Skip to Main content Skip to Navigation
Journal articles

The many faces of Ocneanu cells | Les nombreuses faces des cellules d'Ocneanu

Abstract : We define generalised chiral vertex operators covariant under the Ocneanu ``double triangle algebra'' ${\cal A}\,$ a novel quantum symmetry intrinsic to a given rational 2-d conformal field theory. This provides a chiral approach, which, unlike the conventional one, makes explicit various algebraic structures encountered previously in the study of these theories and of the associated critical lattice models, and thus allows their unified treatment. The triangular Ocneanu cells, the $3j$-symbols of the weak Hopf algebra ${\cal A}$, reappear in several guises. % With ${\cal A}$ and its dual algebra $\tilde A$ one associates a pair of graphs, $G$ and $\tilde G$. While $G$ are known to encode complete sets of conformal boundary states, the Ocneanu graphs $\tilde G$ classify twisted torus partition functions. The fusion algebra of the twist operators provides the data determining $\tilde A$. The study of bulk field correlators in the presence of twists reveals that the Ocneanu graph quantum symmetry gives also an information on the field operator algebra.
Document type :
Journal articles
Complete list of metadatas
Contributor : Marc Gingold <>
Submitted on : Tuesday, July 25, 2006 - 3:33:11 PM
Last modification on : Wednesday, September 12, 2018 - 2:14:05 PM

Links full text




V.B. Petkova, J.-B. Zuber. The many faces of Ocneanu cells | Les nombreuses faces des cellules d'Ocneanu. Nuclear Physics B, Elsevier, 2001, 603, pp.449-496. ⟨hal-00087581⟩



Record views