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CHARACTERIZATION OF TALAGRAND’S LIKE

TRANSPORTATION-COST INEQUALITIES ON THE REAL LINE.

NATHAEL GOZLAN

Université de Marne-la-Vallée

Abstract. In this paper, we give necessary and sufficient conditions for Talagrand’s like
transportation cost inequalities on the real line. This brings a new wide class of examples
of probability measures enjoying a dimension-free concentration of measure property. An-
other byproduct is the characterization of modified Log-Sobolev inequalities for Log-concave
probability measures on R.

1. Introduction

1.1. Transportation-cost inequalities. This article is devoted to the study of probability
measures on the real axis satisfying some kind of transportation-cost inequalities. These
inequalities relate two quantities : on the one hand, an optimal transportation cost in the
sense of Kantorovich and on the other hand, the relative entropy (also called Kullback-
Leibler distance). Let us recall that if α : R → R

+ is a continuous even function, the optimal
transportation-cost to transport ν ∈ P(R) on µ ∈ P(R) (the set of all probability measures
on R) is defined by :

(1) Tα(ν, µ) = inf
π∈P (ν,µ)

∫∫

R×R

α(x− y)π(dxdy),

where P (ν, µ) is the set of all the probability measures on R × R such that π(dx × R) = ν
and π(R × dy) = µ. The relative entropy of ν with respect to µ is defined by

(2) H(ν | µ) =

{ ∫
log dν

dµ dν if ν ≪ µ

+∞ otherwise

One will say that µ ∈ P(R) satisfies the transportation-cost inequality with the cost function
(x, y) 7→ α(x− y) (TCI) if

(3) ∀ν ∈ P(R), Tα(ν, µ) ≤ H(ν | µ),

Transportation-cost inequalities of the form (3) were introduced by K. Marton in [13, 14]
and M. Talagrand in [18]. After them, several authors studied inequality (3), possibly in a
multidimensional setting, for particular choices of the cost function α (see for example [3],
[5], [7], [16] or [9]). The best known example of transportation-cost inequality is the so-called
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T2-inequality (also called Talagrand’s inequality). It corresponds to the choice α(x) = 1
ax

2.
One says that µ satisfies T2 with the constant a if

(4) ∀ν ∈ P(R), T2(ν, µ) ≤ aH(ν | µ),

writing T2(ν, µ) instead of Tx2(ν, µ).

1.2. Links with the concentration of measure phenomenon. The reason of the increas-
ing interest to TCI is their links with the concentration of measure phenomenon. Roughly
speaking, a probability measure which satisfies a TCI, also satisfies a dimension free con-
centration of measure property. This link was first pointed out by K. Marton in [13]. For
example, Talagrand’s inequality is related to dimension-free gaussian concentration. If µ
satisfies (4), then
(5)

∀n ∈ N
∗,∀A ⊂ R

n measurable, ∀r ≥ rA :=
√

− log µn(A), µn (Ar) ≥ 1 − e−
1
a
(r−rA)2 ,

where Ar = {x ∈ R
n such that ∃y ∈ A with |x− y|2 ≤ r} and | · |2 is the usual euclidean

norm.

Replacing the function x2 by an other convex function, it is possible to obtain different types
of dimension free concentration estimates. For example, if µ is a probability measure which
satisfies the transportation cost inequality

(6) ∀ν ∈ P(R), Tαp(ν, µ) ≤ aH(ν | µ),

where αp(x) =

{
min(|x|2, |x|p) if p ∈ [1, 2[
|x|p if p ≥ 2

,∀x ∈ R then, it can be shown that

(7)

∀n ∈ N
∗,∀A ⊂ R

n measurable,∀r ≥ rA := α−1
p (− log µn(A)) , µn (Ar) ≥ 1−e−

1
a
αp(r−rA),

withAr =
{
x ∈ R

n such that ∃y ∈ A with |x− y|max(p,2) ≤ r
}
, denoting |x|p = p

√∑n
i=1 |xi|

p.

The probability measure dµp(x) = e−|x|p dx
Zp
, p ≥ 1 on R satisfies the TCI (6). The cases p = 1

and p = 2 were obtained by Talagrand in [18], the case p ∈ (1, 2) was treated by Gentil, Guillin
and Miclo in [9] and the case p ≥ 2 by Bobkov and Ledoux in [4].

1.3. Strong transportation-cost inequalities. When dealing with other cost functions
than the αp’s, it is convenient to study a stronger form of the transportation-cost inequality
(3).

A probability measure µ will be said to satisfy the strong transportation-cost inequality with
cost function (x, y) 7→ α(x− y) (strong TCI) if

(8) ∀ν, β ∈ P(R), Tα(ν, β) ≤ H(ν | µ) + H(β | µ).

Note that this inequality is a sort of symmetrized version of the usual TCI (3). Of course,
as H (µ|µ) = 0,

µ satisfies (8) ⇒ µ satisfies (3).
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When α is convex, these two inequalities are equivalent up to constant factors. Namely, if α
is convex one has

µ satisfies (3) ⇒ µ satisfies the strong TCI with the cost function (x, y) 7→ 2α

(
x− y

2

)
.

This elementary fact is proved in Proposition 16.

Strong TCIs are not new. The strong TCI (8) is in fact equivalent to an infimal-convolution
inequality. Infimal-convolution inequalities were introduced by B. Maurey in [15]. The trans-
lation of (8) in terms of infimal-convolution inequalities will be stated in Theorem 22.

These strong TCIs are powerful tools for deriving general dimension free concentration prop-
erties. Indeed, if µ verifies the strong TCI (8), then

(9) ∀n ∈ N
∗,∀A ⊂ R

n measurable, ∀r ≥ 0, µn (Arα) ≥ 1 −
1

µn(A)
e−r,

where Arα =

{
x ∈ R

n : ∃y ∈ A such that

n∑

i=1

α(|xi − yi|) ≤ r

}
.

Note that in (9), the blow up Arα is not generated by a norm. When dealing with the αp’s,
one can show that (9) implies (7).

The aim of this paper is to give general criteria guarantying that a probability measure sat-
isfies a (strong) TCI. Before presenting our results let us recall some results of the literature.

1.4. TCI and Logarithmic-Sobolev type inequalities. The classical approach to study
TCIs is to relate them to other functional inequalities such as Logarithmic-Sobolev inequal-
ities. The main work on the subject is the article by F. Otto and C. Villani on Talagrand’s
inequality (see [16]). They proved that if µ ∈ P(R) satisfies the Logarithmic-Sobolev in-
equality

Entµ(f
2) ≤ C

∫
f ′2 dµ, ∀f

then it satisfies Talagrand’s inequality (4) with the same constant C. In fact, this result is
true in a multidimensional setting. Soon after Otto and Villani, S.G. Bobkov, I. Gentil and
M. Ledoux provided an other proof of this result (see [5]).

Different authors have tried to generalize this approach to study TCIs associated to other
cost functions. Let us summarize these results. Define

θp(x) =

{
x2 if |x| ≤ 1
2
p |x|

p + 1 − 2
p if |x| ≥ 1

,∀p ∈ [1, 2]

The function θp is just a convex function resembling to the previously defined αp. Let θ∗p be
the convex conjugate of θp, which is defined by

θ∗p(y) = sup
x∈R

{xy − θp(x)} .

If µ satisfies the following modified Logarithmic-Sobolev inequality

(10) Entµ(f
2) ≤ C

∫
θ∗p

(
tf ′

f

)
f2 dµ, ∀f.

for some C, t > 0, then µ satisfies the TCI (6) for some constant a > 0.
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When p = 2, one recovers Otto and Villani’s result. The case p = 1 was treated by Bobkov,
Gentil and Ledoux in [5]. Note that in this case, the inequality (10) is equivalent to Poincaré
inequality (see [2]). The case p ∈ (1, 2) is due to I. Gentil, A. Guillin and L. Miclo see [9].

Now the question is to know if the TCI (6) is equivalent to the modified Log-Sobolev (10).
Here are some elements of answer :
- This is true for p = 1. When p = 1, inequalities (6) and (10) are both equivalent to Poincaré
inequality (see [2] and [5]).
- This is true as far as Log-concave distributions are concerned (see Corollary 3.1 of [16] or
Theorem 2.9 of [9]).
- For p = 2, P. Cattiaux and A. Guillin have furnished in [7] an example of a probability
measure which does not satisfy the Logarithmic-Sobolev inequality but satisfies Talagrand’s
inequality. To construct their counterexample, they give an interesting sufficient condition
for Talagrand’s inequality on the real line. They proved that a probability measure µ ∈ P(R)
of the form dµ = e−V dx satisfies Talagrand’s inequality (4) for some constant a > 0, as soon
as the potential V satisfies the following condition :

(11) lim sup
x→±∞

x

V ′(x)
< +∞.

1.5. Presentation of the results. In this paper, we will give necessary and sufficient con-
ditions under which a probability measure µ on R satisfies a strong TCI. We will always
assume that µ has no atom (µ{x} = 0 for all x ∈ R) and full support (µ(A) > 0 for all open
set A ⊂ R).

First let us define the set of admissible cost functions. During the paper, A will be the class
of all the functions α : R → R

+ such that

• α is even,
• α is a continuous function, nondecreasing on R

+ with α(0) = 0,
• α is super-additive on R

+ : α(x+ y) ≥ α(x) + α(y), ∀x, y ≥ 0,
• α is quadratic near 0 : α(t) = |t|2,∀t ∈ [−1, 1].

One will write µ ∈ Tα(a) (resp. µ ∈ STα(a)) if µ satisfies the TCI (resp. the strong TCI)
with the cost function (x, y) 7→ α(a(x − y)).

1.5.1. The main result. Our main result (Theorem 80) characterizes the strong TCIs on a
large class Lip♯µ1 ⊂ P(R). Roughly speaking this set is the class of all probability measures

which are Lipschitz deformation of the exponential probability measure dµ1(x) = 1
2e

−|x| dx.
More precisely µ is in Lip♯µ1 if the monotone rearrangement map T transporting µ1 on µ is
Lipschitz. This map T is defined by T (x) = F−1 ◦ F1, where F (resp. F1) is the cumulative
distribution function of µ (resp. µ1), and is such that µ = T♯µ1, where T♯µ1 denotes the
image of µ1 under T .

If µ belongs to Lip♯µ1 then one has the following characterization : µ satisfies the strong
TCI STα(a) for some constant a > 0 if and only if there is some b > 0 such that

K+(b) := sup
x≥m

∫
eα(bu) dµ+

x (u) < +∞ and K−(b) := sup
x≤m

∫
eα(bu) dµ−x (u) < +∞,
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where m is the median of µ and where µ+
x and µ−x are probability measures on R

+ defined
as follows :

µ+
x = L(X − x|X ≥ x) and µ−x = L(x−X|X ≤ x),

with X a random variable of law µ.

The result furnished by Theorem 80 is quite satisfactory. Firstly, though partial, this result
covers all the ’regular’ cases. Namely, it can be shown that if µ satisfies STa(a) then it satisfies
a spectral gap inequality. But the elements of Lip♯µ1 satisfy the spectral gap inequality too.
Examples of probability measures not belonging to Lip♯µ1 but satisfying the spectral gap
inequality are known but are rather pathological... Secondly, one can easily derive from the
above result an explicit sufficient condition for probability measures dµ = e−V dx with V
satisfying a certain regularity condition.

Before stating this explicit sufficient condition, one needs to introduce the class of ’good’
potentials V . Let V be the set of function f : R → R of class C2 such that

• there is xo > 0 such that f ′ > 0 on (−∞,−xo] ∪ [xo,+∞),

•
f ′′(x)

f ′2(x)
−−−−→
x→±∞

0.

In Theorem 85, we prove that if dµ = e−V dx with V ∈ V and α ∈ A ∩ V, then µ satisfies
STα(a) for some constant a > 0 as soon as the following conditions hold :

lim inf
x→±∞

|V ′(x)| > 0 and ∃λ > 0 such that lim sup
x→±∞

α′(λx)

V ′(x+m)
< +∞.

The first condition guaranties that µ belongs to Lip♯µ1 and the second one that K+(b) < +∞
and K−(b) < +∞ for some positive b. This sufficient condition completely extends the result
by P. Cattiaux and A. Guillin concerning T2. Our approach is completely different.

1.5.2. The particular case of Log-concave distributions. A particularly nice case is when µ
is Log-concave. Recall that µ is said to be Log-concave if log(1 − F ) is concave, F being
the cumulative distribution function of µ. If µ is Log-concave then it belongs to Lip♯µ1.
Furthermore, µ satisfies STα(a) for some constant a > 0 if and only if

(12) ∃b > 0,

∫
eα(bx) dµ(x) < +∞.

This result enables us to derive sufficient conditions for modified Logarithmic Sobolev in-
equalities. Using well known techniques, we prove in Theorem 63 that if µ is a Log-concave
distribution which satisfies the inequality STα(a) then µ satisfies the following modified Log-
Sobolev inequality

(13) Entµ(f
2) ≤ C

∫
α∗

(
t
f ′

f

)
f2 dµ, ∀f,

for some c, t > 0. Consequently, if the Log-concave distribution µ satisfies the moment
condition (12), it satisfies the modified Log-Sobolev inequality (13) (see Theorem 64 and
Corollary 66). This extends and completes the results of Gentil, Guillin and Miclo (see [9]
and [11]).
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1.5.3. A word on the method. The originality of this paper is that transportation cost in-
equalities are studied without the help of Logarithmic-Sobolev inequalities. Our results rely
on a simple but powerful perturbation method which is explained in section 3. Roughly
speaking, we show that if µ satisfies some (strong) TCI then T♯µ satisfies a (strong) TCI
with a skewed cost function. This principle enables us to derive new (strong) TCIs from old
ones. More precisely if µref is a known probability measure satisfying some (strong) TCI and
if one is able to construct a map T transporting µref on an other probability measure µ, then
µ will satisfy a (strong) TCI too. This principle is true in any dimension. The reason why
this paper deals with dimension one only is that the optimal-transportation of measures is
extremely simple in this framework.

Contents

1. Introduction 1

2. Preliminary results 6

3. The perturbation method for (strong) TCIs 11

4. (Strong) TCI for Log-concave distributions 16

5. Characterization of strong TCI on a larger class of probabilities 20

References 24

Acknowledgements. I want to warmly acknowledge Christian Léonard and Patrick Catti-
aux for so many interesting conversations on functional inequalities and other topics.

2. Preliminary results

In this section, we are going to recall some well known results on TCI, namely their dual
translations, their tensorization properties and their links with the concentration of measure
phenomenon.

General Framework : Most of the forthcoming results are available in a very general
framework which we shall now describe.

Let X be a polish space and let c : X ×X → R
+ be a lower semi-continuous function, called

the cost function. The set of all the probability measures on X will be denoted by P(X ).
The optimal transportation cost between ν ∈ P(X ) and µ ∈ P(X ) is defined by

Tc(ν, µ) = inf
π∈P (ν,µ)

∫∫

X×X
c(x, y)π(dxdy),

where P (ν, µ) is the set of all the probability measures on X × X such that π(dx × X ) = ν
and π(X × dy) = µ.

A probability measure µ is said to satisfy the TCI with the cost function c if

(14) ∀ν ∈ P(X ), Tc(ν, µ) ≤ H(ν | µ).
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A probability measure µ is said to satisfy the strong TCI with the cost function c if

(15) ∀ν, β ∈ P(X ), Tc(ν, β) ≤ H(ν | µ) + H(β | µ).

2.1. TCI vs Strong TCI.

Proposition 16. Let X = R
p and suppose that c(x, y) = θ(x − y), with θ : R

p → R
+ a

convex function such that θ(−x) = θ(x). If µ satisfies the TCI with the cost function c then
µ satisfies the strong TCI with the cost function c̃ defined by

c̃(x, y) = 2θ

(
x− y

2

)
, ∀x, y ∈ R

p.

Proof. Let π1 ∈ P (ν, µ) and π2 ∈ P (µ, β). One can construct X,Y,Z three random variables
such that L(X,Y ) = π1 and L(Y,Z) = π2 (see for instance the Gluing Lemma of [19] p.
208). Thus, using the convexity of θ, one has

Tc̃(ν, β) ≤ E

[
2θ

(
X − Z

2

)]
≤ E [θ (X − Y )] + E [θ (Y − Z)]

=

∫
c(x, y)π1(dxdy) +

∫
c(y, z)π2(dydz).

Optimizing in π1 and π2 yields

Tc̃(ν, β) ≤ Tc(ν, µ) + Tc(β, µ), ∀ν, β ∈ P(Rp).

Consequently, if µ satisfies the TCI with the cost function c then µ satisfies the strong TCI
with the cost function c̃. �

Let θ : R
p → R

+ be a symmetric function (θ(−x) = θ(x)). One will say that a probability
measure µ on R

p satisfies the inequality STθ(a) if it satisfies the strong TCI with the cost
function c(x, y) = θ(a(x− y)).

Lemma 17. Let θ be as above and suppose that θ(kx) ≥ kθ(x),∀k ∈ N,∀x ∈ R
p. Let

b1, b2 > 0 and define θ̃(x) = b1θ(b2x),∀x ∈ R
p. Then, µ satisfies STθ(a) for some a > 0 if

and only if µ satisfies STθ̃(ã) for some ã > 0.

Proof. (See also the proof of Corollary 1.3 of [18]) Suppose that µ satisfies STθ(a) for some

a > 0. Let k ∈ N such that k ≥ b1, then θ(ax) ≥ kθ(ax/k) ≥ θ̃(ax/(b2k)). Hence, µ satisfies

STθ̃

(
a
b2k

)
. �

2.2. Links with the concentration of measure phenomenon. The following Theorem
explains how to deduce concentration of measure estimates from a strong TCI. The argument
used in the proof is due to K. Marton and M. Talagrand see ([13] and the proof of Corollary
1.3 of [18]).

Theorem 18. Let (X, d) be a polish space and c : X×X → R
+ be a continuous cost function.

Suppose that µ satisfies the strong TCI with the cost function c, then

(19) ∀A ⊂ X measurable, ∀r ≥ 0, µ (Arc) ≥ 1 −
1

µ(A)
e−r,

where Arc = {y ∈ X : ∃x ∈ A such that c(x, y) ≤ r} .
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Proof. Let A,B ∈ X and define µA = µ( · ∩A)
µ(A) and µB = µ( · ∩B)

µ(B) . Since µ satisfies the strong

TCI, one has :

(20) c(A,B) ≤ Tc(µA, µB) ≤ H(µA|µ) + H (µB|µ) = − log µ(A) − log µ(B),

with c(A,B) = inf {c(x, y) : x ∈ A, y ∈ B} . Now taking B = X −Arc in (20) yields the desired
result. �

2.3. Dual translation of transportation-cost inequalities.

2.3.1. Kantorovich Rubinstein Theorem and its consequences. According to the celebrated
Kantorovich-Rubinstein Theorem, optimal transportation costs admit a dual representation
which is the following :

(21) ∀ν, µ ∈ P(X ), Tc(ν, µ) = sup
(ψ,ϕ)∈Φc

{∫
ψ dν −

∫
ϕdµ

}
,

where Φc = {(ψ,ϕ) ∈ B(X ) ×B(X ) : ψ(x) − ϕ(y) ≤ c(x, y),∀x, y ∈ X} and B(X) is the set
of bounded measurable functions on X . The dual representation (21) is in particular true if c
is lower semi-continuous function defined on a polish space X (see for instance Theorem 1.3
[19]). Furthermore, B(X ) can be replaced by Cb(X ), the set of bounded continuous functions
on X .

The infimal-convolution operator Qc is defined by

Qcϕ(x) = inf
y
{ϕ(y) + c(x, y)} ,

for all ϕ ∈ B(X ). If c is continuous, x 7→ Qcϕ(x) is measurable (in fact upper semi continuous)
and it can be shown that

∀ν, µ ∈ P(X ), Tc(ν, µ) = sup
ϕ∈Cb(X )

{∫
Qcϕdν −

∫
ϕdµ

}
,

= sup
ϕ∈B(X )

{∫
Qcϕdν −

∫
ϕdµ

}
.

Since optimal transportation costs admit a dual representation, it is natural to ask if TCIs
and strong TCIs admit a dual translation too. The answer is given in the following theorem.

Theorem 22. Suppose that c is a continuous cost-function on the Polish space X .

(1) µ satisfies the TCI (14) if and only if

(23) ∀ϕ ∈ B(X ),

∫
eQcϕ dµ · e−

∫
ϕdµ ≤ 1.

(2) µ satisfies the strong TCI (15) if and only if

(24) ∀ϕ ∈ B(X ),

∫
eQcϕ dµ ·

∫
e−ϕ dµ ≤ 1.

Furthermore in the preceding statements B(X ) can be replaced by Cb(X ).
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Proof. The first point is due to S.G. Bobkov and F. Götze (see the proof of Theorem 1.3 and
(1.7) of [3]). The interested reader can also find an alternative proof of this result in [10] (see
Corollary 1). In this latter proof, Large Deviations Theory techniques are used. One can
easily adapt the one or the other approach to derive the dual version of strong TCIs (24).
This is left to the reader. �

Remark 25. As mentioned in the introduction, inequalities of the form (24) are called
infimal-convolution inequalities. These inequalities were introduced by B. Maurey in [15].
Note that Maurey’s work is anterior to the paper [18] and [3]. A good account on infimal-
convolution inequalities can be found in M. Ledoux’s book [12]. In this article, we have chosen
to privilege the strong TCI (15) form, which is the primal form of (24). The reason is that
we find (15) more intuitive.

2.3.2. Application : strong TCI and integrability. Let us detail an important application of
the infimal-convolution formulation of strong TCI.

Proposition 26. Let c be a continuous cost function on the Polish space X . Suppose that
µ ∈ P(X ) satisfies the strong TCI with the cost function c. Let A ⊂ X be a measurable set
and define c(x,A) = infy∈A c(x, y). One has

(27)

∫
ec(x,A) dµ(x) · µ(A) ≤ 1.

Remark 28. This integrability property was first noticed by B. Maurey in [15]. Note that
the inequality (27) implies the concentration estimate (19).

Proof. Define, for all p ∈ N, ϕpA(x) =

{
0 if x ∈ A
p if x ∈ Ac

. As ϕpA is bounded, one can apply

(24), this yields ∫
eQcϕ

p
A dµ ·

∫
e−ϕ

p
A dµ ≤ 1.

An easy computation shows that Qcϕ
p
A(x) = min(c(x,A), p) −−−−→

p→+∞
c(x,A) and e−ϕ

p
A −−−−→

p→+∞

1IA. Using the monotone convergence theorem, one gets he desired inequality. �

The following Corollary will be very useful in the sequel.

Corollary 29. Let µ be a probability measure on R satisfying the strong TCI with the cost
function c(x, y) = α(x− y), with α a continuous symmetric non decreasing function. For all
x ∈ R, define

µ+
x = L(X − x|X ≥ x), and µ−x = L(x−X|X ≤ x),

where X is a random variable with law µ. Then,
∫ +∞

0
eα dµ+

x ≤
1

µ(−∞, x]
+ 1,∀x ∈ R

∫ +∞

0
eα dµ−x ≤

1

µ[x,+∞)
+ 1,∀x ∈ R
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In particular, ∫
eα dµ ≤

1

µ(R+)µ(R−)
− 1.

Proof. Let A = (−∞, x]. It is easy to show that c(y,A) = α(y − x) if y ≥ x and 0 else.
Applying (27) with this A yields

(
µ(−∞, x] +

∫ +∞

x
eα(y−x) dµ(y)

)
· µ(−∞, x] ≤ 1.

Rearranging the terms, one gets
∫ +∞

x
eα(y−x) dµ(y) ≤

1 − µ(−∞, x]2

µ(−∞, x]
.

Dividing both sides by µ[x,+∞) gives the result. Working with A = [x,+∞) gives the
integrability property for µ−x . Now,

∫
eα dµ = µ(R+)

∫ +∞

0
eα dµ+

0 + µ(R−)

∫ +∞

0
eα dµ−0

≤ 1 +
µ(R+)

µ(R−)
+
µ(R−)

µ(R+)

=
1

µ(R+)µ(R−)
− 1.

�

2.4. Tensorization property of (strong) TCIs. If µ1 and µ2 satisfy a (strong) TCI, does
µ1 ⊗ µ2 satisfy a (strong) TCI ? The following Theorem gives an answer to this question.

Theorem 30. Let (Xi)i=1...n be a family of Polish spaces. Suppose that µi is a probability
measure on Xi satisfying a (strong) TCI on Xi with a continuous cost function ci such that
ci(x, x) = 0,∀x ∈ Xi. Then the probability measure µ1 ⊗ · · · ⊗ µn satisfies a (strong) TCI on
X1 × · · · × Xn with the cost function c1 ⊕ · · · ⊕ cn defined as follows :

∀x, y ∈ X1 × · · · × Xn, c1 ⊕ · · · ⊕ cn(x, y) =

n∑

i=1

ci(xi, yi).

Proof. There are two methods to prove this tensorization property. The first one is due to K.
Marton and makes use of a coupling argument (the so called Marton’s coupling argument).
It is explained in several places : in Marton’s original paper [13], in Talagrand’s paper on T2

[18] or in M. Ledoux book [12] (Chapter 6). The second method uses the dual forms (23) and
(24). This approach was originally developed by B. Maurey in [15] for infimal-convolution
inequalities (see Lemma 1 of [15]). In the case of TCIs, the proof is given in great details in
[10] (see the proof of Theorem 5). �

Remark 31. Several authors have obtained non-independent tensorization results for transportation-
cost inequalities and related inequalities (see [14], [17] or [8]).

Applying Theorem 30 together with Theorem 18, one obtains the following Corollary :
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Corollary 32. Let c be a continuous cost function on the Polish space X such that c(x, x) =
0,∀x ∈ X . Suppose that µ ∈ P(X ) satisfies the strong TCI with the cost function c. Then,

∀n ∈ N
∗,∀A measurable,∀r ≥ 0, µn(Arc) ≥ 1 −

1

µn(A)
e−r,

where Arc = {x ∈ X n : ∃y ∈ A such that
∑n

i=1 c(xi, yi) ≤ r} .

3. The perturbation method for (strong) TCIs

3.1. The contraction principle in an abstract setting. In the sequel, X and Y will be
Polish spaces. If µ is a probability measure on X and T : X → Y is a measurable map, the
image of µ under T will be denoted by T♯µ, it is the probability measure on Y defined by

∀A ⊂ Y measurable, T♯µ(A) = µ
(
T−1(A)

)
.

In this section, we will explain how a (strong) TCI is modified when the reference probability
measure µ is replaced by the image T♯µ of µ under some map T .

Theorem 33. Let T : X → Y be a measurable bijection. If µref satisfies the (strong) TCI
with a cost function cref on X , then T♯µref satisfies the (strong) TCI with the cost function

cTref defined on Y by

cTref(y1, y2) = cref(T
−1y1, T

−1y2), ∀y1, y2 ∈ Y.

In other word, T♯µref satisfies the (strong) TCI with a skewed cost function.

Proof. Let us define Q(y1, y2) = (T−1y1, T
−1y2),∀y1, y2 ∈ Y. Let ν, β ∈ P(Y) and take

π ∈ P (ν, β), then
∫
cTref(y1, y2) dπ =

∫
c(x, y) dQ♯π, so TcTref

(ν, β) = inf
π∈Q♯P (ν,β)

∫
c(x, y)dπ.

But it is easily seen that Q♯P (ν, β) = P (T−1
♯ ν, T−1

♯ β). Consequently

TcTref
(ν, β) = Tcref (T

−1
♯ ν, T−1

♯ β).

If µref satisfies the strong TCI with the cost function cref , then

Tcref (T
−1
♯ ν, T−1β) ≤ H

(
T−1
♯ ν

∣∣∣µref

)
+ H

(
T−1
♯ β

∣∣∣µref

)

But

H
(
T−1
♯ ν

∣∣∣µref

)
= H

(
T−1
♯ ν

∣∣∣T−1
♯ T♯µref

)
= H (ν|T♯µref) ,

where the last equality comes from the following classical invariance property of relative
entropy : H (S♯ν1|S♯ν2) = H (ν1| ν2). Hence

∀ν, β ∈ P(Y), TcTref
(ν, β) ≤ H (ν|T♯µref) + H (β|T♯µref) .

�

The Corollary bellow explains the method we will use in the sequel to derive new (strong)
TCIs from known ones.
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Corollary 34 (Contraction principle). Let µref be a probability measure on X satisfying a
(strong) TCI with a continuous cost function cref . In order to prove that a probability measure
µ on Y satisfies the (strong) TCI with a continuous cost function c, it is enough to build an
application T : X → Y such that µ = T♯µref and

c(Tx1, Tx2) ≤ cref(x1, x2), ∀x1, x2 ∈ X .

This contraction property of strong TCIs (written in their infimal-convolution form) was first
observed by B. Maurey (see Lemma 2 of [15]).

Proof. We assume that µref satisfies the strong TCI with the cost function cref . Let ϕ : Y → R

be a bounded map. Then, for all x1 ∈ X

Qcϕ(Tx1) = inf
y∈Y

{ϕ(y) + c(Tx1, y)} ≤ inf
x2∈X

{ϕ(Tx2) + c(Tx1, Tx2)}

≤ inf
x2∈X

{ϕ ◦ T (x2)) + cref(x1, x2)} = Qcref (ϕ ◦ T ) .

Thus,

∫
eQcϕ dµ ·

∫
e−ϕ dµ =

∫
eQcϕ ◦ T dµref ·

∫
e−ϕ◦T dµref

≤

∫
eQcref

(ϕ◦T ) dµref ·

∫
e−ϕ◦T dµref

≤ 1

where the last inequality follows from (24). �

Remark 35. If T is invertible, the proof above can be simplified using Theorem 33. Namely,
according to Theorem 33, µ satisfies the (strong) TCI with the cost function cTref . But, by

hypothesis, c ≤ cTref , so µ satisfies the (strong) TCI with the cost function c.

3.2. The contraction principle on the real line.

3.2.1. Monotone rearrangement. We are going to apply the contraction principle to proba-
bility measures on the real line. The reason why dimension one is so easy to handle is the
existence of a good map T which pushes forward µref on µ : the monotone rearrangement.

Theorem 36 (Monotone rearrangement). Let µref and µ be probability measures on R and
let Fref and F denote their cumulative distribution functions :

Fref(t) = µref(−∞, t], ∀t ∈ R, and F (t) = µ(−∞, t], ∀t ∈ R.

If Fref and F are continuous and increasing (equivalently µref and µ have no atom and full
support), then the map T = F−1 ◦ Fref transports µref on µ, that is T♯µref = µ.

From now on, T will always be the map defined in the preceding Theorem.
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3.2.2. About the exponential distribution. The reference probability measure µref will be the
symmetric exponential distribution µ1 on R :

dµref(x) = dµ1(x) :=
1

2
e−|x| dx.

Theorem 37 (Maurey, Talagrand). The exponential measure µ1 satisfies the (strong) TCI
with the cost function 1

κc1, for some constant κ > 0, with c1 defined by

c1(x, y) := min(|x− y|, |x− y|2), ∀x, y ∈ R.

Remark 38.

(1) One can take κ = 36.
(2) B. Maurey proved the strong TCI with the sharper cost functions c(x, y) = α̃1(x− y),

where α̃1(x) =

{
1
36x

2 if |x| ≤ 4
2
9(|x| − 2) if |x| ≥ 4

(see Proposition 1 of [15]). One can show

that α̃1 ≥ 1
36α1.

(3) M. Talagrand proved independently that µ1 satisfies the TCI with the cost functions

cλ(x, y) = γλ(x − y) where γλ(x) =
(

1
λ − 1

) (
e−λ|x| − 1 + λ|x|

)
for all λ ∈ (0, 1) (see

Theorem 1.2 of [18]).

Transportation-cost inequalities associated to the cost function c1 were fully characterized
by I. Gentil, M. Ledoux and S . Bobkov in [5] in terms of Poincaré inequalities :

Theorem 39 (Bobkov-Gentil-Ledoux). A probability measure µ on R
p satisfies the TCI with

the cost function (x, y) 7→ λmin(|x − y|2, |x − y|22), for some λ > 0 if and only if it satisfies
a Poincaré inequality, that is if there is some constant C > 0 such that

Varµ(f) ≤ C

∫

Rp

|∇f |22 dµ, ∀f

3.2.3. Application of the contraction principle on the real line. A good thong with the expo-
nential distribution is that its cumulative distribution function can be explicitly computed

(40) F1(x) =

{
1 − 1

2e
−|x| if x ≥ 0

1
2e

−|x| if x ≤ 0
and F−1

1 (t) =

{
− log(2(1 − t)) if t ≥ 1

2
log(2t) if t ≤ 1

2

Suppose that µ is a probability measure on R having no atom and full support, then its
cumulative distribution function F is invertible, and the map T transporting µ1 on µ can be
expressed as follows :
(41)

T (x) =

{
F−1

(
1 − 1

2e
−|x|

)
if x ≥ 0

F−1
(

1
2e

−|x|
)

if x ≤ 0
and T−1(x) =

{
− log(2(1 − F (x))) if x ≥ m
log(2F (x)) if x ≤ m

,

where m denotes the median of µ.

Let us introduce the following quantity :

ωµ(h) = inf
{
|T−1x− T−1y| : |x− y| ≥ h

}
, ∀h ≥ 0.
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Proposition 42. If µ ∈ P(R) is a probability measure with no atom and full support, then
µ satisfies the strong TCI with the cost function cµ(x, y) = 1

κα1 ◦ ωµ(|x− y|), where α1(t) =

min(t, t2),∀t ≥ 0.

Proof. By definition of ωµ,

|T−1x− T−1y| ≥ ωµ(|x− y|), ∀x, y ∈ R.

Thus,

cT1 (x, y) ≥
1

κ
α1 (ωµ(|x− y|)) , ∀x, y ∈ R,

and this achieves the proof. �

To better understand ωµ it is good to relate it to the continuity modulus of T .

Definition 43 (The class UC♯µ1). The set of all probability measures µ on R, with no atom
and full support, such that the monotone rearrangement map transporting the exponential
measure 1

2dµ1(x) = e−|x| dx on µ is uniformly continuous is denoted by UC♯µ1.

The proof of the following proposition is left to the reader.

Proposition 44. Suppose µ ∈ UC♯µ1, then the continuity modulus ∆µ of T is defined by
∆µ(h) = sup {|Tx− Ty| : |x− y| ≤ h} , ∀h ≥ 0. It is a continuous increasing function and

ωµ = ∆−1
µ .

Remark 45.

(1) All the elements of UC♯µ1 enjoy a dimension free concentration of measure property.
Namely, if µ ∈ UC♯µ1, then µ satisfies the strong TCI with the cost function cµ(x, y) =

αµ(x− y), where αµ(x) = 1
κα1 ◦ ωµ(|x|). Thus according to Corollary 32, one has

∀n ∈ N
∗,∀A ⊂ R

n,∀r ≥ 0, µn(Arαµ
) ≥ 1 −

1

µ(A)
e−r,

with Arαµ
= {x ∈ R

n : ∃y ∈ A such that
∑n

i=1 αµ(xi − yi) ≤ r} .

(2) The class of all the probability measures on R satisfying a dimension free concentra-
tion of measure property is not yet identified. In [6], S.G. Bobkov and C. Houdré
studied probability measures enjoying a weak dimension free concentration property
(roughly speaking one can estimate µn(Ar∞) independently of the dimension, where
Ar∞ denotes the blow-up of A with respect to the norm |x|∞ = maxi |xi|). They proved
that a probability measure has this weak property if and only if the map T generate a
finite modulus, which means that ∆µ(h) < +∞ for some (equivalently for all) h ∈ R.

In order to obtain explicit concentration properties, one has to estimate ωµ.

Proposition 46. Define

ω+
µ (h) = inf

{
|T−1x− T−1y| : |x− y| ≥ h, x, y ≥ m

}

ω−
µ (h) = inf

{
|T−1x− T−1y| : |x− y| ≥ h, x, y ≤ m

}

then

ωµ(h) ≥ min

(
ω+
µ

(
h

2

)
, ω−

µ

(
h

2

))
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Proof. Let x, y ∈ R with x ≤ m ≤ y and y − x ≥ h ≥ 0. One has

|T−1y − T−1x| = T−1y − T−1x =
(
T−1y − T−1m

)
+

(
T−1m− T−1x

)

≥ ω+
µ (y −m) + ω−

µ (m− x).

Since y − x ≥ h and m ∈ [x, y], one has y −m ≥ h
2 or m− x ≥ h

2 , thus

|T−1y − T−1x| ≥ min

(
ω+
µ

(
h

2

)
, ω−

µ

(
h

2

))
.

�

Let X be a random variable with law µ and define

µ+
x = L(X − x | X ≥ x) ∈ P(R+), ∀x ≥ m(47)

µ−x = L(x−X | X ≤ x) ∈ P(R+), ∀x ≤ m(48)

In the following Proposition, the quantities ω+
µ and ω−

µ are expressed in terms of the cumu-

lative distribution functions of the probability measures µ+
x and µ−x .

Proposition 49.

ω+
µ (h) = inf {− log µ+

x [h,+∞) : x ≥ m}
ω−
µ (h) = inf {− log µ−x [h,+∞) : x ≤ m}

, ∀h ≥ 0.

Proof. It is easy to see that ω+
µ (h) = inf

{
T−1(x+ h) − T−1x : x ≥ m

}
. Using (41) one sees

that

T−1(x+ h) − T−1x = − log

(
1 − F (x+ h)

1 − F (x)

)
= − log µ+

x [h,+∞),

which gives the result. �

The proof of the following Corollary is immediate.

Corollary 50. Let ω : R
+ → R

+ a continuous non decreasing function with ω(0) = 0. In

order to show that cµ(x, y) ≥
1
κα1 ◦ ω

(
|x−y|

2

)
, it is enough to show that

sup
x≥m

µ+
x [h,+∞) ≤ e−ω(h), ∀h ≥ 0(51)

sup
x≤m

µ−x [h,+∞) ≤ e−ω(h), ∀h ≥ 0(52)

Remark 53. The evolution of µ+
x and µ−x with x reflects the aging properties of µ. Objects

of this type appear naturally in reliability theory. Suppose that X is nonnegative and think of
X as the failure time of some engine, then µ+

x is the law of the failure after time x knowing
that the engine works properly at time x.

Recall that one says that a probability measure ν1 is stochastically dominated by an other
probability measure ν2 if

ν1[h,+∞) ≤ ν2[h,+∞), ∀h ≥ 0.
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In the sequel, this will be written ν1 ≺st ν2. If one think of µ1 and µ2 as failure time laws,
then ν1 ≺st ν2 means that the material modeled by ν2 is more reliable than the material
modeled by ν1.

It is well known that the following propositions are equivalent :

(1) ν1 ≺st ν2,
(2)

∫
f dν1 ≤

∫
f dν2, for all nondecreasing f : R → R,

(3) There are X1, and X2 two random variables defined on the same probability space,
such that L(X1) = ν1, L(X2) = ν2 and X1 ≤ X2 almost surely.

Since every continuous nondecreasing function F with F (0) = 0 and limx→+∞ F (x) = 1 is the
cumulative distribution function of some probability measure on R

+ with no atom, finding
a function ω such that (51) and (52) hold is the same as finding some uniform upper bound
of the probability measures µ+

x and µ−x in the sense of stochastic ordering. The preceding
Corollary can thus be restated as follows :

Corollary 54. Let µ ∈ P(R) be a probability measure with no atom and full support. If there
is a probability measure µ0 ∈ P(R+) with no atom such that

µ+
x ≺st µ0, ∀x ≥ m and µ−x ≺st µ0, ∀x ≤ m,

then µ satisfies the strong TCI with the cost function c defined by

c(x, y) =
1

κ
α1 (− log (1 − F0 (|x− y|/2))) , ∀x, y ∈ R,

where F0 denotes the cumulative distribution function of µ0.

4. (Strong) TCI for Log-concave distributions

Let µ ∈ P(R), let F be its cumulative distribution function and define F = 1 − F . The
probability measure µ is said to be Log-concave if logF is concave.

4.1. A natural cost function. Log-concave are examples of NBU (New Better than Used)
distributions. This is explained in the following proposition :

Proposition 55. If µ ∈ P(R) is a Log-concave distribution, then

µ+
x ≺st µ

+
m, ∀x ≥ m and µ−x ≺st µ

−
m, ∀x ≤ m.

Proof. Let us show that µ+
x ≺st µ

+
m for all x ≥ m. By definition, this means that µ+

x [h,+∞) ≤
µ+
m[h,+∞),∀h ≥ 0,∀x ≥ m and this is equivalent to

1 − F (x+ h)

1 − F (x)
≤

1 − F (m+ h)

1 − F (m)
, ∀h ≥ 0,∀x ≥ m.

Defining F
+
m(h) = 1−F (m+h)

1−F (m) ,∀h ≥ 0, the preceding inequality is equivalent to :

F
+
m(x−m+ h) ≤ F

+
m(x−m) × F

+
m(h), ∀h ≥ 0,∀x ≥ m.

In other word, µ+
x ≺st µ

+
m if and only if the function logF

+
m is sub-additive. Since µ is

Log-concave, the function logF
+
m is concave. It is easy to check that every concave function

defined on R
+ and vanishing at 0 is sub-additive. This achieves the proof. �
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Corollary 56. If µ ∈ P(R) is Log-concave, then it satisfies the strong TCI with the cost
function c defined by

c(x, y) =
1

κ
α1 (− log (G0 (|x− y|/2))) , ∀x, y ∈ R,

with G0(h) = 2max
(
F (h+m), F (−h +m)

)
,∀h ≥ 0.

Furthermore, if µ is symmetric, then µ satisfies the strong TCI with the cost function

c(x, y) =
1

κ
α1

(
− log 2F (|x− y|/2)

)
, ∀x, y ∈ R.

Proof. Let µ0 be the probability measure on R
+ with cumulative distribution function F0 =

1 − G0. According to Proposition 55, µ+
x ≺st µ0,∀x ≥ m and µ−x ≺st µ0,∀x ≤ m. Thus

according to Corollary 54, µ satisfies the strong TCI with the cost function

c(x, y) =
1

κ
α1 (− log (G0 (|x− y|/2))) , ∀x, y ∈ R.

Now, if µ is symmetric, then m = 0 and 1 − F (x) = F (−x),∀x ∈ R. Consequently, G0(h) =
2(1 − F (h)) and the result follows. �

4.2. Characterization of (strong) TCI for Log-concave measures. In the sequel, A
will be the class of all the function α : R → R

+ such that

• α is even,
• α is continuous, nondecreasing on R

+ and α(0) = 0,
• α is super-additive on R

+ : α(x+ y) ≥ α(x) + α(y),∀x, y ≥ 0,
• α is quadratic near 0 : α(t) = t2,∀t ∈ [−1, 1].

One will say that µ satisfies the inequality Tα(a) (resp. STα(a)) if µ satisfies the TCI (resp.
the strong TCI) with the cost function c(x, y) = α(a(x − y)),∀x, y ∈ R.

Theorem 57. Let α ∈ A and µ ∈ P(R) a Log-concave distribution. The following proposi-
tions are equivalent

(1) There is some constant a > 0 such that µ satisfies the inequality STα(a).

(2) There is some constant b > 0 such that
∫
eα(bx) dµ(x) < +∞.

If α ∈ A is convex then the same is true for TCI.

Proof.
[(1) ⇒ (2)] If µ satisfies STα(a), then according to Corollary 29, one has

∫
eα(az) dµ(z) < +∞.

Hence, (2) holds with b = a.

[(2) ⇒ (1)] According to Corollary 56, µ satisfies the strong TCI with the cost function
c(x, y) = 1

κα1 (− log (G0 (|x− y|/2))) , where G0(h) = 2max
(
F (h+m), F (−h+m)

)
,∀h ≥

0. If there is some a such that

(58) α1 (− logG0(|x|)) ≥ α(ax),∀x ∈ R,
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then µ satisfies the strong TCI with the cost function 1
κα(a|x − y|/2) ≥ α(a|x − y|/(2κ))

(since κ > 1). Hence it is enough to prove (58). This latter condition is equivalent to

2F (m+ h) = µ+
m[h,+∞) ≤ e−α

−1
1 ◦α(ah), ∀h ≥ 0(59)

2F (m− h) = µ−m[h,+∞) ≤ e−α
−1
1 ◦α(ah), ∀h ≥ 0.(60)

We will focus on the condition (59), the same proof will work for (60). Inequality (59) is
equivalent to

{
(i) µ+

m[h,+∞) ≤ e−ah, ∀h ≤ 1
a

(ii) µ+
m[h,+∞) ≤ e−α(ah), ∀h ≥ 1

a

Let us prove that (i) holds for some a0 > 0 and all h ≥ 0. Let ϕ = logF . The function ϕ is
concave, so

ϕ(m+ h) ≤ ϕ(m) + ϕ′
r(m)h, ∀h ≥ 0,

where ϕ′
r(m) is the right derivative of ϕ at point m. If ϕ′

r(m) < 0, then (i) holds with
a0 = −ϕ′

r(m) and for all h ≥ 0. Since ϕ is increasing, ϕ′
r(m) ≤ 0. The function ϕ being

concave, ϕ′
r is non-increasing. Consequently, if ϕ′

r(m) = 0, then ϕ′
r(x) = 0, for all x ≤ m.

This would imply that F is constant on (−∞,m], which is absurd.

It is clear that one can find a constant b0 such that
∫
eα(b0z) dµ+

m(z) < +∞. We end the proof
applying the following technical result to µ+

m. �

Lemma 61. Let ν be a probability measure on R
+ such that

ν[h,+∞) ≤ e−a0h, ∀h ≥ 0,

for some a0 > 0. Let α ∈ A and suppose that
∫
eα(b0z) dν(z) ≤ K,

for some b0 > 0 and K > 0. Then, there is a constant a > 0 depending only on a0, b0 and K
such that {

(i) ν[h,+∞) ≤ e−ah, ∀h ≤ 1
a

(ii) ν[h,+∞) ≤ e−α(ah), ∀h ≥ 1
a

Proof. Using Markov’s inequality, one gets

K ≥ 2eα(b0h)ν[h,+∞), ∀h ≥ 0.

Thus, using the super-additivity of α, one has

ν[h,+∞) ≤ Ke−α(b0h) ≤
[
Ke−α(b0h/2)

]
e−α(b0h/2) ≤ e−α(b0h/2),

as soon as h ≥ 2
b0
α−1 (logK). Since ν[h,+∞) ≤ e−a0h, ∀h ≥ 0, it is now easy to check that

(i) and (ii) hold with a = min(a0, b0/2,
[

2
b0
α−1 (logK)

]−1
). �
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4.3. Links with modified Log-Sobolev inequalities. Recall the definition of the entropy
functional :

Entµ(f) :=

∫
f log f dµ−

∫
f dµ log

∫
f dµ.

Definition 62. Let β : R → R
+ be an even convex function with β(0) = 0. One says that

µ ∈ P(R) satisfies the modified Logarithmic-Sobolev inequality LSIβ(C, t) if

Entµ(f
2) ≤ C

∫
β

(
t
f ′

f

)
f2 dµ,

for all f ∈ C1
c (the set of continuously differentiable functions having compact support).

Note that if β(x) = x2, one recovers the classical Logarithmic-Sobolev inequality. The
links between transportation cost inequalities and Logarithmic-Sobolev inequalities have been
studied by several authors (see the works by Otto and Villani [16], Bobkov, Gentil and Ledoux
[5] and more recently Gentil, Guillin and Miclo [9]). The usual point of view is to prove TCI
using Log-Sobolev type inequalities. Here we will do the opposite and derive Log-Sobolev
inequalities from TCIs. To this end we will use the following result.

Theorem 63. Let α ∈ A be a convex function. If µ = e−V dx ∈ P(R) with V : R → R

a convex function satisfies the inequality Tα(a), then it satisfies LSIα∗

(
λ

1−λ ,
1
aλ

)
, for all

λ ∈ (0, 1), where α∗ is the convex conjugate of α :

α∗(s) = sup
t∈R

{st− α(t)} , ∀s ∈ R.

Proof. The proof of Theorem 63 can be easily adapted from the one of Theorem 2.9 of [9]. The
regularity issue mentioned by the authors during the proof, is irrelevant in our framework.
Namely, in dimension one, the Brenier map is simply the monotone rearrangement map, and
the regularity of this latter can be easily checked by hand. �

The following result follows immediately from Theorems 57 and 63.

Theorem 64. Let α ∈ A be a convex function and µ = e−V dx ∈ P(R) with V convex. If∫
eα(b|x|) dµ(x) < +∞, for some b > 0, then µ satisfies the inequality LSIα∗(C, t) for some

C, t > 0.

Remark 65. Recall that the function θp is defined by

θp(x) =

{
x2 if |x| ≤ 1
2
p |x|

p + 1 − 2
p if |x| ≥ 1

,∀p ∈ [1, 2]

In [9], I. Gentil, A. Guillin and L. Miclo proved that the measure dµp(x) = 1
Zp
e−|x|p dx with

p ∈ [1, 2] satisfies the inequality LSIθ∗p(C, t) for some C, t > 0.
Using classical tools, one can show that

∃C, t > 0 s.t. µ satisfies LSIθ∗p(C, t) ⇒ ∃b > 0 s.t.

∫
eθp(ax) dµ(x) < +∞.

Consequently, a Log-concave measure µ satisfies the inequality LSIθ∗p(C, t) if and only if there

is some b > 0 such that
∫
eθp(ax) dµ(x) < +∞.
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Suppose that dµ = e−V dx with V a convex and symmetric function. It is tempting to take
α = V in the above theorem. To do this one has to modify the potential V near 0. Define

Ṽ (x) =

{
x2 if |x| ≤ 1
V (a0x) + 1 − V (a0) if |x| ≥ 1

Choosing a0 > 0 such that a0V
′(a0) = 2 (which is always possible), one obtains a convex

function. Furthermore, it is clear that one can find some b > 0 such that
∫
eṼ (bx) dµ(x) < +∞.

Applying the above Theorem, one obtains the following result

Corollary 66. With the above notations, µ satisfies the inequality LSIṼ ∗
(C, t) for some

C, t > 0.

Remark 67. In [11], Gentil, Guillin and Miclo have obtained the preceding Corollary under
the following additional assumption on V :

∃ε ∈ [0,
1

2
],∃M > 0,∀x ≥M, (1 + ε)V (x) ≤ xV ′(x) ≤ (2 − ε)V (x).

This hypothesis seems to be useless.

5. Characterization of strong TCI on a larger class of probabilities

In this section, we give a characterization of strong TCI for probability measures belonging
to a certain class Lip♯µ1 which we shall now define.

5.1. The Lipschitz images of the exponential measure.

Definition 68 (The class Lip♯µ1). The set of all probability measures µ on R, with no atom
and full support, such that the monotone rearrangement map transporting the exponential
measure 1

2dµ1(x) = e−|x| dx on µ is Lipschitz is denoted by Lip♯µ1.

The following Proposition describes the elements of Lip♯µ1.

Proposition 69. Let µ ∈ P(R) with no atom and full support and let T be the monotone
rearrangement map between µ1 and µ. For all a > 0, let νa be the one sided exponential
distribution with parameter a, that is dνa(z) = ae−ay1I[0,+∞)(y) dy.

The following assertions are equivalent

(1) The map T is 1
a -Lipschitz.

(2) The probability measures (µ+
x )x≥m and (µ−x )x≤m are stochastically dominated by the

exponential measure νa : µ+
x ≤ νa,∀x ≥ m and µ−x ≺st νa,∀x ≤ m. In other word,

one has

sup
x≥m

µ+
x [h,+∞) ≤ e−ah, ∀h ≥ 0(70)

sup
x≤m

µ−x [h,+∞) ≤ e−ah, ∀h ≥ 0(71)

If µ is of the form dµ(z) = e−V (z) dz where V is a continuous function, then T is 1
a-Lipschitz

if and only if

(72) A+ := sup
x≥m

F (x)eV (x) ≤
1

a
and A− := sup

x≤m
F (x)eV (x) ≤

1

a



CHARACTERIZATION OF TALAGRAND’S LIKE TRANSPORTATION-COST INEQUALITIES . . . 21

Furthermore, if V is of class C1, a sufficient condition for A+ and A− to be finite is that

(73) lim inf
x→+∞

V ′ > 0 and lim sup
x→−∞

V ′ < 0.

Proof. It is easy to see that the map T is 1
a -Lipschitz if and only if

(74) T−1z − T−1y ≥ a(z − y), ∀z ≥ y.

This is equivalent to

T−1(x+h)−T−1x ≥ ah, ∀x ≥ m,∀h ≥ 0 and T−1x−T−1(x−h) ≥ ah, ∀x ≤ m,∀h ≥ 0.

Using the fact that T−1(z) =

{
− log(2(1 − F (z))) if z ≥ m
log(2F (z)) if z ≤ m

, one sees immediately that

these conditions are equivalent to (70) and (71).

If dµ(z) = e−V (z) dz with a continuous V , T−1 is differentiable. Observe that (74) means that

z 7→ T−1z − az is nondecreasing and this is equivalent to supz∈R

dT−1

dz (z) ≤ a. Computing
dT−1

dz , one obtains immediately (72).

Finally, let us show that the condition lim inf
x→+∞

V ′ > 0 implies that A+ is finite. Under this

assumption, there is v0 > 0 and z0 > m such that for all z ≥ z0, one has V ′(z) ≥ v0. If
z ≥ z0, one thus has

e−V (z) =

∫ +∞

z
V ′(y)e−V (y) dy ≥ v0

∫ +∞

z
e−V (y) dy = v0(1 − F (y)).

So, sup
z≥z0

(1 − F (z))eV (z) ≤
1

v0
. Since sup

m≤z≤z0

(1 − F (z))eV (z) < +∞, one concludes that A+ <

+∞. The same reasoning shows that the condition lim sup
z→−∞

V ′ < 0 implies A− < +∞. �

Remark 75 (Lip♯µ1 and the Poincaré inequality).

(1) According to Corollary 34, one concludes that a sufficient condition for a probability
measure to satisfy the inequality STα1(a) for some constant a is that µ belongs to
Lip♯µ1.

(2) According to Theorem 39, a probability measure satisfies the inequality STα1(a) for
some constant a > 0 if and only if it satisfies the Poincaré inequality :

(76) Varµ(f) ≤ C

∫
(f ′)2 dµ, ∀f,

for some constant C > 0. Examples of probability measures not belonging to Lip♯µ1

but satisfying a Poincaré inequality are known. Thus our perturbation method failed
to completely characterize the inequality STα1 . Nevertheless, the above mentioned
counterexamples are rather pathological, and for a large class of probability measures,
µ satisfies Poincaré if and only if µ ∈ Lip♯µ1. This explained in the next proposition.

Definition 77 (Good potentials). The class V will be the set of all the functions f : R → R

of class C2 such that

(1) there is xo > 0 such that f ′ > 0 on (−∞,−xo] ∪ [xo,+∞),
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(2)
f ′′(x)

f ′2(x)
−−−−→
x→±∞

0.

Proposition 78. Let dµ = e−V dx with V ∈ V, then

µ satisfies Poincaré ⇔ lim inf
x→+∞

V ′(x) > 0 and lim sup
x→−∞

V ′(x) < 0

⇔ µ ∈ Lip♯µ1.

Proof. According to the celebrated Muckenhoupt criterion, a probability measure dµ =
e−V dx with a continuous V satisfies (76) for some constant C > 0 if and only if

(79) D+ := sup
x≥m

F (x) ·

∫ x

m
eV (y) dy < +∞ and D− := sup

x≤m
F (x) ·

∫ m

x
eV (y) dy < +∞.

Applying Proposition 86, one shows that

F (x) ·

∫ x

m
eV (y) dy ∼x→+∞

1

V ′2(x)
and F (x) · eV (x) ∼x→+∞

1

V ′(x)
.

From this one easily conclude that A+ and D+ are finite if and only if lim inf
x→+∞

V ′(x) > 0. �

5.2. Characterization of strong TCI on Lip♯µ1.

Theorem 80. Let µ ∈ Lip♯µ1 and α ∈ A. The following assertions are equivalent :

(1) There is some a > 0 such that µ satisfies STα(a).
(2) There is some b > 0 such that

K+ := sup
x≥m

∫
eα(bz) dµ+

x (z) < +∞ and K− := sup
x≤m

∫
eα(bz) dµ−x (z) < +∞.

Proof.
[(1) ⇒ (2)] According to Proposition 29, if µ satisfies STα(a), then

∫
eα(bz) dµ+

x (z) ≤
1

µ(−∞, x]
+ 1 ≤ 3, ∀x ≥ m

∫
eα(bz) dµ−x (z) ≤

1

µ[x,+∞)
+ 1 ≤ 3, ∀x ≤ m.

Thus (2) holds true for b = a.

[(2) ⇒ (1)] According to Corollary 50, if there is some a > 0 such that

sup
x≥m

µ+
x [h,+∞) ≤ e−α

−1
1 ◦α(ah), ∀h ≥ 0(81)

sup
x≤m

µ−x [h,+∞) ≤ e−α
−1
1 ◦α(ah), ∀h ≥ 0,(82)

then µ satisfies the strong TCI with the cost function 1
κα(a|x − y|/2) ≥ α(a|x − y|/(2κ)).

Hence it is enough to prove (81) and (82).

Let us prove (81) (the proof of (82) will be the same). To prove (81), it is enough to find
a > 0 such that

(83)

{
µ+
x [h,+∞) ≤ e−ah, ∀h ≤ 1

a

µ+
x [h,+∞) ≤ e−α(ah), ∀h ≥ 1

a

,
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holds for all x ≥ m. Since µ ∈ Lip♯µ1, there is a0 > 0 such that

sup
x≥m

µ+
x [h,+∞) ≤ e−a0h, ∀h ≥ 0,

and by hypothesis there is some b0 > 0 such that K+ := supx≥m
∫
eα(b0z) dµ+

x (z) < +∞. To

conclude it suffices to apply Lemma 61 with ν = µ+
x and K = K+. It provides us a constant

a > 0 depending only on a0, b0 and K+ such that (83) holds true for all x ≥ m. �

5.3. Tractable sufficient condition for good probability measures.

Theorem 84. Let dµ = e−V dx with V ∈ V and α ∈ A ∩ V. If µ ∈ Lip♯µ1 and if

(85) ∃λ > 0 such that lim sup
u→±∞

α′(λu)

V ′(u+m)
< +∞,

where m is the median of µ, then µ satisfies the inequality STα(a) for some a > 0.

To prove this theorem, we will use the following Lemma.

Lemma 86. Let Φ ∈ V, then
∫ +∞

x
e−Φ(t) dt ∼

e−Φ(x)

Φ′(x)
and

∫ x

0
e−Φ(t) dt ∼

eΦ(x)

Φ′(x)
, as x goes to + ∞.

Proof. See Corollary 6.4.2 of [1]. �

Proof of Theorem 84. Let µ̃ = L(X −m), where X is a random measure with law µ. The

density of µ̃ with respect to Lebesgues measure is e−Ṽ , with Ṽ (x) = V (x+m),∀x ∈ R. As
x 7→ x + m is 1-Lipschitz, it follows from Corollary 34 that µ satisfies STα(a) if and only
if µ̃ satisfies STα(a). Observe that µ̃ ∈ Lip♯µ1. According to Theorem 80, to prove that µ̃
satisfies STα(a) for some a > 0, it suffices to prove that there is b > 0 such that

K+(b) = sup
x≥0

∫
eα(bu) dµ̃+

x (u) < +∞ and K−(b) = sup
x≤0

∫
eα(bu) dµ̃−x (u) < +∞,

where µ̃+
x = L(X̃ − x|X̃ ≥ x) and µ̃−x = L(x− X̃|X̃ ≤ x) with X̃ of law µ̃.

The proof of K−(b) < +∞ being similar, we will only prove that K+(b) < +∞ for some
b > 0. One can suppose without restriction that λ = 1 in (85). Define

K(b, x) =

∫
eα(bt) dµ̃+

x (t)

=

∫ +∞
x eα(b(u−x))e−Ṽ (u) du

∫ +∞
x e−Ṽ (u) du

, ∀x ≥ 0,∀b ≥ 0.

Let us show that there is k ∈ N
∗ such that K(1/k, x) < +∞ for all x ≥ 0. Since α is

super-additive and non decreasing, one gets

K(1/k, x) ≤

∫ +∞
0 e

1
k
α(u)e−Ṽ (u) du

∫ +∞
x e−Ṽ (u) du

.
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Since lim sup
u→+∞

α′(u)

Ṽ ′(u)
< +∞, there are M > 0 and u0 > 0 such that Ṽ ′(u) ≥ Mα′(u), for all

u ≥ u0. Integrating yields

Ṽ (u) ≥Mα(u) + C, ∀u ≥ u0,

where C is a constant. Let k0 be a positive integer such that k0 ≥ 2
M . Then one has

e
1

k0
α(u)−Ṽ (u)

≤ e−
M
2
α(u)−C ≤ e−

Mα(1)
2

(u−1)−C , ∀u ≥ u0

where the last inequality follows from the inequality α(u) ≥ α(1)(u−1),∀u ≥ 0 which is easy
to establish. From this follows easily that K(1/k0, x) < +∞ for all x ≥ 0.

Now, let us show that supx≥0K(1/k0, x) < +∞. Since the map x 7→ K(1/k0, x) is continuous,
it suffices to check that lim sup

x→+∞
K(1/k0, x) < +∞. Using the super-additivity of α, one gets

α(u− x) ≤ α(u) − α(x), ∀u ≥ x ≥ 0.

So

K(1/k0, x) ≤ e−1/k0α(x)

∫ +∞
x e1/k0α(u)−Ṽ (u) du

∫ +∞
x e−Ṽ (u) du

.

Applying Lemma 86, with Φ = Ṽ − 1/k0α, and then with Φ = Ṽ , one gets

e−1/k0α(x)

∫ +∞
x e1/k0α(u)−Ṽ (u) du

∫ +∞
x e−Ṽ (u) du

∼ e−1/k0α(x) e1/k0α(x)−Ṽ (x)

Ṽ ′(x) − 1/k0α′(x)
eṼ (x)Ṽ ′(x) =

1

1 − 1/k0
α′(x)

Ṽ ′(x)

.

Since lim sup
x→+∞

1

1 − 1/k0
α′(x)

Ṽ ′(x)

< +∞, one deduces that lim sup
x→+∞

K(1/k0, x) < +∞, which ends

the proof. �
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