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The simulation of piano string vibration: From physical models
to finite difference schemes and digital waveguides

Julien Bensa, Stefan Bilbao, Richard Kronland-Martinet, and Julius O. Smith 1lI
Center for Computer Research in Music and Acoustics (CCRMA), Department of Music,
Stanford University, Stanford, California 94305-8180

A model of transverse piano string vibration, second order in time, which models
frequency-dependebss and dispersioneffectsis presentedhere.This modelhasmanydesirable
properties,in particular that it can be written as a well-posedinitial-boundary value problem
(permitting stable finite difference schemep and that it may be directly relatedto a digital
waveguidemodel, a digital filter-basedalgorithmwhich canbe usedfor musicalsoundsynthesis.
Techniquedor the extractionof modelparameterérom experimentatiataoverthefull rangeof the
grandpianoarediscussedasis thelink betweenthe modelparameterandthefilter responsem a
digital waveguide Simulationsare performed Finally, the waveguidemodelis extendedo the case
of severalcoupledstrings.

I. INTRODUCTION tially; for linear and shift-invariant systems such as simple

. .ﬁtiff string models, the condition can be conveniently ex-
Several models of transverse wave propagation on a sti

string, of varying degrees of complexity, have appeared irpressed in the frequency domain. We show in the Appendix

; 5 . - _that the PDE first proposed by Rutizand later popularized
the literature: ™ These models, intended for the synthesis ofby Chaigne and Askenfélf is in fact not well-posed, and

musical tones, are always framed in terms of a partial differ-

ential equatior(PDE), or system of PDEs; usually, the sim- POSSESSes a spu_rious., unstable solution. Third: t becqmes
plified starting point for such a model is toae-dimensional €25y to develoflinite difference schemes, for which precise

wave equatiofi,and the more realistic features, such as dis_n_umencal stability cond|t|_ons may b_e ea§|ly derived. F|n|te_
ifference schemes are discussed briefly in Sec. Ill. Fourth, it

persion, frequency-dependent loss and nonlinear hammer e_Q ; )
citation (in the case of the piano string), are incorporated'S POSsible to extend the model described here to a more

through several extra terms. Chaigne and Askehtedive realistic representation_ Qfdispersion and loss as gfunction of
proposed such a mod&ee the Appendix for a concise de- frequ_er_lcy through additional terms in th(_a_PDE, W|tho_ut com-
scription of this model), and used it as the basis for a synPromising well-posedness, or the stability of resulting nu-
thesis technique, through the use of finite differences—thénerical schemes. o .
time waveform on a struck piano string is simulated in this ~ Finally, it is possible to identify the model PDE with a
way to a remarkable degree of fidelftyFrequency- digital waveguide—this filterlike structure models one-
dependent loss, the feature of primary interest in this papeflimensional wave propagation as purely lossless throughout
is modeled through the use of a third-order time derivativethe length of the string, with loss and dispersion lumped in
perturbation to the dispersive wave equation; while a physiterminating filters. It thus performs a simulation ofredi-
cal justification for the use of such a term is tenuous, it doedied physical system.
give rise to perceptually important variations in damping ~ We show, in Sec. IVA, how one can relate the PDE
rates. model presented in Sec. Il to a digital waveguide structure,
In Sec. Il, we introduce a model of string vibration, paying particular attention to the relationship between the
which is of second order in time differentiation; frequency-lumped filters used to model loss and dispersion and the
dependent loss is introduced via mixed time—space derivanodel parameters which define our PDE. In Sec. V, we per-
tive terms. As it turns out, the model discussed here is &rm several numerical simulations in order to compare the
substantial improvement in several different ways. First, thdinite difference and waveguide approaches for this particular
frequency domain analysis of a second-order system is quiteroblem. In particular, in Sec. VI, we examine in detail a
straightforward, and it is quite easy to obtain explicit formu- procedure allowing the resynthesis of natural string vibra-
las for dispersion and loss curves; this is considerably morgon. Using experimental data obtained from a grand piano,
complicated for systems which are higher order in time, esboth the terminating filters of a digital waveguide and the
sentially requiring the factorization of a higher order polyno-parameters of the physical model are estimated over most of
mial dispersion relation. Second, it is easy to prove that outhe keyboard range. This leads to a simple description of the
model, when complemented by initial and boundary condivariation of some of these parametémamely loss param-
tions, iswell posed'® Though we do not give a complete eters and string stiffnesgver the piano’s range which can
description of this condition here, to say that such an initial-be used for the convenient synthesis string vibrations at a
boundary value problem is well posed is to say, generallygiven excitation point. Finally, in Sec. VII, interstring cou-
speaking, that solutions may not grow faster than exponerpling is discussed and modeled using coupled digital



Waveguides_ This is a further step towards the design of 3ABLE I. Physical model parameters for piano tones C2, C4, and C7.
realistic piano simulator, which should ultimately also model

. . . Cc2 C4 Cc7 Units
effects such as nonlinear hammer-string coupling and sound-
board radiation phenomena. L 1.23 0.63 0.10 m
c 160.9 329.6 418.6 ms?
—1
Il. SECOND-ORDER MODELS OF ONE-DIMENSIONAL 1+ o8 e o s
WAVE PROPAGATION b, 7.5%10°5 2.7%10°4 21%10°% mPst
Fq 16 000 32000 96 000 st

A. A family of PDEs

Consider a general linear second-ordier time) wave  these roots correspond to oscillation frequencies, and the real

equation, of the form parts to loss. Clearly, for real wave numbgtsuch thatg?
2 M 2k+1 N 2k <r, the real parts o6, are simply—q. This case corre-
&%y d **y RN
— 42> Q=+ > ——=0. (1)  sponds to normal damped wave propagation; notice in par-
a2 k5o TaxPkot K=o T ax3K i i i i
ticular that if g depends orng, then damping rates will be

Here,y(x,t), the solution, is a function of positione R and ~ Wave numbefand thus frequencyjependent. 1*>r, then
timet=0, andq, andr, are real constants; the solution is not both roots are purely real and nonpositive, yielding damped

uniquely defined until two initial conditions are supplied. nontraveling solutions. _ .
(For the moment, we concentrate on the pure initial value  Consider a member of the family defined by &),

problem and ignore boundary conditions—we will return to 2y 7y oy ay Py
this subject in Sec. Il B.Because this equation describes a ~ — =¢?——k>——2b;— +2b, . (6)
linear and shift-invariant system, it is possible to analyze it ~ 9t° x? ax* at X2t
through Fourier techniques. Defining the spatial FourierThe first term on the right-hand side of the equation, in the
transformy(8,t) of y(x,t) by absence of the others, gives rise to wavelike motion, with
1 (e speedc. The second “ideal bar” terf introduces disper-
V(B,t)= 71 y(x,t)e 1B dx, sion, or frequency-dependent wave velocity, and is param-
V2m )= etrized by a stiffness coefficiert The third and fourth terms

allow for loss, and ifb,# 0, decay rates will be frequency
" N dependentA complete model, for a piano string, is obtained
5%y ay - by including a hammer excitation terrfi(x,t), possibly ac-
- 2k - 2k _ 1 b
2 +2k20 (B A ﬂ;o (187 ry=0. (2) " counting for nonlinear effects, on the right-hand side, and by
_ _ . . _ . _ restricting the spatial domain to a finite interval and supply-
This second-order linear Ordmary differential equation Wlth|ng a realistic set of boundary COﬂditiO]‘]ihiS model differs

Eqg. (1) can be rewritten as

real coefficients will have solutions of the form from that of RuiZ in only the last term(see the Appendix).
J(BD)=Y4(B)et (3) The characteristic equation has the form of Ef, with
— 2 — 22 204
for complex frequencies which satisfy the characteristic q(B)=by+byB%  r(B)=C"B "+ KB
polynomial equation For b,, b,=0, condition Eq.(5) is satisfied and this PDE

4) obviously possesses exponentially decaying solutions, and

2 _
s+ 2 S+r =0 . . .
a(s) (8) what is more, loss increases as a function of wave number.

with The PDE of Eq(6) possesses traveling wave solutions when
M N g?<r, which, for realistic values of the defining parameters

q(ﬁ)zz (i B)%*q, r(ﬁ)zz (iB)%ry. for a piano string, includes the overwhelming part of the
k=0 k=0 audio spectrum. For instance, for a C2 piano string, de-

Notice that because only even derivatives appear in the fanficribed by the parameters given in Table I, the lower cutoff

ily Eq. (1), the functionsy andr are real. The characteristic Wave number for traveling waves will hg=0.0025, corre-
polynomial equation has roots sponding to a frequency of 0.080 Hz. There is no upper

cutoff.
s.=—Qq*\g°—r. In order to relate this PDE model with a digital wave-

The condition that the initial value problem corresponding toguide numerical simulation method, it is useful to write the
Eqg. (1) bewell-poseds that these roots have real parts which €xpressions for dispersion and loss directly. Taking
are bounded from above as a function@fthis is in effect s.=o*jw (7)

saying that solution growth can be no faster than exponen- . . . .
. L . L over the range of for which traveling wave solutions exist,
tial. A more restrictive(and physically relevangiondition is

that these roots have nonpositive real part foako that all we obtain
exponential solutions are nonincreasing. It is simple to show  o(8)=—b;—b,8?, (8)
that this will be true for
w(B)=\=(by+byB%)*+c? B+ kB, 9)
q(B).r(8)=0. ) We will discuss digital waveguide models in detail in Sec.

For g andr satisfying Eq.(5), the imaginary parts of IVA.



Finally, we mention that the general form E4) serves (ﬂi —B%)2sin(B.L)sin(B_L)=0. (14)

as a useful point of departure for more accurate models of . 2 2 . . . .
Discounting the cas@‘ =< [which yields an identically

loss and dispersion in a stiff string. The more terms are in- 5 ' .
cluded, the better these phenomena can be modeled over the0 selutiony(x,t)], then obviously, solutions are of the

entire frequency range of interest. Though it is difficult to [OrM B+=nm/L, for integern+0 (similarly for 5_), and
associate physical processes directly with the various extri'e modal frequencies, are, from the solutions Eq8) and
perturbation terms in the equation, it is at least simple td=0- (9) of the dispersion relatiot4),

ensure, through condition Etﬁ'_:S), that thg model is WeII-_ spy=o(n7/L)+jo(nm/L) (15)
pmojtﬁgagn important first step in developing stable numerlcaéver wave numbers for which a traveling solution exi$ts

smallb; andb,, this will be true for alln).

lll. A FINITE DIFFERENCE SCHEME

In this section, we provide a brief analysis of pinned | order to solve Eq(6) numerically, we may approxi-
boundary conditions, to show that when coupled to our stringnate its solution over a grid with spacing and with time
model, the same analysis of well-posedness may be appliedepT. Equation(6) can be written as
(i.e., wave numbers of modal solutions are yehét us now ) 5 2w 5
restrict the spatial domain for the problem defined by 4. Sty =C255y — k2 5,65y — 2by 8y oy + 20,578, _y
to xe[0,L]. As Eq.(6) is of fourth order in the spatial de- +0(T,X?) (16)
rivatives, we need to supply two boundary conditions at ei- e
ther end, i.e., ax=0 andx=L. Following Chaigné,we  Where the various difference operators are defined by

apply pinned boundary conditions,

B. Boundary conditions

1
2y Sy = 5 (YOEXD =2y (D +y(X=X.),
T2
w—o X

8%y
y|x:0:y|x:L:7

pv =0. (10)

x=L

1
_ 2 _
For a solution of the forny(x,t)=eSt*i#% from dispersion Sry(X.H)= E(y(x,t+T)—2y(x,t)+y(x,t—T)),

relation Eq.(4), there are thus four solutions f@in terms

of s, 1
By 1) = o7 (YO, t+T) =y (x,t=T)),
) —y+ \/'y2—4K2(SZ+ 2b;s)
B(s)= > , (119 1
“ 8, -y = (Y(X,) —y(X,t=T)).
A 2__ 2(c2
B2(s)= ¥~ VY- 4(s%+ 2bss) (11  All these operators are “centered” about the pointtj,
2x? except for the backward difference operatyr_, which is
with used in order to obtain an explicit algorithm. The approxi-
) mation is first-order accurate in the time stgpand second-
y=C"+2Dbss. order accurate in the space st¥p[lt is worth mentioning,
At frequencys, thus, any linear combination that this is but one among many ways of discretizi6g ]

We may now rewrite Eq(16) as a difference scheme, oper-
ating on the grid functioryy,, indexed by integem andn,
+a717e*jﬁ_><) (12)  which will serve as an approximation §{x,t) at the loca-
tion x=mX, t=nT:

y(x,t)=e(a, ,ef+*+a, e lh*ta  eh>x

is a solution to Eq(6). Applying the boundary conditions

Eq. (10) to this solution gives the matrix equation Yo' =aiymtasu(Yms 1+ Ym-1) + i Yme 2t Ym-2)
+aY T+ 821V it Vi 1)- (17)
1 1 1 1 Here, the difference scheme coefficients are defined by
eIB+L e IBiL eIB-L e IB-L a10=(2—2\2—6u%—4boul/ k)/(1+b,T),
-8 -B -B -B a11=(\>+4u’+2byul )/ (1+b,T),
— BBl gl Bl _ g2 piB-L  _ g2 o iB-L ay,= — u2/(14b,T), (18)
L A(s) a20:(_1+4b2/1//K+ blT)/(1+ blT),
ag + 0 a21:(_2b2M/K)/(1+b1T),
X R 8 (13) where, for brevity, we have introduced the quantities
a_
« | Lo N=CTIX, wu=xT/X2
Nontrivial solutions can occur only when d&j&0, giving In order to examine the stability of scheme EG7),
the relation which is, like its generating PDE, E@6), linear and shift



invariant, we may apply frequency domain techniques—in 300
the finite difference setting, these techniques are referred to

asVon Neumann analysi€ This analysis proceeds in a fash- Phase

ion exactly analogous to the analysis applied to the continu- Velocit 250

ous time and space systems of the preceding sections. Short- ms
cutting the process somewhat, we may consider a solution of

n _ onaimXB — ST i 200
the formy,=2z"e'™**, wherez=e®" (we could equivalently 0 2000 4000 6000 8000
employ az transform and a discrete-time Fourier transform 20 Frequency (Hz)
We thus obtain the two-step characteristic,annplification
equation

Loss 10
Z?+ay(B)z+a,(B)=0, s~

where the functiona;(8) anda,(B) are defined in terms of o _
the difference scheme parameters of B@) by 0 2000 4000 6000 8000

Frequency (Hz)

a,(B) = —ajpo—2a,;c0g BX) —2a,,c082BX),
FIG. 1. Phase velocitftop) and losgbottom)for the model of Eq(6) (solid

a,(B) = —ayy—2a,y;cog BX). line) and for difference scheme E(L7) (dashed lines a function of the
frequency. The model parameters are those corresponding to the note C2, as

The necessary and sufficient stability conditions for @q)  diven in Table I.

are that the roots of the amplification equation be of magni-

tude less than or equal to unity, for all wave numbgréor  |v. THE DIGITAL WAVEGUIDE MODEL
this real-valued quadratic, these conditions can be written in

terms ofa,(8) anda,(B) as The digital waveguide approach provides computational

models for musical instruments primarily in the string, wind,
la;(B)|—1=say(B)<1. and brass familie$! They have also been developed specifi-
cally for piano synthesi =3 This section summarizes the
The right inequality is satisfied fdr,, b,=0, and after some pasic ideas of the digital waveguide approach, and relates the

algebra, it can be shown that the left inequality is equivalenparameters of a digital waveguide model to an underlying
to the condition\?+4u2+4b,u/k<1, further implying physical model.

that
A. Background
T<X?2 —4b,+ 1615+ 4(c®X?+ 4k?) As mentioned in Sec. |, to arrive at a PDE modeling the
= 2(c2X%+ 4x?) ' piano string, it is fruitful to start with the ideal wave equation

and add perturbation terms to give more realistic frequency-

The relative ease with which an exact bound such as thdependent dispersion and losses. The perturbed PDE is then
above may be derived is a direct consequence of the use ofraimerically integrated via a finite-difference schefoepos-
two-step scheme and the relative simplicity of the modelsibly by another approach, such as finite element methods,
itself; for schemes involving more steps of lookbdukich  etc.). The digital waveguide approach interchanges the order
results from the discretization of a model with higher time of these operations: the ideal wave equation is integrated first
derivatives, such as Ruiz's systgnthis analysis becomes using a trivial finite-difference scheme, and the resulting so-
much more involved, though we do approach it nonetheleshitions are perturbed usindigital filters to add frequency-
in the Appendix. This, in addition to reduced memory re-dependent loss and dispersion. In the case of a strongly dis-
guirements, is a further advantage of using a second-ordeipative and dispersive string, the modulus of these so-called
model as a starting point. loop filters decreases rapidly with frequency, and phase can

Equation(16) is but one of many possible discretizations become strongly nonlinear. For a frequency-domain imple-
of Eq. (6)—for instance, replacing; - by &;o yields an  mentation, this has no effect on computational complexity,
implicit algorithm! and other implicit schemes such as thebut for a time-domain implementation, a larger filter size
¢-forms discussed in the work of Chaigreay be of interest may be required in order to match the large variations of the
in reducingnumerical dispersioft and may be of higher for- phase response.
mal accuracy(which may be tempered by the stability re- It has been known since d’Alembétthat the ideal one-
quirements). To emphasize this point, we have plotted théimensional wave equation is solved exactly by arbitrary
phase velocities and loss curves for the model system of Edsufficiently smoothwave shapes propagating in both direc-
(6) versus those of the difference scheme of @q)in Fig.  tions. The digital waveguide formulation works directly with
1. Notice that this simple difference scheme is a reasonablhese traveling wave components. An isolated traveling wave
approximation to the model only for small (i.e., for low s trivially simulated in practice using @elay line. An ideal
frequencies). As we will see later in Sec. V, this deviationvibrating string is then modeled as a pair of delay lines, one
from the model PDE will account for differences in simula- for each direction of travel.
tion results obtained from digital waveguide models, which ~ For digital implementation, the traveling waves are
approximates the phase velocity and loss curves directly. sampledat intervals of T seconds. By Shannon’s sampling



digital delay lines, each in series with a digital filter. A dis-
cussion of more generalized approaches involving nonuni-
form string sections, and the relationship with finite differ-
E DS -1 . A ;
ence schemes, is provided in a recent dissertafion.

Since losses and dispersion are relatiwedakin vibrat-
ing strings and acoustic boreslaav-orderfilter can approxi-
mate very well the distributed filteringnfinite-order in prin-
ciple) associated with a particular stretch of string or bore.
(We should repeat, however, that the approach outlined
theorem;” the solution remains exact, in principle, at all fre- above is equally applicable in the case of strongly dispersive
quencies up to half the sampling rate. To avoid aliasing, albr lossy systems, though in these cases, higher-order filters
initial conditions and ongoing excitations must band- may be necessarylh practice, the desired loss and disper-
limited to less than half the sampling ratg=1/T. sion filters are normally derived from measurements such as

Figure 2 shows the simulation diagram for a digitalthe decay time of overtones in the freely vibrating
waveguide model of a rigidly terminated string. The string isstring!’~*°In the next section, the filter will be derived from
excited by the signaE and observed via the sign@. the stiff-string model of Eq(16). Interestingly, the filter(so
Sampled traveling velocity waves propagate to the righidesigned can be mapped back to an equivalent PDE, includ-
along the upper rail, and to the left along the lower rail. Theing many higher-order termgvhich may or may not have a
rigid terminations cause inverting reflectiofthe two —1  physical interpretation Lumping of traveling-wave filtering
scale factors). The delay lines are dendigd i=1,2,3, and in this way can yield computational savings by orders of
the F; blocks are digital filters to be described further below.magnitude relative to more typical finite difference

Consider a wavelike solution propagating from a pointscheme$®-?2and this efficiency can be important in appli-
M, to a pointM, along a string(see Fig. 3, top). The dis- cations such as real-time modeling of musical instruments
tanceM M, will be arbitrarily calledl and the propagation for purposes of automatic sound synthesis or “virtual acous-
time d at theminimalphase velocity. At the observation point tic instrument” performance.
M,, the wave will have arrived after having undergone the
effects of loss and dispersion. In terms of digital waveguides,
the wave will undergo a pure deldyn the frequency do-
main, a multiplicative phase factor expiwd)], times a mul-
tiplicative factorF(w) representing the loss and the disper-
sion experienced by the wave during this interigade Fig. 3, We address here the problem of relating digital wave-
bottom). guide filter parameters to the loss and dispersion curves from

Since loss and dispersion are, for this system, lineathe physical model discussed in Sec. Il. For that, we consider
time-invariant(LTI) phenomena, even when frequency de-the continuous frequency representation of the loop filter and
pendent, the perturbations needed for added realism in thghow its relation with the physical parameters. The digital
digital waveguide string model are LTigital filters. Since waveguide parameters can then be obtained by discretiza-
LTI filters commute, we majump all of the filtering associ- tion. We do not address here the problem of the time domain

r D1 B Fl D2 F2 D3 B F3

D1 7 F1 DQ - FQ D3 F3

FIG. 2. Digital waveguide model of a rigidly terminated string.

B. Relating digital waveguide parameters to the
physical model

ated with propagation in one direction intsimgleLTl! filter. implementation of the digital waveguide.

These filters are denotdd| in Fig. 2,i=1,2,3. According to Eqgs(3) and(7), the transformations of the
For purposes of computing the output sig8from the  wave due to propagation along the string segment can be

input signalE, Fig. 2 may be further simplified. represented in terms of a digital waveguide filter by a mul-

The two filters labeled=; can be replaced by a single tiplicative phase factor exp(sd#l). Ideally, the modulus
filter F3 (by commuting one of them with the intervening and phase of this expression are related to the fitby
two delay linesD; and —1 gain). A similar simplification is

; _ 2
possible forF. F(w)|=|e*"F|=ed=e™ (PrFP2A1, (19)
In the same way, the twp dzelay Iir\es Iapelhgl can be arg F(w))=arg esd ") = wd+ l. (20)
replaced by a single delay lir@; (having twice the length
of D;), and the twoD5 blocks can be replaced by o In order to write the expressions of the modulus and the
block. phase of the loop filter in terms of the frequeney it is

In general, any uniform section of a linear vibrating necessary to express the wave numpeér terms ofw. From
string which is excited and observed only at its endpoints cafed. (9), solving for 3, one gets
be accurately modeleh one vibrational planeby a pair of

—a \/a§+4a2(bi+ w?)

2&2

B (w)= (21)

M1 M2

String

A ] with
Wavef
Del a‘;,.e Onglt /\ a1=CZ—2b1b2, a2:K2_b§. (22)
O el T Joxp(wd}—[F)— .
Since 8 must be realsee Sec. I B), we keep only the solu-

FIG. 3. The physical system and its corresponding delay lineffilter.  tion for which the term inside the root is positive. Then,



2
—aq+ \/a§+4a2(bi+ w?) _ B bymé
Blw)==* \/ 2a, . (23) |F(w)|=exp —D| b+ 82|’ (33a)
Given that, for realistic piano string modeling;=1, _ \/?
b,=10"%, c=200, k=1, andw=400, we make the simpli- argF(w))=wb—m\/55. (33b)

ing assumptions : .
fying P These expressions serve as the link the PDE model of

bib,<c?, b3<«k? (24)  Eq.(6) to the lumped filters of the digital waveguide. For the
sake of simplicity, one can choose an “elementary filter”

(the second of which also ensures the realnesg) of SE—F0 such that

b2< w? (25) )
b27T f
which permit the following approximation ¢8: |5F(w)|:exp< —| byt 2BL2 ) (34a)
. 1+\/1+4K2 2 26 \/g
B(w)__K\/E C4w . (26) arg oF (w))=w— wq >B" (34b)
In practice, it is helpful to work with more perceptually The filtersF of the digital waveguide, which correspond

significant parameters for sound synthesis purposes. For thi@ Propagation over a time duratidn, can be then easily
purpose, we will now suppose that the string is of lenigth expressed in terms ofF by

With perfect reflections at the ext'remi.ties. The dgla_y F=sFD. (35)
which corresponds to the propagation time of the minimum

phase-velocity wave along the lendthcan be expressed as The stability of the digital waveguide model is ensured if the
modulus of the filterSF is less than one. This condition is

D=L/c=mlwo, (27)  here always respected, since the expression in the exponen-

where o, is the fundamental frequendyad/s)of the ideal il of Eq. (33a)is negative.
string andc is the minimum phase velocity given by
C=wol/m. (28) /. NUMERICAL SIMULATIONS

Thus, D is the propagation time over distantefor a sinu-

soidal traveling wave tuned to the first resonant mode of the We now gddress. the validity qf the_ gnalyt|cal approach
ideal string. This choice of nominal propagation-tibesim- of the preceding section to determine digital waveguide loop

plifies the frequency-domain computations to follow; how- filterg. The moduIL{s and phase of the filte'rs corrgsponding to
ever, since phase velocity increases with frequency, the a%he digital waveguide mc_)del have been dlre_ctly linked to the
sociated propagation filtdf will be noncausal in the time parameters of the physical model. For a given set of PDE

domain. This poses no difficulty for frequency-domain PAr@meters, thus, we can design a complete digital wave-
implementation guide model simulating the signal of the vibrating string at a

Next, we may expresg as given location, for a predetermined excitation location. For
' purposes of comparison, we have generated output signals

T using both the finite difference scheme discussed in Sec. I,

B(w)==* L\2B Vé (29)  and the digital waveguide model for the same set of model
parameters. The digital waveguide has been computed in the
with frequency domain, allowing the use of E§3a). The exci-
= -1+ 11 4Bol ol (30) tation, a Gaussian function of the foren [(x~x0*/o”] sjmy-
lates an initial velocity distribution of the string at a distance
in terms of the inharmonicity coefficieritB given by Xo=L/8 from one end of characteristic width=K_L,
B:sz%/&, (31) where K, is an arbitrary constant and,, is the hammer

width (we do not enter into too much detail here, as hammer
wherec denotesc(wg) for notational simplicity. modeling is not dealt with in this paperThe signal is ob-

We now have to choose the sign gfin the expression served at the locationl910. We have performed simulations
for the phase. Since we want the output signal talelayed for the notes C2, C4, and C7 using the parameters in Table |
with respect to the input signal, the loop filter/pure delay(all of which are taken from values provided in the papers by
combination has to be causal. This means that the phase Ghaigne and Askenfeft! except for the parametép, which
the whole transfer function must be negative, i.e., comes from the calibration procedure applied subsequently

in Sec. VL.

~wbtargF(0))<O0. (32) Figure 4 shows the two first periods of the waveforms

This indicates that we choose the negative solutiorfor generated by both approaches. The amplitudes are similar.
in the phase expression. Finally, using E2P), we arrive at Nevertheless, there is a slight discrepancy between the two
approximate expressions for the modulus and phase of thgignals, due to the numerical dispersion introduced by the
filter F as a function of frequency, finite difference schemé&see Sec. ).
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o _ o equal, but the wave dispersion due to string stiffness is dif-
FIG. 4. Velocity 5|g_nal_s obtained from t_he finite dlﬁerer_lce scheme pre-ferent due to theumericaldispersion introduced by the dif-
sented in Sec. ll{solid line) and a waveguide modétiotted line), for three - ; - - .
different notes and for two periods of sound. The model is excited at disference scheméWe can see in Fig. 7 a slight tuning differ-
tanceL/8 from one endpoint, and the output signal is measured at distancence in the high-frequency partiglsin summary, these
9L/10. Note that the abscissa scales is different for each figure. figures illustrate the extent to which the waveguide model
provides a more accurate digital simulation of stiff, lossy
This discrepancy can be better seen by comparing thetrings with respect to both attenuation and dispersion of
phase velocity of the two signals in Fig. 5. This correspondsvave propagation, when compared with finite difference
to the phase velocity plotted in Fig. 1. The phase velocity ofschemes.
the signal produced by the waveguide is similar to the one of
the model. VI. CALIBRATION OF PHYSICAL MODEL
The long-time behavior of the generated signal is alSPARAMETERS FOR A GRAND PIANO FROM
very similar. In Fig. 6 spectrograms obtained over the wholeEXPERIMENTAL DATA
length of the sound are shown. It is clear that the global
damping behavior is similar in the low-frequency range.
However, at high frequencies, the finite-difference model  In order to calibrate the parameters of the physical
suffers from an artificially high propagation gain, as derivedmodel, data were collected on an experimental setup consist-

in Sec. Ill. The fundamental frequencies are essentiallyng of a Yamaha Disklavier C6 grand piano equipped with
sensors(see Fig. 8). The string vibrations were measured

!A. Experimental setup
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8000

Phase 200}
Velocity frequency
Hz) 6000t
m.s—l 190 % )
180 4000
170+ 2000
160 ’
0 2000 4000 6000 8000

0
frequency (Hz) 0 2000 4000 6000 8000
frequency (Hz)
FIG. 5. Phase velocity for the waveguide mo¢mdlid line) and for differ-
ence scheme as a function of the frequency for the note C2. The analyticall/lG. 7. Partial frequencies of the output of the finite difference scheme
obtained phase is not shown, as it is identi¢a} definition)to the phase (dotted)and of the waveguide modéplain) as function of the theoretical
response of the waveguide network. frequencies.
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FIG. 8. Experimental setup. The grand piano was isolated in an anechoié374)at bridge level. For notes corresponding to double or

room, and both the string vibrations and the acoustical radiated signal Wefﬁiple sets of strings, the accelerometer was placed as close as

measured. The string vibrations were measured using both an accelerome§ . . . . .
located at the bridge level and a laser vibrometer, while the acoustic sign 6SS|ble to the strmgésee Fig. 11)' Due to the Imprecision

was measured at the head level of the pianist using an artificial headset. OQf MIDI coding, several measurements were made, until a

library of measured data also includes signals corresponding to various hartarget value of the hammer speed was obtained. We have

mer velocitieqreferred to in recent and forthcoming articles concerned with deemed an uncertainty af0.1 m S—l for the hammer veloc-

the hammer-string interactiofRef. 31)], but for this paper, we only need . . .

acceleration measurements for each string. ity to be accepta_lble, as the_estlmgt_lon of modal frequency
and decay rates is relatively insensitive to such an error. The
acceleration measured at the bridge level was then digitally

using an accelerometer located at the bridge level. The Digpcorded at 16 bits at a sampling rate of 44.1 kHz, before
klavier allows the piano to be played under computer conyeing entered in the database.

trol. These measurements were made at the Laboratoire de
Mecanique et d’Acoustique, Marseille, France. o
In order to ensure that the measurements were takeB. Estimation of parameters
under similar excitation conditions, we measured the ham-  Bgecause this model is intended for use in the context of

mer velocity using a photonic sensdATI 2000, probe mod-  mysical sound synthesis, we here discuss the calibration of

ule 2125H) gee Fig. 9). _ N b, andb,, and the determination of the stiffness parameter
Since we were interested in exciting a large portion offor g given string.

the frequency spectrum while remaining in the linear domain
of vibration, we chose a mediufmezzo-fortehammer ve-
locity of 2.2 ms?, which corresponds roughly to a MIDI
value of 80. Such a hammer velocity allows the generation of
about 140 spectral components for low frequency tones with
a reasonable signal-to-noise ratgee Fig. 10).

For each note of the grand piano, the optical sensor was
placed close to the hammer and the accelerom@é&K

FIG. 9. Optical sensor used to measure the hammer velocity. The velocity is
obtained through the duration corresponding to the travel time of the ham-
mer between two reflectors placed on it. FIG. 11. Accelerometer at the bridge level.



To estimate the damping factor associated with each x 107

modal component of the signal, we used a signal processing
technique based on the theory of analytic sigh&fs.The B 8
analytic signal representation provides an easy way of ex-
tracting both the instantaneous frequency and the damping of T
each modal component, through band-pass filtering. To iso- 6l
late each component in frequency, we used a truncated
Gaussian window, the frequency bandwidth of which was 5}
chosen so as to minimize smoothing effects over the attack
duration and to avoid overlapping two successive frequency 4+
components. The Gaussian was employed since its time-
bandwidth product is minimized. As a consequence, it opti- 3r
mizes the exponential damping support after convolution ol
with a causal single component for a given band pass
filtering 28 1} ‘\/\—\

The analytic signal associated with each individual com- 30 50 160 2(')0 360
ponent facilitates the estimation of both the instantaneous frequency (Hz)
frequency and the amplitude modulation law of the compo-
nent. The frequency dependent damping factor is directly
related to the amplitude modulation law of each partial. Ac-
cording to the physics of a single string vibrating in oneparameters as a function of the fundamental frequency is
plane, the amplitude modulation of each component is exshown in Fig. 13.
pected to be exponential. This makes the damping factor e see thab; andb, are both increasing functions of
easy to estimate by the measurement of the slope of th@iD| note number, indicating increasing loss as one ap-
logarithmic representation of the amplitude of the analyticproaches the treble range. In Fig. 13, we have also fit ex-
signal*® This technique has advantages over other parametremely simple curves to the loss parameter data. The fits are
ric methods such as Prony’s mettiddnainly due to its abil-  jinear as a function of the fundamental frequency, and are
ity to extract a coherent mean damping factor when multipleyiven by
components are present. In fact, the hammer usually strikes 5 _,
not one, but two or three strings simultaneously. The cou- by=4.4X10""fo—4x10 "%, (37a)
pling gives rise to perceptually significant phenomena such  ,,—1 0x10 8f,+1x1075. (37b)
as beating and two-stage dec@ythese effects are not ac- ] o o
counted for in our model Eq6). For these multistring notes, | "€se simple empirical descriptions Iof andb allow the
the calculated damping coefficientscan be thought of de- reproduction of piano tones .WhOSE damplng wlll be closg to
scribing the global perceived decay of the sound. that of the perceived acoustic note. A multistring waveguide

For the same reason, the spectral representation of each
partial is the result of the summation of several contributions by
due to each string and each polarization of vibration. The
phase of the analytic signal allows an accurate estimation of
the mean frequency of the partials. Actually, it permits the
calculation of the instantaneous frequency which is a time- )
dependent function oscillating around a mean value. This
mean value coincides with the spectral centroid of the
partiaP® and consequently with the more likely perceived !
frequency. From the mean frequency values estimated this Y ) ) ) )
way for each partialB may be deduced for each note, and 100 200 300 400 500
consequentlywy, the fundamental frequency of the corre- )
sponding ideal string. The inharmonicity fact®ris plotted .
as a function of the frequency in Fig. 1B;is an increasing !
function of the note number, except over the bass range,
where the strings are double-wrappéis behavior has also m2.s1
been measured by Conkifh.

Combining Eqgs(8) and(29), one obtains

[—1+V1+4B(w/wg)?]]. . .
2BL? 100 200 300 400 500
(36) frequency (Hz)

FIG. 12. The measured inharmonicity fac®r

71_2

0(w)=—b1—b2

Then, from th? value ofr Obj[ained for each parti?-hl and  FG. 13. values of “equivalent’b, andb, fitted from measured data as a
b, may be estimated for a given tone. The evolution of theseunction of the fundamental frequency.
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increasing, leading to a modification of ttebope of the
model has also been desigrféd; allowing for beating and modulus versus frequency for different note numbers. We
two-stage decay. Its use for synthesis purposes is discuss@dte that this behavior is slightly different for the wrapped
in Sec. VII. The deviations in the curveBig. 13)from the  strings(A0, A1) than for the other stringéA2, A3). We also
linear fits must be attributed to the impedance ratio betweenote that althougiB is mainly an increasing function of note
the strings and the soundboard, which varies over the lengthumber, the phase of the filtef§ grows less rapidly for the
of the bridge. As a result, the curves should not be interbass tones than for higher tones. This is due to the fact that
preted as impedance curves as they do not represent mee phase of the filter depends not onlyBnbut also on the
surements at a single point and data are taken only at strifgndamental frequency, as evidenced by Bfb). Though
modal frequencies. For a detailed discussion of soundboarghis expression is meaningful only for the first few partials, it
impedance and its measurement, we refer to the work of clear that phase dispersion decreases as a function of fun-
Giordang®233 damental frequency.
In the case of the piano, the string is struck at a distance
VIl. WAVEGUIDES AND SOUND SYNTHESIS of approximately one-eighth to one-sixteenth of its length
The determination ob;, b,, B, andw, for each note from the bridge, depending on the note. We are only inter-

allows for an explicit expression of the behavior of the filter €Sted in the vibration generated at the bridge termination, as
F as a function of note number. In order to represent thé"iS iS the mechanism by which energy is transmitted to the
evolution of the elementary loop filter in terms of note value,Soundboard. This situation corresponds to a digital wave-

we show in Fig. 14 the modulus and phase of the elementa@mde structure ideptical to the one presented in F_ig. 2, ex-
filter 5F, normalized with respect to the time delBy Cept that the loop filter§, andF 3 are combined. Using the

o parameters estimated by experiment, one can reproduce the
oF=F~%. (38)  vibration generated by a single string. Figure 15 shows the

In order to understand the general behavior of the modugVvelution of the amplitude of the first six partials of the
lus and the phase of the loop filter with respect to the not&/ibration velocity for the note E1, respectively, measured on
played, we expand their expressiof€q. (34a)] for the piano and genergted by the digital waveguide modgl.
4B(w/wp) to third order near zero. We obtain From a perceptual point of view, the two sounds are identi-

cal.
2

b.+b ® If the tones are produced by two or three strings struck
1T B
c

) ' (39) simultaneously, the basic digital waveguide model still gen-
erates a signal having the same amplitude and damping of

|5F(w)|:ex;{ -

03B the modes. It does not, however, account for the modulations
arg(oF )= Prs (39b)  and double decays due to the coupling of the strings at the
“o bridge?® Using two or three coupled digital waveguides, and

The modulus(which also accounts for the losses at thethus allowing for energy transfer between the strings, one
endpoints), is decreasing with note number as shown in Figcan easily reproduce this phenomer®f®3! Figure 16
14. This is mainly due to the increasebn. But the param- shows the time evolution of the amplitude of the first six
eterb,, which allows for frequencydependentossis also  partials for the tone CZtwo strings), using the coupled-
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original form. This is not a drawback for sound synthesis applications
ST B because, only the behavior of the string at the bridge is of
interest in most stringed instruments. Moreover, physically
accurate outputs from additional points along the string are
easily added to a digital-waveguide simulation at the price of
one small digital filter each.

A set of experimental data measured from a grand piano
was used in order to calibrate the PDE model parameters
over the entire keyboard range. String vibration was mea-
sured at the bridge through the use of an accelerometer, for
each note on the piano, and for an average hammer velocity.
The piano employed was equipped with sensors to provide
hammer velocity data; from these measurements, all the pa-
rameters relating to the relevant PDE model were estimated.
Given that the model itself is not completely physical—that
is, the various loss mechanisms, interstring coupling, as well
A : as energy transfer to the soundboard are modelled, for sim-

6 plicity, as internal to the string itself—these parameters must

frequency (Hz) 8 time (s) be considered as those describing an “equivalent” string,

FIG. 16. Amplitude of partials one to six for the note C2 as a function ofunder fixed t_ermlnatlon. The equwa_‘lent p_arameters, are,
time and frequency. however, sufficient for the resynthesis of piano tones to a
high degree of fidelity, when a digital waveguide is em-

strings model described in a recent publicaf®he modu- ployed. The digital waveguide model was also extended in

lations are essentially perfectly reproduced. Moreover, thi§)rder,to directly take into account the effects of interstring
model follows directly from the physics of coupled strings. coupllng, through the use of two or three coupled
In fact, the loop filters are again related to the parameters Owavegwdes. . — . .
the physical model, and numerous sound transformations are . Th_e modeling of the excitation mecha_nlsm for the piano
conceivable. One could, for instance, extend the use of suci"ng (ie., the hammerjs also of great importance, and

a waveguide model to practically unrealizable situations jn must be carried out with some care; we have not addressed

volving, for example, widely mistuned strings or coupled th'(sj ';SEG tfwelrt'e._t/-\_s has p;entst:jowp in the V\ll.ork othhalgne
strings with differing material properties. and Askentell, 11 1S possible 1o design a nonfinear hammer,

which, when applied to a stiff string with frequency-
dependent loss, produces signals quite similar to those mea-
VIIl. CONCLUSIONS sured on a real piano. The problem of extracting hammer

We have presented a model of transverse vibrations on parameters from measured data is also worthy of future re-

string which includes the effects of stiffness and frequency-searCh'

dependent loss. This model possesses several advantages

over those proposed previously, in particular that it can b CKNOWLEDGMENTS
framed as a well-posed initial-boundary value problésad- This work was supported in part by the D$Prance)
ing to stable numerical methods), and also that it can b&nder Contract No. 016060 and by a fellowship from Region
easily related to digital waveguides. The source of thes@®ACA (France).
good properties is the fact that this model allows only two
traveling-wave type solutions; the nonphysical third unstableAPPENDIX: THE PIANO STRING MODEL OF
term in the model of Ruizwhich can lead to difficulties both  CHAIGNE AND ASKENFELT
analyucally and n.umencallybs. thus e"!“'”ated N favor of The results in this section have appeared, in a similar
higher-order spatial terms. It is also simple to write expres, . . : .

. . . X “form, in the thesis of Rui2.We have added various com-
sions for dispersion and loss as a function of frequency in

terms of the model system parameters—such information i§' ents regarding well-posedness and numerical stability.
y P The stiff string model in the thesis of Rdiand in the

critical fpr the design of the terminating filters in a digital papers by Chaigne and Askenféitis described by the fol-
waveguide implementation. lowi s
. Jlowing equation:

For the sake of comparison, we have performed numeri-
cal simulations of the model system, with pianolike param- 52y zaZy 254y ay 3y
eters, using both finite differences and a digital waveguide; ?=C PR F_Zblﬁ_’_Zbiiﬁ- (A1)
the most notable distinction is the complete lack of numeri- X X
cal dispersior{which leads to mode mistuningn the wave-  This model differs from Eq(6) only by the replacement of
guide implementation. On the other hand, the waveguide atthe term d,(3%y/9x?dt) by 2bs(a%y/at3); this model also
lows the computation of a solutiof“sound”) only at allows for frequency-dependent loss, but the system itself is
preselected points on the string, whereas a finite differencef a quite different character, due to the increased degree of
scheme computes the entire string statesampledphysical  the equation with respect to the time variable. We spend a

It i -
frequency (Hz) 8 time (s)

synthesis
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Iittl_e time here e_xplaining the significanc_e of the difference, ygjlzaloynmjL azoygq—ﬂ_ aj(yh 1 +yh D +an(yh s

which has a radical effect on the analysis of the system as a

whole. +Ymo2) T AVt Ym 1) Fasym o (A3)
We can examine the well posedness of the system b

inserting a solution of the forny(x,t)=es'"14% into Eq.

(A1), in order to obtain a dispersion relation,

Xhis difference scheme involves three steps of lookback, re-
flecting the degree of the model system of E41). Here,
the difference scheme coefficients are defined by

— 2h5%+ S2+ 2b, S+ 232+ k2B4=0. (A2) a;0=(2—-2\*—6u’+b3/T)/D,

320:(_1+b1T+2b3/T)/D, allz()\2+4,u2)/D,

This is a cubic in the variable[the quantity on the left-hand (Ad)

side is referred to as theymbof of Eq. (A1)], and again, as ap=(b3/T—u?)ID, ay=az=(—bs/T)/D,
discussed in Sec. Il, a necessary condition for the system of . ,
Eqg. (A1) to bewell posedis that the roots of this equation Where, for brevity, we have again used
have real parbounded from abovas a function of spatial A=cT/X, u=«TIX?

frequencyg. It is simple to see that the real part of at least
one root of Eq.(A2) will be positive and unbounded as a
function of wave number. As this is a third-degree polyno- D=1+b;T+2b,/T.

mial equation with real coefficients, one root will always be Let us now examine the characteristic polynomial, which can
real, and the two others occur as a complex conjugate pabre written as '

(or perhaps as two other real ropt€onsider Eq(A2) as|g|
becomes large. In this case, the three roots will behave as Z2+a,(B)Z2+ay(B)z+as(B)=0 (A5)

as well as

with

a1(B) = —ay— 2a;1c0g BX) — 2a;,€08 28X),
and will be evenly distributed over a circle of radius _ _
(x2B*1(2b3))3. If bs>0 (as suggested in the numerical a(B)=—az~ 282,004 BX), as(B)=—as:.
experiments in the papers by Chaigne and Askehfahten  The solution to the recursion will be bounded and decay if
there will be one positive real root of the magnitude men-the solutions to this equation are confined to the interior of
tioned above, clearly unbounded as a function of wave numthe unit circle for all e[ — #/X, 7/ X]. It is simple to show
ber 8. (If b;3<<0, there will two roots in the right half plane, that this is in fact true, for any of the choices of parameters
of this same magnitude, at an angle approachiré de-  given in the papers by Chaigne and Askentdrhis does not
grees with respect to the positive real axidle have thus mean, however, that the difference scheme can be considered
shown that the initial value problem corresponding to theto be numerically stable in the Von Neumann seh$ais is
system of Eq(Al) is, formally speaking, ill-posed. a rather subtle point, and is worth elaborating.

We can extract some more detailed information by ask- According to the Lax—Richtmeyer equivalence
ing under what conditions the roots of E&2) have positive theorem, if the initial-boundary value problem is well-
real part. A straightforward application of tiouth-Hurwitz ~ posed, the solution to a finite difference scheme will con-
stability criterior’* to Eq. (A2) shows that in fact, ib;>0,  verge to the solution of the model problem if it is consistent
there is always exactly one real positive root, regardless ofind stable. In this case, though, the model system is not well
the value of the wave numbet. posed, and thus no finite difference can possibly converge to

The following question then arises: How can we explaina stable solutioin some limit as the time step T and the grid
the apparently stable behavior exhibited by simulaflasfs  spacing X approach zero. The difference scheme(E8) is
these equations? Indeed, for realistic piano string parameterisideed consistent witllAl) to first-order accuracyand we
the numerical integration routine provided in the paper bynote that if one does wish to use this ill-posed model system,
Chaigne and Askenfélis stable, and produces piano soundsit is in fact possible to design second-order accurate explicit
of excellent quality. A first guess might be that the abovemethods), but it is possible to shoas we expectihat it
analysis is incomplete due to the neglect of boundary condieannot be stable in the limit &becomes small. Because the
tions. Using the boundary conditions supplied by Chaignerecursion is of third order, the analysis is somewhat involved,
however, leads to an analysis identical to that performed imnd requires the application of the Schur—Cohn recursive
Sec. |IB—the modal frequencies for the string system deproceduré (the discrete time analog of the Routh—Hurwitz
fined by Eq.(A1) will be given by solutions of the dispersion stability test, again allowing us to check the stability of a
relation Eq.(A2) under the replacement @ by n#/L for  polynomial without explicitly calculating the rogtsNever-
integern. For anyn, there will be exactly one modal fre- theless, it is possible to show in this way that a necessary
guencys,, with positive real part. Thus the instability persists condition that the roots of the polynomial of EGA5) be
even in the presence of boundary conditions. inside the unit circle is that
. We must then conclude that discretization h.as.a sta_blhz— b/ T=N2+4u?<1,
ing effect on system of EqAl). To explore this idea in
more detail, consider the discretizatibmhich can be writ-  (The second inequality is exactly the necessary stability con-
ten as dition given in the paper by Chaigne and AskenfglAl-

—2b3s*+ k?B*=~0
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