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Asymptotic analysis of some non-linear soft thin layers
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c Laboratoire Mécanique Matériaux Structures, Université Claude Bernard Lyon 1, 82, Bd Niels Bohr, 69622 Villeurbanne Cedex, France
This paper shows how to model thin layers and interfaces by asymptotic techniques. Some behaviors are treated:

visco-elasticity (Maxwell, Kelvin–Voigt, Norton), Mohr–Coulomb non-associated elasto-plasticity and non-monotone

relationship in the strain–stress diagram. Results are given concerning two kinds of stratified thin layers. Numerical

validations and algorithms are proposed and presented.
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1. Introduction

Contact and interface mechanics intervenes more and

more often in computational structures. To have reliable

tools to size more and more complex systems, it is indis-

pensable to take into account in a precise way the con-

nections between the various solids of the structure.

This consideration can be very complex because of the

strongly non-linear character and possibly imperfect

and very localized of these connections. For examples,

in the modelling of the processes of metal forming, con-

sideration of the friction is necessary because it pilots the

whole process; the modelling of the mortar in the case of

masonry structures is necessary to estimate in a precise

way the mechanical characteristics of the structures,

their risks of ruin and collapse, etc.

The purpose of this paper is to show how it is possi-

ble to obtain families of interface laws from the mechan-
* Corresponding author.
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ical behavior of thin layers. The consideration of bonded

joints in real structures can lead from a numerical point

of view to problems of too large sizes, especially if these

joints have a non-linear behavior [1,3]. From a general

way, one is going to consider joints of weak thickness

and weak rigidity with regard to those of the substrata.

One has then to deal with problems taking into account

at least two small parameters (the thickness, the rigi-

dity). An asymptotic study (a micro–macro passage),

completed by numerical calculations, leads to so-called

‘‘asymptotic contact laws’’ who allow describing the

(macroscopic) mechanical behavior of the interfaces

(see references in [1,3]).

Section 2 is devoted to the mechanical problem. In

the third section the mathematical background is re-

called. We consider in this paper various kinds of non-

linear behavior for the thin layers:

• visco-elasticity (Maxwell, Kelvin–Voigt or Norton

type): one explicits the results expressed in [2] (Sec-

tion 4);



• non-associated elasto-plastic of Mohr–Coulomb type

(Section 5);

• non-monotone relationship in the strain–stress dia-

gram (Section 6).

One can show in the first and second cases, that the

interface laws obtained are of Tresca or Coulomb kind.

The last case can model instabilities on the contact

boundary. In Section 7, the thin layer is supposed to

be a stratified composite. This case permits to show

how it is possible to add various behavior laws. We ob-

tain the same kind of results that proposed in [4]. The

last section is devoted to numerical algorithms.
2. The mechanical problem

The aim of this section is to present the mechanical

problem and to give the notations used in the paper.

We consider a body occupying an open bounded set X
of R3, with smooth boundary oX, the three dimensional

space is referred to the orthonormal frame (O,x1,x2,x3).

This body is supposed to have a non-empty intersection

S with the plane {x3 = 0}. Let e>0, a parameter in-

tended to tend to zero, we denote

Be ¼ x ¼ ðx1; x2; x3Þ 2 X such that jx3j <
e
2

n o
;

Xe ¼ x ¼ ðx1; x2; x3Þ 2 X such that jx3j >
e
2

n o
;

Xe
� ¼ x ¼ ðx1; x2; x3Þ 2 X such that � x3 >

e
2

n o
;

Se
� ¼ x ¼ ðx1; x2; x3Þ 2 X such that � x3 ¼

e
2

n o
;

X� ¼ fx ¼ ðx1; x2; x3Þ 2 X such that � x3 > 0g;

S ¼ fx ¼ ðx1; x2; x3Þ 2 X such that x3 ¼ 0g;

X0 ¼ Xþ [ X�:

ð1Þ

In the following, we suppose that Be is the domain occu-

pied by the joint and Xe by the deformable bodies (see

Fig. 1), X0 being the geometrical limit of Xe. Se is the
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Fig. 1. Geometry of the problem.
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interface between the adhesive and the adherents, and

S is the surface to which the adhesive tends geometri-

cally. On the structure is applied a body force density

u and a surface force density g on C1 a part of the

boundary, n denotes the external unit normal vector to

X. The part C0 of the boundary is supposed to be

embedded. The two bodies are supposed to be elastic

and the joint will be considered successively as elastic,

visco-elastic, elasto-plastic and pseudo-elastic. We de-

note by re the stress tensor and ue the displacement field.

Under the small perturbations hypothesis, the strain ten-

sor is written

eijðueÞ ¼
1

2

ouei
oxj

þ
ouej
oxi

� �
: ð2Þ

If w is a function, we define by wðxþ0 Þ (resp. wðx�0 Þ) the
limit of w(x) when x tends to x0, xPx0 (resp. x6x0).

In order to define the interface laws between bodies

and the joint, we have to introduce some notations.

We define the jump of a function on the interfaces

½v�� ¼ v x1;�
eþ

2

� �
� v xn1 �

e�

2

� �
;

½v� ¼ vðx1; 0þÞ þ vðx1; 0�Þ:
ð3Þ

In the following sections, the adhesion between the bod-

ies and the joint will be supposed to be perfect, that is

½ue�� ¼ 0 on Se
�: ð4Þ

We denote by aijkl the elasticity parameters of the

adherents. Thus, we have to solve the following problem

ðP eÞ

Find ðue; reÞ such that :

re
ij;j ¼ �ui in X;

re
ij ¼ aijkhekhðueÞ in Xe;

þ behavior laws in Be;

ue ¼ 0 on C0;

ren ¼ g on C1;

½ue�� ¼ ½re�� ¼ 0 on Se
�:

8>>>>>>>>>>><
>>>>>>>>>>>:

By convention, we define the local frame (n±,t±) where

n± is the external normal vector to Xe
�. In the same

way, we define (n,t), where n is external normal to X+.

In these local basis, a vector v will decomposed in nor-

mal and tangential part as follow:

v x1;�
eþ

2

� �
¼ vN x1;�

eþ

2

� �
n� þ vT x1;�

e�

2

� �
;

vðx1; 0�Þ ¼ vNnþ vT :
ð5Þ
3. Mathematical background

The idea of matched asymptotic expansions [5] (other

techniques are given in [2–4,6–8]) is to find two expan-

sions of the displacement ue and to the stress re in pow-



ers of e, that is, an external one in the bodies and an

internal in the joint, and to connect these two expan-

sions in order to obtain the same limit. In the following,

we have considered a problem in dimension 2 in order to

simplify the computations. The external expansion is a

classical expansion in powers of e

ueðx1; x2Þ ¼ u0ðx1; x2Þ þ eu1ðx1; x2Þ þ � � � ;
re
ijðx1; x2Þ ¼ r0

ijðx1; x2Þ þ er1
ijðx1; x2Þ þ � � � ;

eijðueÞðx1; x2Þ ¼ e0ij þ ee1ij þ � � � ;

elij ¼
1

2

ouli
oxj

þ
oulj
oxi

!
:

ð6Þ

In the internal expansion, we proceed to a blow-up of

the second variable. Let y2 ¼ x2
e . The internal expansion

gives

ueðx1; x2Þ ¼ v0ðx1; y2Þ þ ev1ðx1; y2Þ þ � � � ;
re
ijðx1; y2Þ ¼ e�1s�1

ij ðx1; y2Þ þ s0ijðx1; y2Þ þ es1ijðx1; y2Þ þ � � � ;
eijðueÞðx1; y2Þ ¼ e�1e�1

ij þ e0ij þ ee1ij þ � � � ;

el11 ¼
ovl1
ox1

; el22 ¼
ovlþ1

2

oy2
; el12 ¼

1

2

ovl2
ox1

þ ovlþ1
1

oy2

� �
:

ð7Þ

The third step of the method consists in the matching of

the two expansions. The idea is to define some interme-

diate points where the expansions can be superposed. In

particular, we observe that when e tends to zero, x2 tends

to 0± and y2 tends to ±1. The matching of the two

expansions gives

v0ðx1;�1Þ ¼ u0ðx1; 0�Þ;
s�1ðx1;�1Þ ¼ 0; s0ðx1;�1Þ ¼ r0ðx1; 0�Þ:

ð8Þ

We observe that in the equilibrium equations appear

terms of order �2 and �1. The equilibrium equation

at order �2 gives

os�1
i2

oy2
¼ 0: ð9Þ

Thus, s�1
i2 does not depend on y2. Due to the limit of s�1

i2

in ±1, that is zero, we have

s�1
i2 ¼ 0: ð10Þ

The equilibrium equation at order �1 gives

os0i2
oy2

¼ 0: ð11Þ

Thus,

s0i2 ¼ r0
i2ðx1; 0

�Þ: ð12Þ

Note that in the following, �f ¼ limf ;e!0
f
e. In particular,

we denote by �k and �l the limits associated to the Lam�e�s
coefficients.
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4. Visco-elasticity

4.1. Kelvin–Voigt visco-elasticity

We consider that the thin layer is visco-elastic and

obeys to the Kelvin–Voigt�s law of linear visco-elasticity.

We recall that we consider a perfect adhesion between

the bodies and the glue. The deformation tensor is split-

ted in two parts: an elastic part and a non-elastic one.

The symbol ( Æ ) characterizes the time derivative. The

behavior law in the thin layer is given by

re
ij ¼ kðekk þ hk _ekkÞdij þ 2lðeij þ hl _eijÞ; ð13Þ

where k and l are the Lamé�s coefficients. hk and hl are

two characteristic times [9].

The asymptotic expansion gives

e�1s�1
ij þ s0ij þ e1s1ij þ � � �
¼ k e�1ðe�1

kk þ hk _e
�1
kk Þ þ e0kk þ hk _e

0
kk

�
þeðe1kk þ hk _e

1
kkÞ þ � � �

�
dij þ 2l e�1ðe�1

ij þ hl _e
�1
ij Þ

�
þe0ij þ hl _e

0
ij þ eðe1ij þ hl _e

1
ijÞ þ � � �

�
: ð14Þ

In the internal expansion, we observe that the important

quantities are the ratio between the Lamé�s coefficients

(resp. the characteristic times) and the thickness of the

thin layer. In order to simplify, we suppose that the

characteristic times are constant values regarding to

the thickness. The other cases can be deduced easily by

the techniques presented in the following. We obtain

using the notation defined in Section 3

s�1
ij ¼ 0; s0ij ¼ �kðe�1

kk þ hk _e
�1
kk Þdij þ 2�lðe�1

ij þ hl _e
�1
ij Þ:

ð15Þ
Thus, by integration in the interval [�1/2,1/2] and using

Eqs. (9), (10) and (14), we obtain

r0
12 ¼ �l½u01� þ �lhl½ _u01�;

r0
22 ¼ ð�kþ 2�lÞ½u02� þ ð�khk þ 2�lhlÞ½ _u02�: ð16Þ

To summarize, the interface law is given by

rn ¼ KL½u� þ Kh½ _u�: ð17Þ

The diagonal matrices KL and Kh are deduced easily

from (16).

We observe that this interface law is valid for a large

number of coefficients variations. Particularly, if the lim-

its of the ratios are infinite, the jumps in the former for-

mulas are equal to zero (perfect adhesion). Conversely, if

the coefficients are equal to zero, the stress tensor is

equal to zero (perfect sliding).

4.2. Maxwell visco-elasticity

The thin layer is supposed to obey to the Maxwell�s
law of visco-elasticity. The behavior law in the thin layer

is given by [9]



eðueÞ ¼ 1þ m
E

_re
ij þ

re
ij

t1

� �
� m
E

_re
kk þ

re
kk

t2

� �
dij: ð18Þ

E is the Young�s modulus and m is the Poisson�s ratio. t1
and t2 are two characteristic times. We use the same

techniques that in the previous section. We assume

that t1 = t2. The important value in the expansion is

the ratio between the Young�s modulus and the thick-

ness of the thin layer. Using the notation of Section 3,

we obtain

½u01� ¼
1þ m

E
ð _r0

12 þ r0
12=t1Þ;

½u02� ¼ � 1� m

Em
ð _r0

22 þ r0
22=t1Þ: ð19Þ

The interface law is written

½u� ¼ KY _rnþ Ktrn: ð20Þ

The matrices KY and Kt are deduced easily from Eq.

(19).

4.3. Norton visco-elasticity

The thin layer obeys to the non-linear Norton�s law
of visco-elasticity. The behavior law in the thin layer is

given by

re
ij ¼ kekkdij þ 2leij þ gj _ejp�2 _eij; ð21Þ

where k and l are the Lamé�s coefficients and g is the vis-
cosity coefficient. p is a scalar parameter. We use the

same techniques that in previous sections. The charac-

teristic coefficients in the expansions are the ratios be-

tween the Lamé�s coefficients and the thickness of the

thin layer and the ratio between the viscosity coefficient

and the thickness at the power p�1. Using the notation

of the previous sections, we obtain

r0
12 ¼ �l½u01� þ �g=2

Z 1=2

�1=2

j _ejp�2 o _v
0
1

oy2
dy2;

r0
22 ¼ ð�kþ 2�lÞ½u02� þ �g

Z 1=2

�1=2

j _ejp�2 o _v
0
2

oy2
dy2:

ð22Þ

We have to solve two differential equations. The stresses

r0
12 and r0

22 depend only on x1, thus
o _v0

1

oy2
and

o _v0
2

oy2
do not de-

pend on y2. The displacements _v01 and _v02 depend linearly

on y2. We deduce by integration

r0
12 ¼ �l½u01� þ �g=2j½ _u��snjp�2½ _u01�;

r0
22 ¼ ð�kþ 2�lÞ½u02� þ �gj½ _u��snjp�2½ _u02�;

ð23Þ

where the symbol �s denotes the symmetric tensorial

product. To summarize the interface law is written

rn ¼ KL½u� þ Kgj½ _u��snjp�2½ _u�: ð24Þ

The matrices KL and Kg are deduced easily from Eq.

(23).
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4.4. Incompressibility

As in the previous sections, we consider a perfect

adhesion between the bodies and the glue. The incom-

pressibility condition is written in the quasi-static case

divu ¼ 0: ð25Þ

The former equation becomes

e�1 ou2
oy2

þ ou1
ox1

þ � � � ¼ 0: ð26Þ

Thus,

ou2
oy2

¼ 0 ð27Þ

and

½u2� ¼ 0: ð28Þ

We obtain the law of bilateral contact

½uN � ¼ 0: ð29Þ
5. Mohr–Coulomb elasto-plasticity

5.1. Mathematical results

As in the previous sections, we consider a perfect

adhesion between the bodies and the glue. The deforma-

tion is decomposed in an elastic part and in a plastic one.

The thin layer obeys to the Mohr–Coulomb�s law of

elasto-plasticity, that is

eðueÞ ¼ ee þ ep;

re
ij ¼ kekkdij þ 2leij;

jrtj 6 C � tanX jrnj;
If jrtj < C � tanX jrnj then _ep ¼ 0;

If jrtj < C � tanX jrnj then _ep ¼ k�n�s�t;

ð30Þ

where X is the friction angle, C is the cohesion strength,

rn and rt are respectively the normal and the tangential

stresses; we denote by �n and �t the normal and tangential

directions of the face corresponding to the plastic yield,

k is a non-negative parameter.

We proceed as in the former sections. We consider

the same case than in Section 3. The internal expansion

gives using the same techniques that in the previous

paragraphs

s012 ¼ �l
ou1
oy2

� ep12

� �
; s022 ¼ ð�kþ 2�lÞ ou2

oy2
� ep22

� �
: ð31Þ

Before the beginning of the plastification, by integration

and using the connection conditions, we find the elasto-

static case.

r�n ¼ KL½u�: ð32Þ



Fig. 2. A long steel bar (100 mm·100 mm) bonded with a rigid

obstacle. Adhesive: e = 1 mm, C = 0, X = 30, E = 30 GPa, m =
0.3; adherent: E = 210 GPa, m = 0.3; loadings: (0.164,�0.0164)

N/mm; finite elements 8-nodes squares.
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Fig. 3. Ratio tangential force–tangential displacement on the

contact zone: beginning of the plastification in the left part of

the boundary.
The most interesting case is when the plastic yield is

reached, we obtain in this case by integration

s012 ¼ �lð½u01� � ½up1�Þ; s022 ¼ ð�kþ 2�lÞð½u02� � ½up2�Þ: ð33Þ
In other terms and using the connection conditions

r�n ¼ KLð½u� � ½up�Þ: ð34Þ
The plastic flow is given by

½ _up� ¼ k�t ð35Þ

with ½ _upi � ¼
R 1=2

�1=2
_e�1;p
i2 dy2.

The limit problem is quite different in this non-linear

case. The plastic yield and the plastic flow depend on a

local problem because they do not depend on the stress

vector but on all the components of the stress tensor. In

order to determine the threshold and the direction of

sliding, we have to solve the following elasto-plastic

problem in the rectangle domain S · [�1/2,1/2]

os0i2
oy2

¼ 0;

e�1 ¼ ee þ ep;

s0ij ¼ ke�1
kk dij þ 2le�1

ij ;

js0t j 6 C � tanXjs0nj;
If js0t j < C � tanXjs0nj then _ep ¼ 0

If js0t j < C � tanXjs0nj then _ep ¼ k�n�s�t:

ð36Þ

Due to the fact that the solution does not depend on the

thickness, we have to solve only a ‘‘one-dimensional

problem’’.

We observe that we obtain a ‘‘pseudo-penalized-Cou-

lomb’’ law of friction. If the direction of flow is equal to

(or approximated by) x1, we find the classical Coulomb

law of friction.

5.2. Numerical validations

The numerical example presented in this section is the

problem of an elastic body bonded to a rigid body by an

elasto-plastic thin layer (Fig. 2). The ratio thickness of

the thin layer––dimension of the body is equal to 1/

100. Numerical results are shown in Fig. 3. We observe

that the theoretical law is verified with a good agree-

ment. The right part of the figure (elastic behavior)

shows that the ratio between the tangential force and

the tangential displacement, computed on the boundary

elastic body/thin layer, is equal to the coefficient �l. In
the left part of Fig. 3, we observe the plastification of

the thin layer corresponding to a non-linear sliding.

5.3. Remarks on a simplified behavior

In this section, we consider a material which obeys to

a mono-directional law of Mohr–Coulomb. That is the

direction of flow is known. In order to simplify, we con-

sider that the direction is x1. The flow rule in Section 5.1

is replaced by
5

_ep ¼ kx1 and ð�n;�tÞ ¼ ð�x2; x1Þ: ð37Þ

The asymptotic expansions used in the previous sections

give

rn ¼ KLð½u� � ½up�Þ;
½ _up� ¼ kx1:

ð38Þ

In this case, it is not necessary to compute the local

problem presented in Section 5.1.
6. Some remarks on non-monotone behavior

6.1. Mathematical results and limitations

We consider a perfect adhesion between the bodies

and the glue. The behavior of the material is non-mon-

otone, that is [15]



rij ¼ kekkdij þ 2leij þ aðT Þvij if aðT Þvijeij 6 �CðT Þ;
rij ¼ kekkdij þ 2leij if jaðT Þvijeijj 6 CðT Þ;
rij ¼ kekkdij þ 2leij � aðT Þvij if aðT Þvijeij P CðT Þ;

ð39Þ
where T is the temperature, C(T) and a(T) are the non-

negative parameters of the law, and v is a given orienta-

tion tensor. Using the same techniques and the same

notations than in the previous sections, the internal

expansion, in the case

aðT Þvijeij P CðT Þ ð40Þ
leads to

s012 ¼ �l
ou01
oy2

� �av12; s022 ¼ ð�kþ �lÞ ou
0
2

oy2
� �av22; ð41Þ

where �a is the limit of the ratio between the coefficient

a(T) and the thickness at the power g<1. In the follow-

ing, C will denote the ratio between C(T) and the same

power of the thickness. By integration, we obtain

r0
12 ¼ �l½u01� � �av12; r0

22 ¼ ð�kþ �lÞ½u01� � �av22: ð42Þ

Thus, we obtain an interface law written

If �avi2½ui� P C then rn ¼ KL½u� � �avn: ð43Þ
An interesting case is v22 = 0. Thus, we obtain a normal

compliance law and a non-monotone law of friction

[11,12].

6.2. A 1D example

The previous computations are not totally true be-

cause the problem does not have an unique solution.

In fact, in the asymptotic expansions particular solutions

are chosen. In the previous computations there is no no-

tion of stability which is now classical for this kind of

non-monotone laws (see [13] and references therein).

In this paragraph we treat the example of a bar of length

l occupying the interval ]0, l[. In the interval ]0, el[, the
material has a behavior as in the previous section with

a rigidity k; in the interval ]el, l[, the material is elastic

with a rigidity K. We suppose that a given displacement

d>0 is applied at the extremity x = l. The bar is embed-

ded at the extremity x = 0. The adhesion is perfect for

x = el. We denote ua the displacement field in ]0, el[
and ub the displacement field in the interval ]el, l[. We

introduce Wmin the stored energy of the two-phase part

andW the stored energy of the elastic part. The total en-

ergy of the composite bar is given by

Eðua; ubÞ ¼
Z el

0

W minðua;xðxÞÞdxþ
Z l

el
W ðub;xðxÞÞdx;

W minðua;xðxÞÞ ¼ min
k
2
u2a;xðxÞ;

k
2
u2a;xðxÞ � aua;xðxÞ þ c

� �
;

W ðub;xðxÞÞ ¼
K
2
u2b;xðxÞ:

ð44Þ
6

Note that Wmin has two ascending branches, each one

corresponding to a different phase. In this paragraph,

we look for a particular minimizer of the total energy.

We denote Ue = ua(el) = ub(el). Introducing the convex

envelope of Wmin, denoted CWmin, and using Jensen�s
inequality, we obtain a lower bound of the energy

Eðua; ubÞ P
Z el

0

CW minðua;xðxÞÞdxþ
Z l

el
W ðub;xðxÞÞdx

P elCW min

1

el

Z el

0

ua;xðxÞdx
� �

þ lð1� eÞW 1

lð1� eÞ

Z l

el
ub;xðxÞdx

� �

P min elCW min

U e

el

� �
þ lð1� eÞW d� U e

lð1� eÞ

� �� �
:

ð45Þ

The lower bound is obtained when

CW min;ua

U e

el

� �
¼ W ;ub

d� U e

lð1� eÞ

� �
: ð46Þ

The solutions of the former equation are the intersec-

tions of the graph of CWmin;ua , which is a tri-linear func-

tion in view of the non-convexity ofWmin, and the graph

of W ;ub , which is linear (Fig. 4). Three different values of

Ue are obtained corresponding to the three possible

intersections of the graphs (see Fig. 4)

• d6d0, U e ¼ Kd
Keð1�eÞ,

• d06d<d1, U e ¼ d� rmlð1�eÞ
K ,

• dPd1, U e ¼ al
Ke
þ Kd

Keð1�eÞ

with rm ¼ kc
a � a

2
, K�1

e ¼ 1�e
K þ e

k, d0 ¼ rmlK
�1
e and

d1 ¼ d0 þ lea
k . Thus, it is possible that a global minimizer

of the energy verifies

uaðxÞ ¼
r
k
x if 0 6 x 6 eS;

uaðxÞ ¼
rþ a
k

ðx� eSÞ if eS 6 x 6 el;

ubðxÞ ¼
r
K
ðx� lÞ þ d if el 6 x 6 l;

eS ¼ el 1þ r
a
� rk
aK

l� k
a
d

� �
;

r ¼ k
el

K
Ke

if 0 6 d 6 d0;

r ¼ rm ¼ k
C
a
� a
2

� �
if d0 6 d 6 d1;

r ¼ k
el

K
Ke

þ al
Ke

� �
if d > d1:

ð47Þ

Note that eS denotes the location of the interface be-

tween the two phases in the thin layer. To summarize,

we obtain three different branches of solution corre-

sponding to the values of the given displacement d. At

this point, it is possible to study the behavior of the dis-
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Fig. 4. Solution of the minimization problem.
placement and stress fields when the thickness tends to

zero. Thus, using the usual notations, the asymptotic

law is given by

rn ¼ �k½u� if 0 6 d 6 d00;

rn ¼ l
K
ðd� ½u�Þ if d00 6 d 6 d11;

rn ¼ �k½u� � �a if d > d01;

d00 ¼ rmlK
�1
; d01 ¼ d00 þ l

�a
�k
; K

�1 ¼ 1

K
þ 1
�k

� �
:

ð48Þ

We observe that this law is quite different that the law

obtained in Section 6.1. Note that other techniques to

determine the asymptotic laws are given in [14].
7. Stratified thin layers

7.1. Introduction

In this section, it is supposed that the thin layer is a

stratified composite with the fiber direction parallel to

x1 (see Fig. 5). In order to simplify, only two sub-layers

of thickness ae and 1�ae are considered (06a61) and a
Fig. 5. A stratified bonded joint with an elastic bar (40 mm · 40

mm). Adhesive: e = 0.1 mm, a = 0.5, l+=10 GPa, l� = 7.5

GPa; adherent: E = 130 GPa, m = 0.2; loadings (50,�25) MPa;

finite elements 3-nodes triangles.
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perfect adhesion between the layers is supposed. We

denote

Be
� ¼ x 2 Be such that� e

2
< x3 6

e
2
� ae

n o
;

Be
þ ¼ x 2 Be such that

e
2
� ae 6 x3 <

e
2

n o
:

ð49Þ

We denote by k� and l� (resp. k+ and l+) the Lamé

coefficients in Be
� (resp. Be

þ).

7.2. Elastic layers

In this paragraph, the two layers are supposed to be

elastic. By the same techniques that in the previous sec-

tions and using the same usual notations, we obtain

r0
12 ¼ �lþ

ov01
oy2

;
1

2
� a 6 x2 <

1

2
;

r0
22 ¼ ð�kþ þ 2�lþÞ

ov02
oy2

;
1

2
� a 6 x2 <

1

2
;

r0
12 ¼ �l�

ov01
oy2

; � 1

2
< x2 6

1

2
� a;

r0
22 ¼ ð�k� þ 2�l�Þ

ov02
oy2

; � 1

2
< x2 6

1

2
� a:

ð50Þ

By integration, we obtain

r0
12 ¼ �l�½u01�;

r0
22 ¼ ð�k� þ 2�l�Þ½u02�;

ð51Þ

where �k� and �l� are the geometrical sums of the Lamé

coefficients i.e.

�k� ¼ a
�kþ

þ 1� a
�k��

;

�l� ¼ a
�lþ

þ 1� a
�l��

:

ð52Þ

Thus, an elastic interface law is obtain where the coeffi-

cients of stiffness are the geometrical sum of the coeffi-

cients of stiffness of each thin layer:

rn ¼ K�
L ½u�: ð53Þ

The definition of the tensor K�
L is deduced easily from

Eq. 51. An example of validation is given in Fig. 6 on

the example of a long bar with two layers with the same

thickness.
7.3. Elastic–plastic layers

The same kind of study than in the previous section

can be done considering that one of these thin layers is

perfectly plastic and obeys to the Mohr–Coulomb

behavior. In order to simplify, we suppose, as in Section

5.3, that the behavior of the upper layer is mono-direc-

tional. The flow rule in this layer is

_ep ¼ kx1 and ð�n;�tÞ ¼ ð�x2; x1Þ: ð54Þ
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The asymptotic expansions used in the previous sections

and the results of the previous section give

rn ¼ K�
L ð½u� � ½up�Þ;

½ _up� ¼ kx1:
ð55Þ

We obtain a law which is ‘‘classical’’ in contact mechan-

ics. The next section is devoted to the numerical solution

of this kind of problem.
8. Numerical algorithms

8.1. Generalities

The interface problem introduced in Section 7.3 is

written, with f = tanX, Find q fixed point of the applica-

tion q! fjrN(u(q))j, where u = u(q) is solution of

Find u 2 V such that :

JðuÞ 6 JðvÞ 8v 2 V

�

with JðvÞ ¼ 1
2
Aðv; vÞ � LðvÞ þ

R
S/ðvN Þdsþ

R
SwðvT Þds, /

is given by

/ðvN Þ ¼
0 if vN < 0;
KN
2
ðvN Þ2 if vN P 0:

�

w is given by

wðvT Þ ¼

�qvT � q2

2KT
if vT < �q

KT
;

1
2
KT � ðvT Þ2 if jvT j 6 q

KT
;

qvT � q2

2KT
if vT > q

KT
:

8>><
>>:

The problem is discretized by a finite element method

formulated in displacements. Usually, we use P1 finite

elements (triangles with three nodes and six degrees of

freedom) or Q1 (quadrangles with four nodes and eight

degrees of freedom). We have to minimize a functional
8

still noted J in R2NP. We denote: NP the total number

of nodes, NC the number of contact nodes, IN the indi-

ces of normal components of contact nodes, IT the indi-

ces of tangential components of contact nodes, A the

stiffness matrix with coefficient aij and B the stiffness ma-

trix to the surface terms with coefficient bij. The relaxa-

tion method consists in finding the solution of the

previous problem solving a sequence of minimization

problems in R2NP

Find u
nþ1

2
i such that 8v 2 R2NP

Jðunþ1
1 ; . . . ; unþ1

i�1 ; u
nþ1

2
i ; uniþ1; . . . ; u

n
2NP Þ

6 Jðunþ1
1 ; . . . ; unþ1

i�1 ; v; u
n
iþ1; . . . ; u

n
2NP Þ:

8>><
>>:
We denote by x the relaxation coefficient. In the first

time, we are interested by the normal components.

• i2IN
The algorithm is written

u
nþ1

2
i ¼ 1

d
nþ1

2
ii

ui �
Pi�1

j¼1

dnþ1
ij unþ1

j �
P2NP

j¼iþ1

dn
iju

n
j

!

with

dn
ij ¼

aij þ cðunj Þbij if j 2 IN ;

aij þ gðunj Þbij if j 2 IT ;

aij otherwise;

8><
>:

cðuÞ ¼
0 if u 6 0;

1 if u > 0

�
and

gðuÞ ¼
0 if juj > q

KT
;

1 if juj 6 q
KT

;

(

unþ1
i ¼ ð1� xÞuni þ xu

nþ1
2

i :

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:
For tangential components, we have

• i2IT
First, the fixed point problem is considered

qlþ1
i ¼ f jrN ðuðql

iÞÞj and we write

u
nþ1

2
i ¼ 1

d
nþ1

2
ii

ui �
Pi�1

j¼1

dnþ1
ij unþ1

j �
P2NP

j¼iþ1

dn
iju

n
j � hðunþ

1
2

i Þ � ql
i

!

with

hðuÞ ¼
�1 if u < �q

KT
;

1 if u > q
KT

;

0 if juj 6 q
KT

:

8><
>:

unþ1
i ¼ ð1� xÞuni þ xu

nþ1
2

i :

8>>>>>>>>>>>><
>>>>>>>>>>>>:
8.2. An academic test

In this paragraph the algorithm is tested and vali-

dated. We have chosen a benchmark studied by the

group ‘‘Validation of computer codes’’ of French Re-
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Fig. 7. The example of a long bar (40 mm · 40 mm): G

corresponds to traction, SL to sliding and ST to stick zones

(E = 130 GPa, m = 0.2; finite elements 3-nodes triangles).
search Groupment ‘‘Large Deformations and Damage’’

([10], Fig. 7). We work in plane strains and we consider a

long bar with square section (40 mm) with Young�s
modulus E = 130 GPa and Poisson�s ratio m = 0.2. The

‘‘contact’’ zone (where the interface law is considered)

corresponds to the part AB in Fig. 7, with a friction

coefficient equal to f = 1. Boundary conditions, u1 = 0

on BC and u1 = u2 = 0 at point B are imposed. We apply

loadings, 10 daN/mm2 on AD and �5 daN/mm2 on CD.

In the solution of this problem we have to determine

each zone of contact status.

In the finite element method, the contact zone is dis-

cretized by 32 nodes. For different values of �l and �k the

variations of contact status are studied (Fig. 8) and com-

pared with the results obtained in [10] (Signorini–Cou-

lomb laws). We observe that for large values of the

coefficients we find the same results that in [10]. These

coefficients correspond to the limit case (Signorini–Cou-

lomb). The decreasing of �l corresponds to an increasing

of the stick zone (13, 15 and 32 nodes). Nevertheless, the

coefficients have a strong influence on the tangential dis-
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placements. A low value of the coefficient KT implies an

increasing of the tangential displacement. Note that the

nodes are sliding without reaching the value of the usual

Coulomb�s sliding limit.
9. Conclusion

In this paper, we have modelled some non-linear thin

layers by asymptotic theories. We have shown that it is

possible to obtain interface laws by this kind of tech-

niques. The main advantage of the method with respect

to direct methods is a rigorous justification of the inter-

face laws. The other advantage of the method is to find a

large class of interface laws by an adapted choice of the

behavior of the thin layers. In particular, we have shown

how it is possible to obtain laws of Coulomb�s type. One

other part of our work has consisted to validate and to

quantify these laws using finite elements. In the last part

of the paper, we have shown how it is possible to imple-

ment these interface laws in a computational software.

We have presented an efficient and robust family of

algorithms which are easy to implement. We have shown

that the rate of convergence of these algorithms of

Gauss–Seidel�s type depend only on a small number of

parameters. In the future, we intend to develop other

models by the same kind of techniques (other non-linear

materials, large deformations, couplings), in particular

for non-monotone laws [14]. The implementation of

these models is necessary in order to have comparisons

with experimental data.
Acknowledgments

This research was developed in part within the frame-

work of Lagrange Laboratory, an European research

group between CNRS, CNR, University of Rome

‘‘Tor Vergata’’, University of Montpellier II, ENPC

and LCPC.
References

[1] Lebon F, Ould Khaoua A, Licht C. Numerical study of

soft adhesively bonded joints in finite elasticity. Comput

Mech 1998;21:134–40.

[2] C. Licht, Comportement asymptotique d�une bande diss-

ipative mince de faible rigidité, CR Acad Sci Paris, Sér I,
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numérique du comportement d�un assemblage de plaques.

CR Acad Sci Paris, Sér Méc 2002;330:359–64.

[9] Lemaitre J, Chaboche JL. Mécanique des matériaux
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