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Abstract. This paper deals with the asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin 
layers bonded with elastic solids. In the frrst part, a mathematical analysis shows how to obtain an interface 
law that replaces mechanically and geometrically the thin layer. This law is strongly non-linear and couples 
microscopic and macroscopic scales. In the second part of the paper, the microscopic terms are quantified 
numerically, and it is shown that they can be neglected. 
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1. Introduction 

The objective of this paper is to analyse soft thin layers in order to replace them by interface laws. 
The aim of our work is to study non-linear soft materials; especially, we focus on the case of non­
associated elastic-plastic materials of Mohr-Coulomb and Drucker-Prager kind. These materials are 
described in the implicit standard materials framework based on the bipotential theory (Hjiaj, de Saxce, 
Mroz 2002). 

During the last two decades several authors have developed asymptotic theories applied to thin layers 
(Suquet 1988),(Ait Moussa 1989),(Klarbring 199l),(Licht, Michaille 1996). (Lebon, Ould Khaoua, 
Licht 1998), (Bayada and Lhalouani 2001). The idea of this work is to replace a thin layer bonded with 
two substrata by an interface law which keeps in memory the mechanical and geometrical 
characteristics of the layer. The motivation of this analyse is the complexity of the numerical approach: 

• the thickness of the layer is small regarding the substrata dimensions 
• the stiffness of the layer is weak compared with the substrata rigidities. 
The theory consists in considering that the geometrical and mechanical parameters of the layer tend to 

zero and to analyse the limit problem. In this limit problem, the layer vanishes geometrically and an 
interface law replaces it. Using this theory, simplified models of interface are obtained which are easier 
to compute by finite element software. On the one hand, this theory permits to justify empirical 
interface laws that one can find in the literature and on the other hand, to find new interface laws. In 
previous papers, different kinds of behaviour (elasticity, visco-elasticity, plasticity, . . . ) and kinematics 
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(small perturbations, plates, finite deformations, ... ) have been dealt with. Our contribution in this work 
is concerned with non-associated elastic-plastic behaviours. 

The paper is . organised as follows: in the second section, the mechanical problem is presented, 
notations are specified and the constitutive law of the thin layer is formulated in the implicit standard 
materials framework. The third section is devoted to the theoretical results. The mathematical 
background is given and the matched asymptotic expansion method is applied to the problem with a 
non-linear behaviour. The mathematical results are commented. In section 4, numerical examples are 
presented in order to validate the theory and to quantify the terms obtained in section 3. In the last 
section, we close by giving conclusions and perspectives. 

2. The mechanical problem 

2. 1. Problem definition 

We consider two elastic bodies perfectly bonded with a third one which is very thin. For simplicity, we 
work only in two dimensions. The structure is denoted Q with boundary an and is referred to the local frame 
( 0, x~o x2). On a part of the structure I] a surface load is applied. The structure is embedded in part T0. 

We denote (Fig. 1): 

Q' = { x = (x1, x2) E !2/lx21 > ~} 

£2! = {X= (XI, x,) E Q/±x2 > ~} 
Q± = {x = (xl> x2) E Q/±x2 > 0} 

!lo=!l+ua_ 

B' = { x = ((x1, x2 ) E !2/lx,l) < ~} 

S! = { x = (x1, x2) E !l/±x2 > ~} 
S = {x = (xi>x2 ) E Q/x2 >0} 
e: thin layer thickness 

Fig. I Geometry of the problem 
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We consider the following hypotheses: 

Plane problems Q' are deformable bodies 

!(au' au:) Small strains, eij(u') = 2 ax; + if;, 
S! is the interface between the adhesive and the 
adherent 

lJ' is the thin layer Additive decomposition of strains: 
e(u"J=e'(u")+e"(u"), respectively elastic strain 
and plastic strain. 

S is the surface to which the adhesive tends 
geometrically 

The two bodies {4' (adherent) are supposed to be elastic and the joint If' (adhesive) to be elastic­
plastic. In the next section, deiaiis of the behaviour of the thin layer are given. 

Denoting by aijki the elasticity parameters, we have to solve the following problem: 
Find (u', cr') such as: 

cr: .. = 0 in!20 !],) 

e ( ') . n' crij = aijkl ekl u lllJo.& 

+ behaviour law in B' 

u'=0 on ro 
cr'n =F on T1 

lu'l,. = 0 and lcr'nl,• = 0 
' ' 

[ ],• is the jump on the boundary S~ and n is the external normal unit. 
' 

2.2. Behaviour in the thin layer 

(I) 

In this section, we describe the behaviour of the material in the thin layer. We consider that it obeys a 
non-associated elastic-plastic law. This kind of material is not in the family of generalized standard 
materials (Nguyen 1973) but in the class of implicit standard materials described in terms of the hi­
potential theory (Hjiaj, de Saxce, Mroz 2002). In the case of generalized standard materials, we need to 
define a potential and a pseudo-potential of dissipation. In the framework of implicit standard materials, 
the behaviour is described introducing a hi-potential b and a hi-potential bp which depend on two 
tensorial fields, the stress tensor cr and the elastic strain tensor e' (resp. the plastic-strain rate tensor eP). 
The behaviour law is built from the derivation of these two hi-potentials: 

ab ' ab cr=- e - acr dee ' 

abp p abp 
C1=- e =-aep, acr 

In the case of a Drucker-Prager material, the hi-potential of dissipation is written: 

bp( u, e") = ce~ + (tg8- tg<p)(sm- cJIIePII + Xx,(eP) + Xxa( u) 

where XA is the indicator function of set A: 

XA(x) = 0, if x E A, x,.(x) = + oo otherwise 

Sets Ka and K, are defined by: 

(2) 

(3) 

(4) 
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Ka = { U, lis II <;; c- tgcp sm} 

K, = {ep, e~ <': rgelle:;ll} 
sm = ~tr(U), (hydrostatic pressure) 

s = U- s,ld, (stress deviator tensor) 

1 
~ = 3tr(ei') 

e:; = eP-~Jd 

llall = J~a,jaij for any tensor a (Von Mises norm) 

c is the cohesion, cp is the friction angle and e is the dilatance angle. 
In the case of a Mohr-Coulomb material, the hi-potential of dissipation is written: 

Sets Ka and K, are defined by: 

Ka = { U, lltJI<;; C- tgcpna} 

K, = {.r',e~<':O} 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

where ta and na are respectively the shear and normal stresses associated to the stress tensor u. In 
the following, the material will be supposed isotropic. 

3. Theoretical results 

3. 1. Mathematical background 

The idea of matched asymptotic expansions (Eckhaus 1979) is to find two expansions of the 
displacement u' and the stress rr in the powers of e, that is, an external one in the bodies and an internal 
in the joint, and to connect these two expansions in order to obtain the same limit. We will obtain 
relations in the internal expansions that we will express from values that intervene in the external 
expansions. 

3. 1. 1. External expansions 
The external expansion is a classical expansion in powers of e: 

u' (X~o Xz) = u0 (X~o Xz) + e u1 (x,, Xz) + ... , (14) 

m __ 1 (du~ du7) e .. - + 
'1 2 dXj Jx, 

(15) 
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(16) 

(17) 

3. 1.2. Internal expansions 
In the internal expansion, we proceed to a blow-up of the second variable. Let y2 = x2 /e. The internal 

expansion gives: 

u' (x,, xz) = v0 (x1, yz) + e v1 (x" Yz) + ... , 

m avr m Jv~+! m 1(dv~ dv~+l) 
e" = Jx,' e, = -ay;• e,, = 2 Jx, + Jy, ' 

e ') ( -I -I 0 I eii(u x 1, y2 ) = e eij + eu + ceu+ ... , 

We use the convention 

v"' = 0, m < 0, "m = 0, m < -1 

where m is the expansion order. 

3.1.3. Continuity conditions 

(18) 

(19) 

(20) 

(21) 

(22) 

The third step of the method consists of the connection of the two expansions. We choose some 
intermediate points defined by Xz = ± S E 1, 0 < t < 1, S E ]0,+ oc(. When E tends to zero, Xz tends to 0' 
and y2=x2/e tends to ±oc. The principle of the method consists in assuming that the two expansions give 
the same asymptotic limits, that is: 

(i) v0 (x,, ±oc) = u0 (x1, 0'), 
(ii) -r-1 (x1, ±oc) = 0, 
(iii) -r 0 (x" ±oc) = a 0 (x1, 0'). 

3.2. Mathematical results 

3.2. 1. Equilibrium equations at order 2 

(23) 
(24) 
(25) 

We develop the equation div a= 0. In this paragraph, we consider the equilibrium equations at order 
-2; we obtain: 

Thus, we get 

0 -1 
a'<;z = 0 
ay, (26) 

(27) 
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The elasticity law in the bodies gives: 

Thus, we have 

Jv" 
-a :..:..;_ 
- I2j2 (}yz' 

()vo a:, = 0 and v
0
(x 1, y,) = v

0
(xi), IYzl > 112 

We have r,i = 0 in the bodies and, due to the matched conditions v0(x1. ±ly21)=u0(xJ. o•). 

3.2.2. Equilibrium equations at order 1 

We have 

ar", 
-' =0 
dyz 

The connection conditions give 

with y2 = x2/e tends to ±<x when e tends to zero. 

3.2.3. Elasticity of the thin layer 
The asymptotic expansions give: 

where (e:j )'is the elastic part of e~. 

(28) 

(29) 

(30) 

(31) 

Note that before the beginning of plastification, the plastic strain is equal to zero, so the strain is 
reduced to the elastic strain. 

We have supposed that the layer is thin and soft, that is, the thickness is small (e--70) and the stiffness 
coefficients are small (A--70, !1--70). As we can see in the expansions, the identification of the different 
orders depends on the relative behaviour of the Lame coefficients A and 11 with respect to the thickness 
e. In fact the limit contact law depends on the two ratios A !e and 11 !e. We have nine possible relative 
variations of these two ratios corresponding to the behaviour of the coefficients (zero, a positive value, 
infinity). In the following, we note j = lim,.0 fie. In particular, we denote by I= lim,...,0 Ale and 
'ji = lim....,0 we the limits associated to Lame coefficients. In the following, only one case is presented, 
that is the more representative case where the limits are positive values. All the other cases can be 
deduced easily. 

Before the beginning of plastification, the identification of the terms of order zero gives: 

o -dv~ 
rdxi) = !1-

dYz 
0 () ('+ 2 ;;)dv~ 'r22 X 1 = IL r- ;:}., 

vn 

(33) 

(34) 
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By integration of Eq. (33), Eq. (34) and using the connection conditions Eq. (23), Eq. (25), we find 
the elasto-static case which is now classical (Ait-Moussa 1989): 

CJn = KL [u] (35) 

Matrix KL is diagonal and its diagonal terms are equal to j1 and X + 2j1 respectively. [] is the jump on 
boundary S. 

3.2.4. Elasto-plasticity 
The most interesting case is when the plastic threshold is reached. 
For a Mohr-Coulomb material this threshold 

I -1 -1 o . I < -1 -1 o l £ tr tr+ ... <0, c- tg rp £ n, + n,+ ... 

is replaced by 

where t} is the shear stress part of -r 1 and n} is the normal stress associated to '1"1
. 

For a Drucker-Prager material this threshold 

II -1 -1 o II < -1 -1 o ) £ S-r: +s,+ ... '5:.c-tgqJ E Srm+Srm+ ... 

is replaced by 

where s} is the deviatoric part of -r 1 and s}, is the pressure associated to '1"1• 

We obtain from Eq. (32) 

where (ei/f is the plastic part of ei/. Using a notation similar to Eq. (35), we denote by 

112 

[uj] = 2 J (e~i)P dy2 
-1/2 

and 

112 
p 1 f - -1 p - - -1 p 

[u2 ] = =--= (A(e 11 ) +(A+ 2,U)(e22 ) )dy, 
A+ 2.U -uz 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

Considering that the elastic part (e~il' is equal to zero, it seems convenient to suppose that (e~ilP is 
equal to zero too (that is the deformation e]~ is small), and thus 
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1/2 

[ui] = f (e;:i)" dy, 
-112 

Note that this hypothesis is confirmed numerically. 
So, we obtain from Eq. (32) 

and integrating Eq. (3) 

a 12 = jl([u~]- [t/;]) 

a,, = eX+ 2jl)([u;J- [~]) 

• Drucker-Prager condition: [uP] = -k0psn, k0p > 0 

• Mohr-Coulomb condition: [uP] = -kMct, kMc> 0 

Vector t corresponds to the direction of the shear stress. 

(44) 

(45) 

(46) 

(47) 

(48) 

The limit problem is quite different in this non-linear case. The plastic yield and the plastic law 
depend on a local problem. Local problem means that they do not depend on the stress vector but on all 
the components of the stress tensor in the thin layer (Eq. (47), Eq. (48)). On the one hand the thin layer 
vanishes from a geometrical point of view(£--> 0) and on the other hand, in the limit problem, we have 
a strong coupling between the interface law (Eq. (45), Eq. (46)) and a problem in the thin layer because 
the local stress tensor is a priori unknown in Eq. (47), Eq. (48). 

3.2.5. Local problem 
In order to determine the threshold and the direction of sliding, we have to solve the following elastic­

plastic problem (here Drucker-Prager model, results obtained for Mohr-Coulomb model are of the same 
kind) in the rectangle domain S x [ -1/2, 112]: 

a,i = A.(e,,)' {jii + 2f.J.(e,i)' 

lis II$ c- tgrpsm 

If llsll < c- tgrpsm then ep = 0 

If lis II = c- tgrpsm then ep = -ks 

(49) 

Due to the fact that the solution does not depend on the thickness, we have to solve only a "one­
dimensional problem". We observe that we obtain a "pseudo-penalized-Coulomb" law of friction. Note 
that if the direction of flow is equal to (or approximated by) x1, we find the classical Coulomb law of 
friction. 
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4. Numerical results 

4.1. Geometry of the examples 

In this section, we present three numerical tests. The first one is a long square bar bonded with a rigid 
obstacle. The width of the bar is equal to 100 mm and the thickness of the thin layer is equal to 1 mm. A 
load is applied on the left part of the structure. The second example is the same bar with a load applied 
both on the left part and on the top of the structure. The load on the top is twice smaller than the load on 
the left part. These examples are treated considering that the thin layer obeys Drucker-Prager 
behaviour. Details on the mechanical characteristics are given in Fig. 2. 

The third example is a dovetail assembly. Due to the symmetry of the problem, only a half of the 
structUre is considered. A thin layer is bonded between the two elastic parts of the assembly. The layer 
is oblique with regards to the loads. The loads are applied at the bottom of the structure. The dimensions and 

Thickness (mml 1 
Substrata 200 
Young modulus (Gpa) 

a) Substrata 0.3 
Poisson ratio 
Thin layer 30 
Young_ modulus _{Qpa) 
Thin layer 0.3 
Poisson ratio 
Cohesion (Mjla) 1 
Friction angle (0

) 30 
Dilatance angle (0

) 0 
Ft(Nimm) a) (3.6P)*step 

b) (3.6E'2)*step 
b) F2(N/mm) a) 0 

b) (1.8E"2)*step 
Finite element 8-node 

quadrangle 

Fig. 2 The first two examples: a bar bonded with a plane (the dimensions are in mm) 

Thickness (mm) 0.5 
Substrata 240 
Young modulus (Gpa) 
Substrata 0.38 
Poisson ratio 
Thin layer 30 
Young modulus (Gpa) 
Thin layer 0.3 
Poisson ratio 
Cohesion (Mpa) 1 
Friction angle (0

) 30 
Dilatance angle e) 0 
F1 (N/mm) _(0. 8E'j_*st~ 
Finite element 6-node 

triangle 

Fig. 3 The third example: a dovetail assembly (the dimensions are in mm) 
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the mechanical characteristics are given in Fig. 3. As for the previous examples, the material in the thin 
layer obeys Drucker-Prager elasto-plasticity. 

The set of these three examples is quite general and representative of the mechanical phenomena 
induced by non-linearities and the small characteristics of the thin layer. In the following section, 
numerical results obtained using these three examples are presented and commented. 

4.2. Numerical synthesis 

4.2. 1. Elastic domain 
The computations are done using ANSYS software (ANSYS 2002). In the first part of the n\]merical 

synthesis, we observe the results in the elastic domain (Fig. 4). Fig. 4(a) correspbnds to example 1 at 
step 13, Fig. 4(b) corresponds to example 2 at step 15 and Fig. 4(c) to example 3 at step 30. Ih these 
figures, we represent the tangential stress/tangential displacement ratio. As expected from the theory, 
this ratio is close to Jl IE, where Jl is the second Lame coefficient, Jl = E/2(1 + v) (Eq. (35)). We observe 
that examples 1 and 2 give the same value because the thin layers have the same mechanical 
characteristics. A similar result is obtained for the normal components. In this case the limit is equal to 
(I+ 2Jl)IE, with A= Ev /(1-v 2

). These results establish the validity of our theory in the elastic case; 
note that due to boundary effects, this theory is not valid at the extremities. 

a) Step 13 ~ Ratio tangential stress (Mpa)ltangential 
dleplacament (mm) along the 1t1n layer 

b) Step 15 • Ratio tangential atreas (MpaYtangential 
dla~ (mm) tlong the thin layer 

'~It::=:=:=:=:=:=:=:=:=:==:~ 1,106+00 

1.- H--------------1 
- 8.001!103 tf----------------1 

-~Hr------------------~ 

= 
9,0'l£.Q.)++---------------I 

~ ~~~---------------~ ~·~~H--------------------------1 
t5 7,00E+03 tl-------------------1 

8.001!+03 -1-----------------i 
5~~----------------_, 
MOE+03 ~~-------------.,l 

b ,~~H--------------------------; 
~u~~------------------------~ 
um~r-------------------------~ 

·~~~------------------------~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Nodes 

c) Slep 30 -Ratio tangential stress (Mpa)ltangentlal 
displacement (mm) along lhe thin layer 

3,50E+04 .,....----------------------. 

3,00E..04 -1---------------tt 

<S 2,50E..04 +-------------------H 
"i'l 
b 2,00E+04 .y-------------------1 

1,50E+04 ~----------------------1 

1.00E+04 -+--....-..,.....--,--.....----.--.-----.-"T""' 
54 104 154 204 254 304 354 4().4 

Nodes 

Node& 

Fig. 4 Tangential stress (MPa)/tangential displacement (mm) ratio in the elastic domain along the interface 
substratum/thin layer a) example 1 at step 13 b) example 2 at step 15 c) example 3 at step 30 
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a) Step 22 • Ratio normal stress (Mpa) !normal 
dlsplacemert (mm) along the thin layer 

3,506+04 

I ' ' ' " 1,501:+04 " 

b) Step 24 • Rallo rormalstresa (Mpa) lnonnal 
dlsplaeement (mm) along the fin layer 

3,50E+04 

<"~ 3.00E+04 

~2,5oe+04 
~ 2,00E+04 

1,50E+04 

1,00E+04 

r I ' I 

" "' ' 
400 450 500 550 &00 1!50 700 750 800 

c) Step 50 • Ratio rormal stress (Mpa) /rormal 
dlsplacemel1 (rTm) a~ the thin layer 

MOE+04 

~.OOE+04 

2,00E+04 

1.00£+04 

/ '\1 
/ ~ v ' 

54 104 154 ~ 254 304 354 404 
Nodes 

Nodes 

Fig. 5 Normal stress (MPa) /nonnal displacement (mm) ratio in the elastic-plastic domain along the interface 
substratum/thin layer a) example 1 at step 22 b) example 2 at step 24 c) example 3 at step 50 

4.2.2. Elastic-plastic domain 
We consider now the elastic-plastic domain (Fig. 5). In the elastic part, we find the previous results 

again. The first two examples give a stiffness density of 33000 N/mm3 and the last example gives 
64800 N/ mm3

, these values correspond to (A+2J1)/e (Eq. (35)). In the plastic zones (Eq. (39)), we do 
not find a constant value. In the next sections, we analyse more precisely these zones. Note in the third 
example that the points of discontinuity correspond to a normal displacement and a normal stress close 
to zero together: the thin layer is not crushing or pulling out on these nodes. 

4.2.3. Plastic yield 
We have shown in the theoretical part, that in the limit problem it is necessary to solve a local 

problem coupled with the global one. In the local problem (Eq. (49)), there are two significant 
quantities, which intervene: the plastic yield and the plastic flow. The aim of this section is to quantify 
the level of each term in the plastic yield. In fact, we want to analyse if it is possible to replace the "real" 
plastic yield in which all the terms of the stress tensor are considered, by a "simplified" one in which 
only the terms of the stress vector on the surface are taken into account. 

The real plastic yield is defined by: 

llsll ~ c- tgcp sm (50) 

The simplified plastic yield is defined by: 
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a) Step 22· Plastic Yield alono 1he 1li n layotr b) 
2.6 

2,4 

Stl!lp24· Plastic Yield alorg 1he lhln layotr 

I'\ I Slmpl111od Dnlc:br-l'no111r I 
~ j_ i 1,a +h--T-1-------7"'----___:~~?---.::~ ., 

~ 1.6 t'---'>.c-"----::!~--------1 

12·: 
't> 

~ 1,8 r ""--"'-.J L~ 
~ 

~ 1,-1 1------t~;;-;;~:;;::--f----~ -~ 1,6 

" a: 1,4 

f"--......-- ~ 
I 

lllo•IDNc:bl'f'nlgor 1 
1,2 

C) Slep 50- Plastic Yleld alono thelhln layer 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

Nodes 

2,•rr======~------, 

54 104 154 ~ 2So4 304 354 ~ 

Nodes 

Fig. 6 Plastic yields along the substratum/thin layer interface a) example 1 at step 22 b) example 2 at step 24 
c) example 3 at step 50 

lls(simp)ll ::;; c- tg({J sm(simp) (51) 

We compare the real plastic yield with the simplified one which use only the terms corresponding to 
the stress vector. In the last formula (Eq. (51)), the stress tensor is replaced by a n®,n, where ®s is the 
symmetrical tensorial product (ssimp is the deviatoric part of ((j n): s(a n) and Sm(simp)=tr(ssimp)). Fig. 6 
shows the differences between the two plastic yields for the three examples (only the right hand side of 
Eq. (50) and Eq. (51) are represented). We observe a very low difference for the three examples and that 
this difference does not modify the initiation of the plastiftcation. The gap is maximum in the elastic 
zone but generally remains lower than 5%. In the plastic zones, this gap decreases to 4% for the first 
two examples and to 2% for the last one. Fig. 7 shows the relative difference of the two yields for 
example 3 along the surface of the thin layer at step 50. As a conclusion of this study, we have shown 
that our simplification is valid and that it is possible to work only with the stress vector for the 
computation of the plastic yield. 

4.2.4. Plastic strain 
The aim of this section is to quantify the level of each component of the plastic strain (Eq. (3), Eq. 

(47), Eq. (48)). Fig. 8 shows for the three examples that the components of the plastic strain vector that 
is e~ and e{z are preponderant. eft is very small compared to the two other components of the tensor 
(Eq. (43), Eq. (44)). As an example, in the case of the dovetail assembly, for the node 16 (at the 
beginning of the interface) at step 50, e~ = -3.64x10-4, e-b_ = 8.09xlo-5 and e11= -2.92x10-{j. eft is less 
than 1% of the value of e1~ and close to 4% of eb_ and thus can be neglected. We show in Fig. 9 the 
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8 
8i 

Step 50· Relative dWference between the 
plastk: yields 

0.03 

0.02 

O.ol ~ -....... 
__,/ ' i 0 

·0.01 _.L_ "" 1 ... "" . .... -"" 't~M\1. 
II) 

·0.02 
-~ 
~ 

·0.03 

a: ·0.0<1 

/ '-
/ ' 

I 
·0.116 

Nodes 

Fig. 7 Relative difference (referred to the real plastic yield) between the plastic yields (real and simplified) 
along the substratum/thin layer interface (example 3 at step 50) 

) 
Evolution ol 1M plu!lc •••In CompoiMtlla 

a •mw• .----------------------====-~ 
b) Evolution ol 1M pln!lc onln •Ol!lf'O'*'Ia ...... .--------------- ------, , ....... 

c) Evolution of the pl .. tlc strain componenta 

S.00&04 ····---""""""~" '"'''''-· -

I , . .,... 
., , ...... r---t.::=~ 

I ...... .. 
~ I.O«&Ool · 

Stop 

Fig. 8 Evolution of the plastic strain components for various nodes of substratum/thin layer interface: a) 
example 1, b) example 2, c) example 3 

differences of the Von Mises norm of the "real" plastic strain and the "simplified" one. In the simplified 
version the plastic strain tensor e P is replaced by e P n ®sn. The gap for the third example is close to 1%. 

4.3. Conclusion of the numerical synthesis 

As a conclusion, the numerical results obtained in this paper show that the local problem introduced 
in the theoretical study can be neglected, that is to say that the interface law can be written only in terms 
of stress vector. We obtain a compliance law (regularized Coulomb law), well known in the literature 
(Fig. 10). 
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Step 50: Equivalent plastic strain along the thin layer 

l: 2+0E-04 

~ 1,56-04 ... - ······ - -·--· - ······ --···· ···· ... 
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Fig. 9 Equivalent plastic strain along the substratum/thin layer interface: example 3 at step 50 

(u] 

Fig. 10 The limit law: compliance law of contact 

5. Conclusions 

In this paper, we have analysed theoretically and numerically the asymptotic behaviour of a soft thin 

layer obeying to a non-associated elastic-plastic law (Drucker-Prager or Mohr-Coulomb) bonded with 

elastic solids; the results obtained by these two models are of the same kind. Theoretically, we have 

shown that when the mechanical and geometrical characteristics of the layer tend to zero, an interface 

law is obtained. This law couples a local problem with a global one. The numerical study has permitted 

to quantify the influence of the local problem and has shown that this local problem can be neglected. A 

classical law of compliance has been obtained. Numerical results obtained are representative of all non­

associated elastic-plastic models. 
A perspective of this work is to introduce damage and cracks in the thin layer in order to obtain laws 

which take into account the rupture between the layer and the substrata. These laws can be used to 

model the gluing of mechanical structures, the fibber/matrix interface in composites, the mortar/brick 
interface for masonries or the composite/structure interface in reinforcement techniques. Another 
important point is the implementation of these laws in a finite element computational software. 
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