of interest
in fast solutions to SSP for large-scale problems [46–48]. These approaches can be seen as variants of stagewise
forward regression with slightly different forward progress steps (adaptation of LARS/Lasso/homotopy).

Let’s denote A = HΦ 1 . Consider the so-called Lasso minimization problem as stated by [43]:

(Qq) : min ‖y − Aα‖2
H s.t. ‖α‖1 ≤ q (8)

which is a least-squares fit subject to an ℓ1 budget constraint. Note that problems (Pℓ1,λ) and (Qq) are equivalent
under an appropriate correspondence of parameters λ and q. Indeed, (Pℓ1,λ) traces out a solution path for λ ∈
[0,+∞) with α̂λ→+∞ = 0, and α̂ getting closer to the solution of (Lℓ1,0) as λ → 0+. (Qq) identifies a similar
path with α̂q=0 = 0 and α̂q→+∞ tending to α̂λ→0+ . See discussion in [48].

In [43–45], the Lasso, LARS and Homotopy methods were proposed to solve (Qq) for all q ≥ 0 (or (Pℓ1,λ)
for all λ ∈ [0,

∥
∥ATy

∥
∥
∞

]. The key observation is that the homotopy 2 method (and also LARS/Lasso) follows

1 In the following, we will assume that the columns of A are normalized to a unit ℓ2-norm
2 Homotopy because the objective undergoes a homotopy from ℓ2 to ℓ1 as q decreases.
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_+ M a t c h e d fi l t e r i n g H a r d t h r e s h o l d L e a s t 6 s q u a r e sd i r e c t i o nC o e f fi c i e n t s u p d a t eA f o r w a r d s t a g e w i s e p a t ha l o n g t h e a c t i v e d a t o m sy rt = y − Axt

ct = A
T
rt

It = {i : |ct(i)| > λt}

λt = µλt−1

xt = xt−1 + ǫdxt

Axt

dxt(It) = (AT

It
AIt

)−1
A

T

It
rt

Fig. 2. IT-LARS algorithm.

_+ M a t c h e d fi l t e r i n g H a r d t h r e s h o l dL e a s t S s q u a r e sp r o j e c t i o n u p d a t ey rt = y − Axt

ct = A
T
rt

Jt = {i : |ct(i)| > λt} S u p p o r t u p d a t e
xt = (AT

It
AIt

)−1AT

It
y

It = It−1 ∪ Jt

λt = µλt−1

Axt

Fig. 3. StOMP algorithm.

a polygonal solution path for all λ ∈ [0,
∥
∥ATy

∥
∥
∞

] [45], with changes occurring only at some critical values of
λ. Based on these observations, authors in [45] presented the homotopy algorithm, which follows the solution
path by jumping from vertex to vertex of this polygonal path. It starts at at α = 0 and λ =

∥
∥ATy

∥
∥
∞

, and
successively obtains the solutions at a special problem-adapted sequence λt. However, the homotopy method
computes these solutions by updating the active set considering one coordinate at a time as a candidate to
enter or leave the active set. The same behavior is valid for the LARS as the latter is a variant of homotopy
where the coefficients are not allowed to leave the active set once activated; see the recent work of [48] who shed
light on the intimate connections between LARS, Homotopy and greedy algorithms such as OMP for solving
underdetermined SSP. Consequently, such moderately greedy stagewise procedures, although faster than interior
point-based solvers [48], can still be computationally demanding for large-scale problems. Therefore, we here
adapt the same ideas and propose two stagewise iterative-thresholding (IT) algorithms where the sequence
(λt)t≥0 is allowed to be strictly decreasing [49,47].

In Fig.2, we summarize the main steps of a stagewise variant of the LARS algorithm (hence the name
IT-LARS). The t-th iteration applies matched filtering to the current residual, getting a vector of residual
correlations ct, which is supposed to contain a small fraction of significant nonzero coefficients. The next step
performs hard thresholding with threshold λt to find the significant nonzeros. Thresholding yields a set of
coordinates It = {i : |ct(i)| > λt}. The IT-LARS computes an update direction dαt by projecting the residual
rt onto subspace spanned by the columns of A belonging to It. Then, an update of the solution is computed
by augmenting αt−1 in the direction dαt with a step size ǫ (typically chosen equal to the threshold decrease
step). The algorithm terminates when the residual ‖rt‖2 /

√
n becomes less than the noise standard deviation

σ, or when the threshold λ is less than say kσ (typically k = 3 to 4).
This algorithm is a fast stagewise approximation to LARS. It provides a good approximation to the solution

of (Qq). Furthermore, it is very fast for bases and tight frames (see detailed discussion in the next subsection).
In Fig.2, the steps of the StOMP algorithm are summarized. The StOMP differs from the IT-LARS in the way

the estimate update is computed. At each iteration, the StOMP performs a hard thresholding with threshold
λt to find the significant nonzeros. And a new support estimate is computed by merging the newly selected
coordinates with the support estimate at the previous iteration. The next estimate update is computed by
least-squares projection of the observation y in the linear subspace spanned by the columns of A belonging to
the current merged support. As for IT-LARS, termination can be checked using the same stopping criteria on
the residual or the threshold.
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3.3. Computational complexity

The operators H (resp. H∗) and Φ (resp. ΦT ) are never represented explicitly in matrix form. Rather, there
are implemented as fast implicit operators taking a vector x, and returning Hx (resp H∗x) and Φx (resp. ΦTx).
Multiplication by H and H∗ costs two FFTs, that is O(n log n) operations 3 . The complexity of multiplications
by Φ and ΦT was discussed in Section 2 for some popular transforms.

The computation bottleneck of IT-LARS (resp. StOMP) lies in calculating the least-squares projection step
to get dαt (resp. αt). Following [47], this is implemented via a conjugate gradient (CG) solver, with each
iteration involving multiplications by H (FFT), Φ (fast synthesis operator), H∗ (FFT) and ΦT (fast analysis
operator). The same reasoning leads to the same computational complexity for the StOMP algorithm. This is
summarized in Table 3.

Algorithm CC

Proximal O(2Niter( V
︸︷︷︸

Transform

+ n log n
︸ ︷︷ ︸

FFT

)

IT O (S(l + 2)(V + n log n))

StOMP O((S(l + 2)(V + n log n))

Table 1
Computational complexity (CC) of each iterative deconvolution algorithm. Niter is the pre-specified number of iterations of the
proximal algorithm. l is the number of iterations for the CG solver for LS projection. S is the number of stages (at most k

for k-sparse solutions). V is the complexity of the transform(s) in the dictionary: typically O(n) or O(n log n) for most popular
transforms.

4. Results

To illustrate potential applicability of the three iterative-thresholding algorithms presented above to astro-
nomical image deconvolution, a series of experiments with both simulated and real datasets were conducted.
For all experiments: the proximal method was run with ψ(α) = |α| with 100 iterations, and λ was optimized
manually to get the highest PSNR. The IT-LARS and StOMP algorithms were run with a threshold decreasing
step µ = 0.75. These algorithms terminated when either the residual ℓ2-norm was less than σ or the threshold
λt less than 3σ.

A simulated image of spike sources is depicted in Fig.4, upper left. The simulated PSF and the blurred
noisy image are shown respectively in the lower left and upper middle quadrant. Restored images are shown
respectively in Fig.4 upper right, lower middle and right. As the sources are spiky, a qualifying candidate
dictionary is the Dirac basis. Because of the ℓ1-norm penalty, the proximal approach clearly leads to oversmooth
estimates, which degrades the final PSNR. This effect disappears with the iterative hard-thresholding algorithms
(a gain of up to 16dB in PSNR). This comes at no additional computational cost and the actual execution
times of the different algorithms were comparable (few seconds on this image). Note also that there was no
need to choose or adjust the regularization parameter for IT-LARS and StOMP solvers.

A second experiment with a simulated Hubble Space Telescope Wide Field Camera image of a distant cluster
of galaxies is shown in Fig.4, upper left. The aberrated and noisy image is shown in the upper middle panel (with
the same simulated PSF as in Fig.4) . Deconvolved images are shown respectively in Fig.4 upper right, lower
middle and right. The sources being isotropic, a natural choice of the dictionary is the wavelet transform. Again,
the proximal approach yields biased estimates. The increase in PSNR when using iterative hard-thresholding
algorithms instead of the proximal approach is up to 9dB. The running times of the different algorithms were
also comparable (tens of seconds on this image).

Finally, the algorithms were applied to a real image of Jupiter acquired during the calibration stage of
the Deep Impact project. Fig.4 shows the observed aberrated and noisy image, top right. The approximate
measured PSF is depicted in Fig.4 top right. Restored images with the IT-LARS and the proximal algorithm
are portrayed in Fig.4 bottom left and right. Based on the expected morphological content of the image to
be restored, the dictionary consisted of the curvelet transform. The details seem to be sharper on the image
restored using IT-LARS which is in total agreement with the simulations.

3 Note that one may expect O(2n log n). But we supposed our image to contain n pixels.
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Fig. 4. Simulated image of spike sources. From left to right and top to bottom: original image, noisy blurred image, restored

with IT-LARS PSNR = 51.1dB, simulated PSF, restored with StOMP PSNR = 53.34dB, restored with the proximal method
PSNR = 37.55dB. The dictionary contained the Dirac basis.

Original image Noisy blurred image PSNR
in

=30 dB Estimated IT−LARS PSNR=54.0531 dB

Estimated StOMP PSNR=50.1543 dB Proximal estimate PSNR=45.336 dB

Fig. 5. Simulated Hubble Space Telescope Wide Field Camera image of a distant cluster of galaxies. From left to right and top to
bottom: original image, noisy aberrated image, restored with IT-LARS PSNR = 54.05dB, restored with StOMP PSNR = 50.15dB,

restored with the proximal method PSNR = 45.33dB. As the image contained isotropic structures, the dictionary was composed
of the wavelet transform.

5. Conclusion

In this paper, image deconvolution algorithms with overcomplete sparse representations and fast iterative
thresholding solvers were proposed. The proximal approach uses soft thresholding and yields biased (over-
smooth) estimates. The iterative hard thresholding-based alternatives, namely IT-LARS and StOMP do not
suffer from this drawback. Furthermore, they exhibit an appealing auto-stopping behavior and relieve the user
from the delicate choice of the regularization parameter.
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Fig. 6. Deconvolution of a real image of Jupiter acquired during calibration of the Deep Impact project. From left to right and
top to bottom: observed noisy aberrated image, measured PSF, restored with IT-LARS, restored with the proximal method. The
dictionary consisted of the curvelet transform.

However, several aspects remain to investigate. For instance, the theoretical properties of stagewise iterative
hard thresholding for solving linear inverse problems, and deconvolution problems in particular. Extension
to deconvolution with other noise models beyond the traditional AWGN case (e.g. Poisson without variance
stabilization) is also an important perspective. We believe these points will be our next milestones.
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[9] L. Blanc-Féraud and M. Barlaud. Edge-preseving restoration of astrophysical images. VA, 40(4), 1996.
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