H. L. Helmholtz, On the Sensations of Tone ?Dover, 1954.

M. E. Mcintyre, R. T. Schumacher, and J. Woodhouse, On the oscillations of musical instruments, J. Acoust. Soc. Am, vol.74, pp.1325-1345

N. M. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics ?Princeton University Press, 1936.

M. Urabe, Galerkin's procedure for nonlinear periodic systems, Arch. Ration. Mech. Anal, vol.20, pp.120-152

A. Stokes, On the approximation of nonlinear oscillations, J. Diff. Eqns, vol.12, pp.535-558

M. S. Nakhla and J. Vlach, A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, IEEE Trans. Circuit Theory, vol.23, issue.2, pp.85-91

R. T. Schumacher, Self-sustained oscillation of the clarinet: An integral equation approach, Acustica, vol.40, pp.298-309

J. Gilbert, J. Kergomard, and E. Ngoya, Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique, J. Acoust. Soc. Am, vol.86, issue.1, pp.35-41
URL : https://hal.archives-ouvertes.fr/hal-00924465

J. Kergomard, S. Ollivier, and J. Gilbert, Calculation of the spectrum of self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments, Acta Acust. Acust, vol.86, issue.4, pp.685-703

C. Fritz, S. Farner, and J. Kergomard, Some aspects of the harmonic balance method applied to the clarinet, Appl. Acoust, vol.65, issue.12, pp.1155-1180
URL : https://hal.archives-ouvertes.fr/hal-00088233

S. Farner and . Harmbal,

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 1992.

W. E. Worman, Self-sustained nonlinear oscillations of medium amplitude in clarinet-like systems, pp.71-22869, 1971.

J. Kergomard, Elementary considerations on reed-instruments oscillations, Mechanics of Musical Instruments, Lecture notes CISM, pp.229-290, 1995.

J. Dalmont, J. Gilbert, and S. Ollivier, Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements, J. Acoust. Soc. Am, vol.114, pp.2253-2262
URL : https://hal.archives-ouvertes.fr/hal-00474990

N. Grand, J. Gilbert, and F. Laloë, Oscillation threshold of woodwind instruments, Acta Acust. Acust, vol.83, issue.1, pp.137-151
URL : https://hal.archives-ouvertes.fr/hal-00008980

J. Dalmont, J. Gilbert, and J. Kergomard, Reed instruments, from small to large amplitude periodic oscillations and the helmholtz motion analogy, Acta Acust. Acust, vol.86, pp.671-684
URL : https://hal.archives-ouvertes.fr/hal-00474996

S. Ollivier, J. Kergomard, and J. Dalmont, Idealized models of reed woodwinds. II. On the stability of 'two-step' oscillations, Acta. Acust. Acust, vol.91, issue.1, pp.166-179
URL : https://hal.archives-ouvertes.fr/hal-00088228

P. Guillemain, J. Kergomard, and T. Voinier, Real-time synthesis models of wind instruments based on physical models, Proc. of the Stockholm Music Acoustics Conference ?SMAC? ?Stockholm, pp.389-392, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088905

. Fig, Principle of backtracking in one dimension. The objective is to estimate the root of g?x? ?solid curve?. Broken lines with arrows show how the Newton step ?x from x leads to divergence. h?? ?dot-dashed curve? is a second-order expansion of g?x? along the Newton step