Strong convergence for urn models with reducible replacement policy

Abstract : A multitype urn scheme with random replacements is considered. Each time a ball is picked, another ball is added, and its type is chosen according to the transition probabilities of a reducible Markov chain. The vector of frequencies is shown to converge almost surely to a random element of the set of stationary measures of the Markov chain. Its probability distribution is characterized as the solution to a fixed point problem. It is proved to be Dirichlet in the particular case of a single transient state to which no return is possible. This is no more the case as soon as returns to transient states are allowed.
Type de document :
Article dans une revue
Journal of Applied Probability, Applied Probability Trust, 2007, 44 (3), pp.652-660. <10.1239/jap/1189717535>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00087017
Contributeur : Romain Abraham <>
Soumis le : jeudi 20 juillet 2006 - 18:00:08
Dernière modification le : mardi 11 octobre 2016 - 13:25:11
Document(s) archivé(s) le : mardi 6 avril 2010 - 00:20:13

Identifiants

Citation

Romain Abraham, Jean-Stephane Dhersin, Bernard Ycart. Strong convergence for urn models with reducible replacement policy. Journal of Applied Probability, Applied Probability Trust, 2007, 44 (3), pp.652-660. <10.1239/jap/1189717535>. <hal-00087017>

Partager

Métriques

Consultations de
la notice

182

Téléchargements du document

80