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This paper concerns a time-domain model of transient wave propagation in double-layered porous 
materials. An analytical derivation of reflection and transmission scattering operators is given in the 
time domain. These scattering kernels are the medium’s responses to an incident acoustic pulse. The 
expressions obtained take into account the multiple reflections occurring at the interfaces of the 
double-layered material. The double-layered porous media consist of two slabs of homogeneous 
isotropic porous materials with a rigid frame. Each porous slab is described by a temporal equivalent 
fluid model, in which the acoustic wave propagates only in the fluid saturating the material. In this 
model, the inertial effects are described by the tortuosity; the viscous and thermal losses of the 
medium are described by two susceptibility kernels which depend on the viscous and thermal 
characteristic lengths. Experimental and numerical results are given for waves transmitted and 
reflected by double-layered porous media formed by air-saturated plastic foam samples. 

I. INTRODUCTION

The ultrasonic characterization of porous materials satu-
rated by air1,2 is of great interest for a large class of industrial
applications. These materials are frequently used in the au-
tomotive and aeronautics industries and in the building trade.

Ultrasonic characterization of materials is often
achieved by measuring the attenuation coefficient and phase
velocity in the frequency domain,3,4 or by solving the direct
and inverse problems directly in the time domain.5–13 In the
frequency domain, measurements of the attenuation coeffi-
cient may be more robust than measurements of phase ve-
locity. In these situations, the application of the
Kramers–Kronig11–13 dispersion relations may allow the de-
termination of the phase velocity from the measured attenu-
ation coefficient.

Many applications, such as medical imaging or inverse
scattering,14 require a study of the behavior of pulses travel-
ing into porous media.3,4,8–11 When a broadband ultrasound
pulse passes through a layer of a medium, the pulse wave-
form changes as a result of attenuation and dispersion of the
medium. The classic method for predicting a change in the
waveform of a signal passing through a medium relies on the
system’s impulse response. According to the theory of linear
systems,15 the output signal is a convolution of the input

signal and the system impulse response. Many media, in-
cluding porous materials and soft tissues, have been ob-
served to have an attenuation function that increases with
frequency.16 As a result, higher frequency components of the
pulse are attenuated more than lower frequency components.
After passing through the layer, the transmitted pulse is not
just a scaled-down version of the incident pulse, but has a
different shape. Dispersion refers to the phenomenon ob-
served when the phase velocity of a propagating wave
changes with frequency.17 Dispersion causes the propagating
pulse waveform to change because wave components with
different frequencies travel at different speeds. An under-
standing of the interaction of ultrasound with a porous me-
dium in both the time and frequency domains, and the ability
to determine the change of waveform when propagating
ultrasound pulses, should be useful in designing array
transducers and in quantitative ultrasound tissue
characterization.18,19

This time-domain model is an alternative to the classical
frequency-domain approach.1,3,4 It is an advantage of the
time domain that the results are immediate and direct.5–13

The attractive feature of a time-domain-based approach is
that the analysis is naturally bounded by the finite duration of
ultrasonic pressures, and is consequently the most appropri-
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ate approach for the transient signal. However, for wave
propagation generated by time-harmonic incident waves and
sources �monochromatic waves�, the frequency analysis is
more appropriate.1 A time-domain approach differs from fre-
quency analysis in that the susceptibility functions describing
viscous and thermal effects are convolution operators acting
on velocity and pressure, and therefore a different algebraic
formalism must be applied to solve the wave equation. The
time-domain response of the material is described by an in-
stantaneous response and a “susceptibility” kernel respon-
sible for memory effects.

In the past, many authors have used fractional calculus20

as an empirical method to describe the properties of vis-
coelastic materials, e.g., see Caputo21 and Bagley and
Torvik.22 The observation that asymptotic expressions of
stiffness and damping in porous materials are proportional to
the fractional powers of frequency23 suggests that time de-
rivatives of a fractional order might describe the behavior of
sound waves in this kind of material, including relaxation
and frequency dependence. In this work, fractional calculus
is used to describe viscous and thermal interaction between
the fluid and the structure in double-layered porous media
consisting of two slabs of homogeneous porous materials.
Given the medium’s response to an incident pulse, reflection
and transmission scattering operators are calculated for
double-layered porous media. Experimental results are com-
pared with theoretical predictions, giving good correlation.

The outline of this paper is as follows. Section II shows
a temporal equivalent fluid model, the connection between
the fractional derivatives and the wave propagation in rigid
porous media in high-frequency range is established, and the
basic equations are written in the time domain. Sections III
and IV are devoted to formulating the problem and analytical
derivation of the reflection and transmission scattering ker-
nels for double-layered porous media consisting of two slabs
of homogeneous porous materials. The scattering responses
of the media take into account the multiple reflections at the
double-layered porous media interfaces. Finally, in Sec. V,
experimental validation using ultrasonic measurement in
transmission and reflection is discussed for air-saturated in-
dustrial plastic foams.

II. TEMPORAL EQUIVALENT FLUID MODEL

The quantities involved in sound propagation in porous
materials can be defined locally, on a microscopic scale.
However, this study is generally difficult because of the com-
plicated frame geometries. Only the mean values of the
quantities involved are of practical interest. Averaging must
be performed on a macroscopic scale, using volumes with
large enough dimensions for the average to be significant. At
the same time, these dimensions must be much smaller than
the wavelength. Even on a macroscopic scale, describing
sound propagation in porous material can be very compli-
cated, since sound also propagates in the frame of the mate-
rial. If the frame is motionless, the porous material can be
replaced on a macroscopic scale by an equivalent fluid.

In porous material acoustics, a distinction can be made
between two situations depending on whether the frame is

moving or not. In the first case, the wave dynamics due to
coupling between the solid frame and the fluid is clearly
described by the Biot theory.24,25 In air-saturated porous me-
dia, the structure is generally motionless and the waves
propagate only in the fluid. This case is described by the
equivalent fluid model which is a particular case in the Biot
model, in which fluid–structure interactions are taken into
account by the viscous susceptibility kernel, �v, and the ther-
mal susceptibility kernel, �th, as follows:8,26

� f���tv�r,t� + �
0

t

�v�t − t���tv�r,t��dt� = − � p�r,t� , �1�

1

Ka
�tp�r,t� + �

0

t

�th�t − t���tp�r,t��dt� = − � v�r,t� . �2�

Constitutive relations in the time domain result from ar-
guments based on invariance under time translation and
causality.11–13 In these equations, p is the acoustic pressure, v
is the particle velocity, � f and Ka are the density and com-
pressibility modulus of the fluid, respectively. The parameter
�� reflects the instantaneous response of the porous medium
and describes the inertial coupling between fluid and struc-
ture. Instantaneous therefore means that the response time is
much shorter than the typical time scale for acoustic field
variation. The susceptibility kernels �v and �th are memory
functions which determine the dispersion of the medium.

The medium varies with depth x only, and the incident
wave is planar and normally incident. With no lack of gen-
erality, the pressure acoustic field can be assumed to have
only one component, denoted p�x , t�. It is assumed that the
pressure field in the medium is zero prior to t=0. The wave
equation for the pressure acoustic field of a porous dispersive
medium with a rigid frame is obtained from the constitutive
equations �1� and �2�, and is in the form

�x
2p�x,t� −

1

c0
2����t

2p�x,t� + ���Ka�th +
�v

� f

+ c0
2�th � �v� � �t

2p�x,t�	 = 0, �3�

where c0= �Ka /� f�1/2 is the speed of free fluid. The following
notation is used for the convolution integral:

�f � g��x,t� = �
0

t

f�x,t − t��g�x,t��dt�. �4�

Viscous and thermal exchanges between a fluid-
saturated porous medium and its structure are responsible for
acoustic field damping. In the asymptotic regime, corre-
sponding to high-frequency limit,8,26 viscous and thermal in-
teractions are modeled by the memory relaxation operators
�v�t� and �th�t� given by26

�v�t� =
2� f��
 �

t−1/2, �5�
�          ��f
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�th�t� =
2�� − 1�

Ka��

 �

�Pr� f
t−1/2, �6�

where Pr is the Prandtl number, � and � are the fluid vis-
cosity and adiabatic constant, respectively. The model’s rel-
evant physical parameters are tortuosity ��, and viscous and
thermal characteristic lengths, � and ��. In this model the
time convolution of t−1/2 with a function is interpreted as a
semiderivative operator according to the definition of the
fractional derivative of order 	 given27 by

D	�x�t�� =
1


�− 	��0

t

�t − u�−	−1x�u�du , �7�

where 
�x� is the gamma function.

III. FORMULATING THE PROBLEM

Consider a double-layered porous medium consisting of
two homogeneous slabs with different acoustic parameters.
The geometry of the problem is shown in Fig. 1. The first
porous slab occupies the region 0�x�� and the second one
occupies the region ��x�L. Each porous slab is assumed
to be isotropic and to have a rigid frame. A short sound pulse
impinges normally on the medium from the left �free fluid—
region �1��. It gives rise to an acoustic pressure field pi�x , t�,
i=2,3 and an acoustic velocity field vi�x , t�, i=2,3 within
each layer �the symbol i=2,3 denotes regions �2� and �3�,
respectively� which satisfy the propagation equation �3�.

It is assumed that the pressure field is continuous at the
boundary of each layer

p�0+,t� = p�0−,t�, p��−,t� = p��+,t� ,

p��� + L�−,t� = p��� + L�+,t� �8�

�where ± superscript denotes the limit from left and right,
respectively� and the initial conditions

�p�x,t��t=0 = 0 � �p

�t
�

t=0
= 0, �9�

which mean that the medium is idle for t=0.
If the incident sound wave is launched in region x�0

�region �1��, then the pressure field in the region on the left
of the double-layered material is expressed as the sum of the
incident and reflected fields

p1�x,t� = pi�t −
x

c0
� + pr�t +

x

c0
�, x � 0, �10�

where p1�x , t� is the field in region x�0, pi and pr denote the
incident and reflected fields, respectively. A transmitted field
is also produced in the region on the right of the double-
layered material. This takes the form

p4�x,t� = pt�t −
�

c2
−

L

c3
−

x − � − L

c0
�, x 
 � + L . �11�

�p4�x , t� is the field in region �4�: x
�+L and pt the trans-
mitted field�. c2 and c3 represent the acoustic velocities in
regions �2� and �3�, respectively, defined by the relation ci

=c0 / ��i�1/2, i=2,3, where �i represents the tortuosity of each
porous layer.

The incident and scattered fields are related by scattering
operators �i.e., reflection and transmission operators� for the
material. These are integral operators represented by

pr�x,t� = �
0

t

R̃���pi�t − � +
x

c0
�d�

= R̃�t� � pi�t� � ��t +
x

c0
� , �12�

pt�x,t� = �
0

t

T̃���pi�t −
�

c2
−

L

c3
−

x − � − L

c0
�d�

= T̃�t� � pi�t� � ��t −
�

c2
−

L

c3
−

x − � − L

c0
� , �13�

where ��t� is the Dirac distribution. In Eqs. �12� and �13� the

functions R̃ and T̃ are the respective reflection and transmis-
sion kernels for incidence from the left. Note that the lower
limit of integration in �12� and �13� is set to 0, which is
equivalent to assuming that the incident wavefront first im-

pinges on the material at t=0. The operators R̃ and T̃ are
independent of the incident field used in the scattering ex-
periment and depend only on the properties of the materials.

In region x�0, the field p1�x , t� is given by

p1�x,t� = ���t −
x

c0
� + R̃�t� � ��t +

x

c0
�	 � pi�t� . �14�

To simplify the analysis, we will use the Laplace transform

which is appropriate for our problem. We note P̃i�x ,z�, i
=1,2 ,3 ,4, the Laplace transform of pi�x , t�, i=1,2 ,3 ,4 de-
fined by

P̃i�x,z� = L�pi�x,t�� = �
0

�

exp�− zt�pi�x,t�dt . �15�

The Laplace transform of the field outside the double-
layered medium is given by

P̃1�x,z� = �exp�− z
x

c0
� + R�z�exp�z

x

c0
�	��z�, x � 0, �16�

FIG. 1. Problem geometry.
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P̃4�x,z� = T�z�exp�− � �

c2
+

L

c3
+

x − � − L

c0
�z	��z�,

x � � + L , �17�

Here, P̃1�x ,z� and P̃4�x ,z� are the Laplace transform of the
field on the left and right of the double-layered porous me-
dia, respectively, ��z� denotes the Laplace transform of the
incident field pi�t�, and finally R�z� and T�z� are the Laplace
transforms of the reflection and transmission kernels, respec-
tively.

The acoustic pressure fields pi�x , t�, i=2,3 inside each
layer of the porous media �regions �2� and �3�� satisfy the
propagation equation �3�, which can be written in the
Laplace domain as

�2P̃i�x,z�
�x2 −

f i�z�
ci

2 P̃i�x,z� = 0, i = 2,3, 0 � x � � + L .

�18�

The function f i�z� is given by the following expression:

f i�z� = z2ci
2�� f�i + �̃vi�z�� · �1/Ka + �̃thi�z��, i = 2,3,

�19�

where �̃vi�z� and �̃thi�z� represent the Laplace transform of
�vi�t� and �thi�t�, respectively, and their expressions in the
time domain are given by

�vi�t� =
2� f�i

�i


 �

�� f
t−1/2, i = 2,3. �20�

�thi�t� =
2�� − 1�

Ka�i�

 �

�Pr� f
t−1/2, i = 2,3. �21�

�i and �i�, i=2,3 are the viscous and thermal characteristic
lengths of each porous layer.

By developing expression �19�, we obtain the following
relation for f i�z�:

f i�z� = z2 + 2
�

�
� 1

�i
+

� − 1

Pr�i�

�z
z +
4�� − 1��
� f�i�i�
Pr

z,

i = 2,3. �22�

The solution of Eq. �18� can be expressed by

P̃i�x,z� = �Ai�z�exp�−

f i�z�

ci
x�

+ Bi�z�exp�
f i�z�
ci

x�	��z�, i = 2,3, �23�

where coefficients Ai�z� and Bi�z� can be determined by the
physical conditions at the boundary of each layer. This is
given in the next section.

IV. REFLECTION AND TRANSMISSION SCATTERING
OPERATORS

To derive reflection and transmission coefficients, we
use the continuity relations of the acoustic pressure fields
�Eqs. �8�� given in the Laplace domain by

P̃1�0−,z� = P̃2�0+,z�, P̃2��−,z� = P̃3��+,z�,

P̃3��� + L�−,z� = P̃4��� + L�+,z� . �24�

Using the expressions of the pressure fields in each layer
�Eqs. �16�, �17�, and �23�� and the conditions �24�, we obtain
the followings relations for the coefficients Ai�z� and Bi�z�,
i=2,3, and the coefficients R�z� and T�z�:

A2�z� + B2�z� = P̃2�0,z� = 1 + R�z� , �25�

A2�z�exp�−

f2�z�

c2
�� + B2�z�exp�
f2�z�

c2
��

= A3�z�exp�−

f3�z�

c3
�� + B3�z�exp�
f3�z�

c3
�� , �26�

A3�z�exp�−

f3�z�

c3
�� + L�� + B3�z�exp�
f3�z�

c3
�� + L��

= T�z�exp�− � �

c2
+

L

c3
�z	 . �27�

The Euler equation in each region is written as

� f�i�tvi�x,t� + �vi�t� � �tvi�x,t� = − �xpi�x,t�, i = 1, . . . ,4.

�28�

In these equations vi�x , t� i=1, . . . ,4 is the acoustic velocity
field in regions �1�,…, �4�. Note that in regions �1� and �4�,
corresponding to the free fluid, porosity and tortuosity values
are 1 ��1=�4=1 and �1=�4=1�, and the viscous suscepti-
bility kernel vanishes ��vi=0, i=1,4� outside the double-
layered porous media.

The equation for flow continuity between each interface
�x=0, x=�, and x=�+L� is given by

�ivi�x,t� = �i+1vi+1�x,t�, i = 1,2,3, �29�

where �i, i=1, . . . ,4 is the porosity of each layer.
Using the relations �28� and �29�, we obtain the follow-

ing relations between the acoustic pressure pi�x , t� and physi-
cal properties of each layer:

�i+1�� f�i�xpi+1�x,t� + �vi�t� � �xpi+1�x,t��

= �i�� f�i+1�xpi�x,t� + �v�i+1��t� � �xpi�x,t��, i = 1,2,3.

�30�

Using the Laplace transform of Eq. �30� and the pressure
field expressions for each layer �Eqs. �16�, �17�, and �23��,
we obtain the following relations at the interface of each
layer:

B2�z� − A2�z� = K1�R�z� − 1� , �31�

B3�z�exp�
f3�z�
c3

�� − A3�z�exp�−

f3�z�

c3
��

= K2�B2�z�exp�
f2�z�
c2

�� − A2�z�exp�−

f2�z�

c2
��	 ,

�32�
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B3�z�exp�
f3�z�
c3

�� + L�� − A3�z�exp�−

f3�z�

c3
�� + L��

= K3T�z�exp�− � �

c2
+

L

c3
�z	 , �33�

with

K1 =

�2

�2
, K2 =

�2

�3

�3

�2

, K3 =

�3

�3
, K1K2 = K3.

�34�

Using the relations �25�–�27� and �31�–�33� �see Appen-
dix A�, we obtain the following expressions of the reflection
and transmission coefficients:

R�z� = d1

�z�
��z�

, �35�

T�z� = h1 exp�� �

c2
+

L

c3
�z	 exp�− 2


f2�z�
c2

� −

f3�z�

c3
L�

��z�
,

�36�

with


�z� = 1 + d2 exp�− 2

f2�z�

c2
�� + d3 exp�− 2


f3�z�
c3

L�
− d4 exp�− 2


f2�z�
c2

� − 2

f3�z�

c3
L� ,

��z� = 1 + h2 exp�− 2

f2�z�

c2
�� + h3 exp�− 2


f3�z�
c3

L�
+ h4 exp�− 2


f2�z�
c2

� − 2

f3�z�

c3
L� .

d1 =
K1 − 1

K1 + 1
, d2 =

�K1 + 1��K2 − 1�
�K1 − 1��K2 + 1�

,

d3 =
�K3 − 1��K2 − 1�
�K3 + 1��K2 + 1�

, d4 = −
�K3 − 1��K1 + 1�
�K3 + 1��K1 − 1�

,

h1 =
4K1K2

�1 + K3��1 + K1 + K2 + K3�
,

h2 =
�1 − K2��1 − K1�
�1 + K1��1 + K2�

, h3 =
�K3 − 1��1 − K2�
�K3 + 1��1 + K2�

,

h4 =
�1 − K3��K1 − 1�
�1 + K3��K1 + 1�

.

To express n-multiple reflections in porous layers, we shall
write the reflection and transmission coefficients as follows:

R�z� = d1
�z�

n�0

�− 1�n���z� − 1�n, �37�

T�z� = h1 exp�� �

c2
+

L

c3
�z	exp�− 2


f2�z�
c2

�

−

f3�z�

c3
�L��


n�0
�− 1�n���z� − 1�n. �38�

Using the identity

�x + y + z�n = 

n1+n2+n3=n

n!

n1!n2!n3!
xn1yn2zn3, �39�

where n!=
�n+1�, the reflection and transmission expres-
sions become

R�z� = d1
�z�

n�0

�− 1�nn! 

n1+n2+n3=n

h2
n1h3

n2h4
n3

n1!n2!n3!

�exp�− 2

f2�z�

c2
�n1 + n3���

�exp�− 2

f3�z�

c3
�n2 + n3�L� , �40�

and

T�z� = h1 exp�� �

c2
+

L

c3
�z	

�

n�0

�− 1�nn! 

n1+n2+n3=n

h2
n1h3

n2h4
n3

n1!n2!n3!

�exp�−

f2�z�

c2
�2n1 + 2n3 + 1���

�exp�−

f3�z�

c3
�2n2 + 2n3 + 1�L� . �41�

By setting z= j�, where j2=−1 and � is the angular fre-
quency, we can easily deduce the expressions of the reflec-
tion and transmission coefficients in the frequency domain.

Recall that the inverse Laplace transforms of
exp�−�� /c2�
f2�z�� and exp�−�L /c3�
f3�z�� are the Green
function28 of the first and second porous slab, respectively.

In the time domain, the transmission scattering operator
is expressed as

T̃�t� = h1 

n�0

�− 1�nn! 

n1+n2+n3=n

h2
n1h3

n2h4
n3

n1!n2!n3!
F2�t +

�

c2
,�2n1

+ 2n3 + 1�
�

c2
	 � F3�t +

L

c3
,�2n2 + 2n3 + 1�

L

c3
	 ,

�42�

where Fi, i=2,3 is the Green function28 of porous layers �2�
and �3�, respectively �see Appendix B�.

The reflection scattering operator is expressed by the
relation
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R̃�t� = d1 

n�0

�− 1�nn! 

n1+n2+n3=n

h2
n1h3

n2h4
n3

n1!n2!n3!

��F2�t,2�n1 + n3�
�

c2
	 � F3�t,2�n2 + n3�

L

c3
	

+ d2F2�t,2�n1 + n3 + 1�
�

c2
	 � F3�t,2�n2 + n3�

L

c3
	

+ d3F2�t,2�n1 + n3�
�

c2
	 � F3�t,2�n2 + n3 + 1�

L

c3
	

+ d4F2�t,2�n1 + n3 + 1�
�

c2
	

� F3�t,2�n2 + n3 + 1�
L

c3
		 . �43�

If only the first reflections at interfaces x=0, x=� and x=L
are taken into account, the reflection scattering kernel ex-
pression becomes

R̃�t� = d1��t� + d1�d2 − h2�F2�t,2
�

c2
	 + d1�d4 − h4 − d2h3

− d3h2 + 2h2h3�F2�t,2
�

c2
	 � F3�t,2

L

c3
	 . �44�

The transmission scattering kernel describing the direct wave
transmitted through two layers of porous materials without
internal reflection is expressed by

T̃�t� = h1F2�t +
�

c2
,

�

c2
	 � F3�t +

L

c3
,

L

c3
	

= h1�
0

t

F2�� +
�

c2
,

�

c2
	F3�t − � +

L

c3
,

L

c3
	d� . �45�

The first term on the right-hand side of Eq. �44�, d1��t�
= ��
�2−�2� / �
�2+�2����t�, is equivalent to the instanta-
neous reflected response of the first layer �region 2�. The
part of the wave which is equivalent to this term corre-
sponds to the wave reflected by the first interface x=0 of
the first porous layer. It depends only on the porosity and
tortuosity of the first porous slab. The wave reflected by
the first interface has the advantage of not being disper-
sive, but simply attenuated by factor d1. This result is in
agreement with the conclusions obtained in other works
for wave reflected by a slab of porous material.9,29,30 This
shows that it is possible to measure the porosity and tor-
tuosity of the first porous layer just by measuring its first
reflected wave.

The second term on the right-hand side of Eq. �44�,
d1�d2−h2�F2�t ,2�� /c2��, corresponds to the second interface
reflection contribution, x=�. This term depends on the po-
rosity and tortuosity of the two porous layers. The Green’s
function F2 describes the propagation and dispersion of an
acoustic wave making one round trip inside the first porous
slab. This Green’s function depends on the viscous and ther-
mal characteristics lengths � and �� of the first layer �region
2�. This result means that it can be possible to get informa-
tion of all the acoustical properties �porosity, tortuosity, vis-

cous and thermal characteristics lengths� of the first porous
layer �region 2�, and also, the porosity and tortuosity of the
second porous layer �region 3�, but the viscous and thermal
characteristics lengths of the second porous layer �region 3�
do not intervene.

Finally, the term d1�d4−h4−d2h3−d3h2

+2h2h3�F2�t ,2�� /c2���F3�t ,2�L /c3�� represents the reflec-
tion contribution of the third interface, x=L. The correspond-
ing wave makes one round trip inside the two porous layers.
Evidently this wave contribution depends on all acoustical
parameters of each porous layer.

The advantage of the obtained time-domain expression
of the reflection and transmission scattering operators �Eqs.
�44� and �45�� is to show analytically the effect of the acous-
tical parameters �porosity, tortuosity, viscous and thermal
characteristic lengths� of each porous layer on the reflection
contributions by the interfaces of the double-layered media.

V. EXPERIMENTAL VALIDATION

In application of this model, several numerical simula-
tions for reflected and transmitted acoustic waves by two
layered porous materials are compared to experimental data.
Experiments are performed in the air using two broadband
Ultran NCT202 transducers with a central frequency of
190 kHz in air and a bandwidth of 6 dB from
150 to 230 kHz. Pulses of 400 V are provided by a 5052PR
Panametrics pulser/receiver. The signals received are ampli-
fied to 90 dB and filtered above 1 MHz to avoid high-

FIG. 2. Experimental setup of the ultrasonic measurements in transmitted
mode.

FIG. 3. Incident signal given out by the transducer in transmitted mode.
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frequency noise �energy is totally filtered by the sample in
this upper-frequency domain�. Electronic interference is
eliminated by 1000 acquisition averages. The experimental
setup is shown in Fig. 2. The experimental incident signal
generated by the transducer is given in Fig. 3. The amplitude
is represented by an arbitrary unit �a.u.� and the point num-
ber represented in the abscissa is proportional to time. Signal
duration is important as its spectrum must verify the condi-
tion of high-frequency approximation8,26 referred to in Sec.
II. The spectrum of the incident signal is given in Fig. 4.

Measurements were made on plastic foam samples M1–
M4. Their acoustic characteristics were determined indepen-
dently using classical methods8 �which were developed for a
slab of porous material�. The acoustical parameters of the
plastic foam samples are given in Table I.

Three samples of double-layered porous materials were
considered, the first consists of 0.86 cm of M1 and 0.81 cm
of M2, the second of 4.13 cm of M1 and 1.99 cm of M3, and
finally the third of 2.98 cm of M1 and 1.99 cm of M3. Nu-
merical simulation and experimental results �transmitted sig-
nal� for the three samples of double-layered materials are
presented in Figs. 5–7, respectively. The numerical results
are obtained from convolution of the transmission operator
�Eq. �45�� with the signal generated by the transducer shown
in Fig. 3. The reader can see, from Figs. 5–7, the good cor-
relation obtained between the experimental transmitted sig-
nal �solid line� and simulated signal �dashed line�. This result
validates the expression of the transmission scattering opera-
tor �Eq. �45��.

Reflected waves were processed by another experimen-
tal setup shown in Fig. 8. One transducer was used alterna-
tively as a transmitter and receiver to detect the reflected

wave. The experimental incident signal used in reflected
mode is given in Fig. 9 and its spectrum in Fig. 10.

A double-layered porous medium consisting of 1.11 cm
of M4 and 0.87 cm of M1 was considered. Figure 11 shows
a comparison between a simulated reflected signal �dashed
line� and an experimental reflected signal �solid line�. The
simulated signal was obtained through convolution of the
reflection scattering kernel given in Eq. �44� with the inci-
dent signal given in Fig. 9. Three reflected signals can be
seen in Fig. 11. The first corresponds to the reflection of the
first porous layer M4 �x=0� by the first interface, this re-
flected wave corresponds to the first term on the right-hand
side of Eq. �44�: d1��t�= ��
�2−�2� / �
�2+�2�� ��t�. The
second reflected wave given in Fig. 11 corresponds to the
reflection between the second M4 interface and the first M1
interface �x=��; this wave corresponds to the second term on
the right-hand side of Eq. �44�: d1�d2−h2�F2�t ,2�� /c2��. Fi-
nally, the third signal corresponds to reflection by the second
M1 interface �x=L�, which is given by the term d1�d4−h4

−d2h3−d3h2+2h2h3�F2�t ,2�� /c2���F3�t ,2�L /c3��. Gener-
ally, it is not possible to see the other reflection contributions
experimentally because of the high damping of ultrasonic
waves in air-saturated plastic foams. However, the third re-
flection contribution at x=L is not always seen experimen-

FIG. 4. Spectrum of the incident signal generated by the transducer in
transmitted mode.

FIG. 6. Comparison between experimental transmitted signal �solid line�
and simulated transmitted signal �dashed line� for a double-layered medium
consisting of 4.13 cm of M1 and 1.99 cm of M3.

TABLE I. Acoustical characteristics of the plastic foams samples.

Material M1 M2 M3 M4

Viscous characteristic length ����m�� 200 30 330 230
Thermal characteristic length �����m�� 600 90 990 690

Tortuosity ��� 1.07 1.4 1.02 1.05
Porosity ��� 0.97 0.85 0.90 0.98

FIG. 5. Comparison between experimental transmitted signal �solid line�
and simulated transmitted signal �dashed line� for a double-layered medium
consisting of 0.86 cm of M1 and 0.81 cm of M2.
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tally; for example, Fig. 12 shows a comparison between the-
oretical predictions �dashed line� and experimental results
�solid line� for a double-layered medium consisting of
0.88 cm of M1 and 0.83 cm of M2. Acoustic attenuation in
plastic foam sample M2 is higher than in the other samples.
Sample M2 has high tortuosity and low characteristic lengths
compared to those of the other plastic foam samples, which
indicates high acoustic damping. In Fig. 12, we can only see
the two reflected waves corresponding to reflection by the
first M1 �first layer� interface �x=0� and reflection between
the second M1 interface and the first M2 �second layer� in-
terface �x=��, respectively. The reflected wave of the second
M2 interface �x=L� is fully absorbed by the two layers, M1
and M2. We can also see in Fig. 12 that the amplitude of the
second reflected wave is greater than that of the first reflected
wave. This is due to the high resistivity of sample M2 near
sample M1 and the thickness of M1, which also plays an
important part in attenuating the wave reflected at the second
interface, x=�.

VI. CONCLUSION

In this paper the analytical expressions of reflection and
transmission scattering operators are derived for double-

layered porous media consisting of two homogeneous isotro-
pic materials. Simple relationships are given between these
operators and the acoustic parameters of the medium. It is
shown that the scattering operators are equal to the sum of
the contribution of each interface to the double-layered po-
rous medium. The advantages of the analytical expressions
of reflection and transmission scattering operators in the time
domain is to show easily the effect of the acoustical param-
eters on the multiple reflections at the interfaces of the
double-layered medium.

Ultrasonic measurements in the transmission and reflec-
tion mode were processed using different experimental set-
ups. A slight difference was observed between theoretical
predictions and experimental data in the two modes �reflec-
tion and transmission�. This leads to the conclusion that the
expressions of scattering operators obtained are correct. Fu-
ture studies will concentrate on the inverse problem, and
methods and inversion algorithms will be developed to opti-
mize the acoustic properties of double-layered air-saturated
porous media for reflected and transmitted ultrasonic waves.

APPENDIX A: EXPRESSION OF THE REFLECTION
AND TRANSMISSION OPERATORS

Using Eqs. �25� and �31�, we can write the following
equation system given the relations between A2�z�, B2�z�, and
R�z�:

FIG. 7. Comparison between experimental transmitted signal �solid line�
and simulated transmitted signal �dashed line� for a double-layered medium
consisting of 2.98 cm of M1 and 1.99 cm of M3.

FIG. 8. Experimental setup of the ultrasonic measurements in reflected
mode.

FIG. 9. Incident signal given out by the transducer in reflected mode.

FIG. 10. Spectrum of the incident signal generated by the transducer in
reflected mode.
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�A2�z�
B2�z�

� =
1

2
�1 − 1

1 1
�� 1 + R�z�

K1�R�z� − 1�
� . �A1�

From Eqs. �27� and �33�, one has

�A3�z�
B3�z�

� =
T��z�

2 � �1 + K3�exp�
f3�z�
c3

�� + L��
�1 − K3�exp�−


f3�z�
c3

�� + L�� � .

�A2�

where T��z�=T�z�exp�−��� /c2�+ �L /c3��z�.
Using Eqs. �46�,�47�, and Eqs. �26� and �32�, we obtain

the following linear system given the reflection and transmis-
sion coefficients R�z� and T�z�:

R�cosh�
f2�z�
c2

�� + K1 sinh�
f2�z�
c2

��	 − T��z�

��cosh�
f3�z�
c3

L� + K3 sinh�
f3�z�
c3

L�	
= K1 sinh�
f2�z�

c2
�� − cosh�
f2�z�

c2
�� ,

R�K2 sinh�
f2�z�
c3

�� + K3 cosh�
f2�z�
c2

��	 + T��z�

��sinh�
f3�z�
c3

L� + K3 cosh�
f3�z�
c3

L�	
= K3 cosh�
f2�z�

c2
�� − K2 sinh�
f2�z�

c2
�� .

By setting

D�z� = �1 + K3
2�cosh�
f2�z�

c2
��sinh�
f3�z�

c3
L�

+ �K1 + K2K3�sinh�
f2�z�
c2

��sinh�
f3�z�
c3

L�
+ 2K3 cosh�
f2�z�

c2
��cosh�
f3�z�

c3
L�

+ �K2 + K1K3�sinh�
f2�z�
c2

��cosh�
f3�z�
c3

L� ,

and

D1�z� = �K1 − K2K3�sinh�
f2�z�
c2

��sinh�
f3�z�
c3

L�
+ �K3

2 − 1�cosh�
f2�z�
c2

��sinh�
f3�z�
c3

L�
+ �K1K3 − K2�sinh�
f2�z�

c2
��cosh�
f3�z�

c3
L� ,

one has the following expressions for R�z� and T�z�:

R =
D1�z�
D�z�

and T��z� =
2K1K2

D�z�
,

which are equivalent to the expressions �35� and �36� given
in Sec. IV.

APPENDIX B: GREEN FUNCTION OF THE MEDIUM

The Green function28 Fi, i=2,3 of the porous layer �2�
and �3�, respectively is given by

Fi�t,k�

= �0 if 0 � t � k

Ji�t� + �i�
0

t−k

�i�t,��d� , if t � k, i = 2,3 �
with

Ji�t� =
�i

4
�

k

�t − k�3/2 exp�−
�i

2k2

16�t − k�
�, i = 2,3,

FIG. 11. Comparison between experimental reflected signal �solid line� and
simulated reflected signal �dashed line� for a double-layered medium con-
sisting of 1.11 cm of M4 and 0.87 cm of M1.

FIG. 12. Comparison between experimental reflected signal �solid line� and
simulated reflected signal �dashed line� for a double-layered medium con-
sisting of 0.88 cm of M1 and 0.83 cm of M2. where �i�� ,��, i=2,3  has  the  following form:
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�i��,�� = −
1

4�3/2

k

�� − ��2 − k2

1

�3/2

��
−1

1

exp�−
Ni��,�,��

2
��Ni��,�,�� − 1�

�
� d�


1 − �2
, i = 2,3,

and where

Ni��,�,�� = ��i�
�� − ��2 − k2 + �i�� − ���2/8� ,

�i = 2�i
�

�
� 1

�i
+

� − 1

Pr�i�

�, �i =
4�i�� − 1��
�i�i�
Pr� f

,

�i
2 = �i

2 − 4�i, i = 2,3.

when k→�, Ji and �i�� ,�� tends to zero, then the Green
function Fi�t ,k� also tends to zero.

1J. F. Allard, Propagation of Sound in Porous Media: Modeling Sound
Absorbing Materials �Chapman and Hall, London, 1993�.

2K. Attenbourough, “On the acoustic slow wave in air-filled granular me-
dia,” J. Acoust. Soc. Am. 81, 93–102 �1986�.

3P. Leclaire, L. Kelders, W. Lauriks, N. R. Brown, M. Melon, and B.
Castagnède, “Determination of the viscous and thermal characteristics
lengths of plastic foams by ultrasonic measurements in helium and air,” J.
Appl. Phys. 80, 2009–2012 �1996�.

4P. Leclaire, L. Kelders, W. Lauriks, C. Glorieux, and J. Thoen, “Determi-
nation of the viscous characteristic length in air-filled porous materials by
ultrasonic attenuation measurements,” J. Acoust. Soc. Am. 99, 1944–1948
�1996�.

5G. Caviglia and A. Morro, “A closed-form solution for reflection and
transmission of transient waves in multilayers,” J. Acoust. Soc. Am. 116,
643–654 �2004�.

6G. V. Norton and J. C. Novarini, “Including dispersion and attenuation
directly in time domain for wave propagation in isotropic media,” J.
Acoust. Soc. Am. 113, 3024–3031 �2003�.

7W. Chen and S. Holm, “Modified Szabo’s wave equation models for lossy
media obeying frequency power law,” J. Acoust. Soc. Am. 113, 3024–
3031 �2003�.

8Z. E. A. Fellah, M. Fellah, W. Lauriks, and C. Depollier, “Direct and
inverse scattering of transient acoustic waves by a slab of rigid porous
material,” J. Acoust. Soc. Am. 114, 2570–2574 �2003�.

9Z. E. A. Fellah, C. Depollier, S. Berger, W. Lauriks, P. Trompette, and J. Y.
Chapelon, “Determination of transport parameters in air-saturated porous
materials via reflected ultrasonic waves,” J. Acoust. Soc. Am. 114�5�,
2561–2569 �2003�.

10Z. E. A. Fellah, F. G. Mitri, C. Depollier, S. Berger, W. Lauriks, and J. Y.
Chapelon, “Characterization of porous materials with a rigid frame via
reflected waves,” J. Appl. Phys. 94, 7914–7922 �2003�.

11Z. E. A. Fellah, S. Berger, W. Lauriks, and C. Depoller, “Verification of
Kramers–Kronig relationships in porous materials having a rigid frame,”
J. Sound Vib. 270, 865–885 �2004�.

12T. L. Szabo, “Time domain wave equations for lossy media obeying a
frequency power law,” J. Acoust. Soc. Am. 96, 491–500 �1994�.

13T. L. Szabo, “Causal theories and data for acoustic attenuation obeying a
frequency power law,” J. Acoust. Soc. Am. 97, 14–24 �1995�.

14Inverse Problems in Mathematical Physics, edited by L. Päivärinta and E.
Somersalo �Springer, Berlin, 1993�.

15F. Mainardi, “Transient waves in linear viscoelasticity,” in Vibration and
Control of Structures, edited by A. Gurran �World Scientific, Singapore,
1997�.

16D. L. Johnson, J. Koplik, and R. Dashen, “Theory of dynamic permeabil-
ity and tortuosity in fluid-saturated porous media,” J. Fluid Mech. 176,
379–402 �1987�.

17W. Sachse and Y. H. Pao, “On the determination of phase and group
velocities of dispersive waves in solids,” J. Appl. Phys. 49, 4320–4327
�1978�.

18K. V. Gurumurthy and R. M. Arthur, “A dispersive model for the propa-
gation of ultrasound in soft tissue,” Ultrason. Imaging 49, 355–377
�1982�.

19R. Kuc, “Modeling acoustic attenuation of soft tissue with a minimum-
phase filter,” Ultrason. Imaging 6, 24–36 �1984�.

20F. Yu, A. Rossikhin, and M. V. Shitikova, “Application of fractional cal-
culus to dynamic problems of linear hereditary mechanics of solids,”
Appl. Mech. Rev. 50, 15–67 �1997�.

21M. Caputo, “Vibration of an infinite plate with a frequency dependent Q,”
J. Acoust. Soc. Am. 60, 634–639 �1976�.

22R. L. Bagley and P. J. Torvik, “On the fractional calculus model of vis-
coelastic behavior,” J. Rheol. 30, 133–155 �1986�.

23A. Hanyga and V. E. Rok, “Wave propagation in micro-heterogeneous
porous media: A model based on an integro-differential wave equation,” J.
Acoust. Soc. Am. 107, 2965–2972 �2000�.

24M. A. Biot, “The theory of propagation of elastic waves in fluid-saturated
porous solid. I. Low frequency range,” J. Acoust. Soc. Am. 28, 168–178
�1956�.

25M. A. Biot, “The theory of propagation of elastic waves in fluid-saturated
porous solid. II. Higher frequency range,” J. Acoust. Soc. Am. 28, 179–
191 �1956�.

26Z. E. A. Fellah and C. Depollier, “Transient wave propagation in rigid
porous media: A time domain approach,” J. Acoust. Soc. Am. 107, 683–
688 �2000�.

27S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and
Derivatives: Theory and Applications �Gordon and Breach Science, Am-
sterdam, 1993�.

28Z. E. A. Fellah, M. Fellah, W. Lauriks, C. Depollier, J. Y. Chapelon, and Y.
C. Angel, “Solution in time domain of ultrasonic propagation equation in
a porous material,” Wave Motion 38, 151–163 �2003�.

29Z. E. A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J. Y.
Chapelon, “Measuring the porosity and tortuosity of porous materials via
reflected waves at oblique incidence,” J. Acoust. Soc. Am. 113�5�, 2424–
2433 �2003�.

30Z. E. A. Fellah, S. Berger, W. Lauriks, C. Depollier, and M. Fellah, “Mea-
suring the porosity of porous material having rigid frame via reflected
waves: A time domain analysis with fractional derivatives,” J. Appl. Phys.
93, 296–303 �2003�.

10




