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Abstract

Consider a sub-Riemannian geometry (U, D, g) where U is a neighbor-
hood of O in R?® D is a Martinet type distribution identified to Kerw,
w=dz— 92—261557 q = (z,y,z) and g is a metric on D which can be taken
in the normal form : a(q)dz® + ¢(q)dy?, a =1+ yF(q), c =1+ G(q),
G|z=y=0 = 0. In a previous article we analyzed the flat case : a =c =1
we showed that the set of geodesics is integrable using elliptic integrals of
the first and second kind ; moreover we described the sphere and the wave
front near the abnormal direction using the ezp-log category. The objec-
tive of this article is to analyze the transcendence we need to compute
the sphere and the wave front of small radius in the abnormal direction
and globally when we consider the gradated normal form of order O :
a=(14ay)? ¢= (14 Bz +vy)?, where o, 3, v are real parameters.

1 Preliminaries

Consider the local SR-geometry (U, D, g) where U is a neighborhood of 0 € R3,
D is a Martinet type distribution which can be taken in the normal form D =

Kerw,w =dz — %d:p and g is a C*¥ metric on D which can be written (see [1]) in
the normal form : a(q)dz? + ¢(q)dy*, a =1+ yF(q), c= 14 G(q), Glp=y=0 = 0
and a, c can be expanded in Taylor series using the following weights : z,y of
weight 1 and z of weight 3 given by the privileged coordinates system at O :
q=(z,y,2) (see [9]). Hence we get on orthonormal basis :

1 a Yo 1 0
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Expanding F7, F5 in Taylor series according to the previous weights, and
identifying at order p two elements whose Taylor series are the same at order p,
we get the following normal forms of order —1 and 0 :

e Normal form of order —1 :

g =dx? + dy? (flat case)

e Normal form of order 0 :

g=(1+ay)’de®+ (14 pz +y)’dy’ o, B,7€R

1.1 Geodesics equations

The energy minimization problem equivalent to the SR-problem is the optimal
control problem :

%(t) = Z u; (1)G3(q(t))

=1

T
min [ (ata(0) 1) + e(a(0)u3(0)
ul. 0

and from Pontryagin’s Mazimum Principle [9] the minimizing solutions are so-
lutions of the following equations :

0H, . 0H, 0H,

where H, is the pseudo-Hamiltonian :
2
H, = Zul < p,G(q) > —v(au} + cu)
i=1

where v is a constant normalized to 0 or 1/2. A solution of the previous equa-
tions is called an eztremal ; when v = 1/2 (resp. v = 0) they are said normal
(resp. abnormal) and their projection on the state space are called the geodesics.
They can be easily computed :

e Abnormal case : If v = 0, D = Span{G1, G5} = Kerw and they depend
only on the distribution D. If w = dz — %dl‘, they are contained in the
plane y = 0 called the Martinet plane and are the straight-lines : z = zg.
In particular the line passing through 0 is given by : ¢t — (=+¢,0,0) and
is called the abnormal direction.



e Normal case : For v = 1/2, with g = a(q)dz? + c(q)dy* we get :

2
1
Hijp = uiGi(q) - 5(“”% + cu3)
i=1

Solving ag% =0 we get :

1 2
up = E(px +Pz%) , Uz = %

and plugging (u1,us) into Hy/5 we obtain the Hamilton function :

1
Hyp(q,p) = 3

a C

(e +2:5)? +p_§]

where p = (ps, py, p-) and (1) takes the form :
0H, . OHp

q= ap y P= aq

Another representation is obtained using the frame Fy, Fy and F3 =

2
oz
Y

Dy

and defining P = (Py, P2, P3) with P; =< p, Fi(q) >, i.e. P1 = p"“—l_%,
Py = %, P3 = p,. The Hamiltonian takes the form : H, = %(Pf + P}).

Assuming g not depending on z (isoperimetric situation) the normal ex-

tremals are solutions of the following equations :

. 1 2
r = - (pz +ng{_>
a 2

Py

y
c
2 2
;= ¥ ¥

R (R

pr = 2c2 + 2a? e
2,92 2
- pyey (petp%) (po +p:%)
Py = 2c2 + 2a? @y = a Py
pz =0



which takes the following form in (g, P) coordinates :

r =

I

<
Il
@%
[V
o

. P
z = =——
2 \/a (3)
. Py a Co
Po= —2(yPy— 2 p 4 = p
' \/a(;(y?’ e ' tae 2)
. Pl a Cp
Py = —— (ypy—- 2Lp 4+ = p
2 \/wz(“ ava ' tase 2)
P3:0

1.2 Sphere and wave front

Let » > 0. The wave front W(0,r) at 0 is the end-points of geodesics with
SR-length r starting from 0 ; the sphere S(0,r) is the end-points of minimizing
geodesics of length r and starting from 0. We are interested in the local problem
near 0, hence we choose r small enough ; in this case using Filippov existence
theorem about minimizers we have : S(0,7) C W (0, r).

The ezponential mapping expg is defined as follows. Consider a solution (g, p)
with ¢(0) = 0 corresponding to the Hamiltonian H,, and parametrized by arc-
length © H, = 1/2. We set expg : (p(0),t) — q(2).

Integrability problem :  Two basic questions to compute the sphere and
the wave front are the following :

e Question 1 : Are the geodesics equations (2) integrable by quadratures ?

e Question 2 : If the geodesics equations are integrable by quadratures, what
kind of functions do we need to make the computations : elementary func-
tions (exp, log, cos, sin, ...), elliptic functions (cn, sn, dn, E, K, ...) or
others 7
In particular if we can parametrize the solutions with no more transcen-
dence than elliptic functions, the sphere and the wave front can be rep-
resented using minimal computations with packages of Mathematica or
Maple.

We make in this article a complete analysis concerning those two problems
with the gradated normal form of order 0 : g = (1 + ay)?dz? + (1 + Bz + vy)2dy?.

1.3 The singularity problem and the exp-log category

The general theory (see for instance [2]) tells us that the abnormal geodesic :
t — (£t,0,0) is a global minimizer if its length is small enough ; hence its end-



points of length r, r small, given by (&, 0, 0) belongs to the sphere S(0,r). Near
those end-points the sphere has singularities wich do not belong in general to the
analytic category. In particular this will cause numerical problems to compute
the sphere near those points, even in the ‘“ntegrable’ case. An objective of this
article is to indicate how to deal with this problem in the ‘integrable’ case ; we
compute converging asymptotic expansions in the exp-log category, which is the
extension of sub-analytic functions by the exp-log functions (see [7]). We give
the scale of the asymptotic expansions.

1.4 General research program

More generally the results presented in this article fit in a general research
program to explain the role of abnormal minimizers in SR-geometry on the
transcendence of the sphere. The main lines of this program are the following :

1. Prove that the SR-sphere is not sub-analytic if there exists abnormal min-
imizers.

2. Prove that the SR-sphere is in the exp-log category if the geodesics equa-
tions are integrable by quadratures.

3. Investigate if the SR-sphere is pfaffian in the general case.

This article gives the main lines of the proof of the two first propositions in
the SR-Martinet integrable case. The third difficult problem is briefly discussed
in section 4.

This research program is parallel to a research program of Agrachev-Sarychev
to prove that the SR-sphere is sub-analytic if there exists no abnormal minimiz-
ers, see [3].

2 The integrability problem

2.1 Isoperimetric situation

Since the metric is not depending on z, the z-coordinate is a cyclic coordinate
for the Hamilton function H, = %(Pf + P2) ; hence p, is a first integral and the
integrability of equations (2) can be reduced to the integrability of the vector

field :
. 1 y?
r = p <px + p: 7)
Py

2,9 4
- pygee | (pet+p- %) )
Pe = e + 2a? e
2.9 2
by = 2c2 + 2a? @y = a b=y



with p, = X constant. The geodesics corresponding to A = 0 are called ezcep-
tional. They have a geometric interpretation. If we denote by gr the Rieman-
nian metric a(z, y)dz? + ¢(z, y)dy® induced by g on the plane (z,y) identified
to the quotient space : R?ai , the trajectories of (4) with A = 0 in the plane

(z,y) are the geodesics of the Riemannian metric.

2.2  Metrics of the form : g = a(y)dz? + c(y)dy?

In this case H, is not depending on z and z is a cyclic coordinate ; therefore p; is
a first integral ; another first integral is the Hamiltonian H,. Hence the system
has three first integrals : p;,p., and H, , with commuting Poisson brackets.
Therefore the system is integrable by quadratures.

We proceed as follows. If we parametrize the geodesics by arc-length, we get :
H, = 1/2 and the equation :

PXyPi=1 (5)

a bl
teristic equation ; it can be written :

(Vei)? + (p—f *f‘) =1 ()

2
with P; = p”tz/giy? Py = % , where p;,p, are constant, is called the charac-

Using the time dn = % it can be rewritten :

2 2y 2
N (T
dn Va -
It corresponds to the evolution of a particle of R of mass 2, whose enerqy is
1, with potential field : V (y) = PZ(y).

2.3 The general gradated case of order 0 :
g= (14 ay)*dz? + (1 + Bz + vy)*dy?
If we parametrize the geodesics by arc-length, we canset : Py = cosf , P = sinf.

Moreover if Ps = p, = A and 6 # k7w we get the geodesics equations in cylindric
coordinates :



r = NG
_ sinf
C
. y? cos f ™
T 9/
0 = —ﬁ yA—%cosH%—%sin@

and the last equation can be written :

: 1

0= —m(y)\ —acosf + Fsind)

Making the following change of parametrization : \/E\/E% = % and denoting
by ’ the derivative with respect to T we get :

' = cosf(1+ Bz +vy)
y = sinf(1 + ay)

2 8
2 = %cosﬂ(l—i—ﬂm—{—'yy) ®)
¢ = —(yA— acosf + Bsinb)

The vector field can be projected on space (y, ).

Asymptotic integrability The parameters a, 3,4 are given by the metric.
The exponential mapping is defined on the cylinder (#, ) and the relevant be-
havior is when |A\| = +00. Hence we shall assume :

Assumption : |\ > «a,3,7.
Moreover we make the analysis for A > 0, the case A < 0 being similar.

Consider the projection of the equations on the plane (y, 6) :

!

y = sinf(1+ ay)

9
¢ = —(yA\— acosf + Bsind) )

The singular points localized near 0 are given by : § =0,y = § and § = 7,

y=—% , where y = 0 when A — 4-o00.
Differentiating the second equation and simplifying we get :

0" + Asinf + a?sinf cosf — aBsin?6 + Bcos 6 =0 (10)



By setting ds = V/Adr we get the equation :

d?0 do
= —}—siné’—}—aﬂcosﬁg+62asin6(acost9—ﬂsin6):0 (11)

QL

where € = % is a small parameter, and the remaining equations are :

d
d—m =cecosO(1 + Pz + vy)
s

dz y?
g5 = &g cos 6(1 + Bz + ~vy)

and y is given by the second equation of (9).
For £ = ﬁ , the equation (11) defines a one-dimensional foliation (F) on the

i6 d@).

cylinder (e, 5=

Local analysis The foliation (F) has two fixed singular points corresponding
to My : (0 =0,0 =0) and M5 : (¢ = 7,6 =0). The behaviors near those two
points can be studied by linearization of :

§o=
v = —(sinf +¢eBcosfv+ e asinb(acosfh — Bsinh))
We get :
e Near M;. The linearized system is :
§=
i o= —(0(1 +&%a?) + efv)
and the eigenvalues are the complex numbers :
—ef + 2i/1 4 €2(a2 — &)
2
In particular for 8 # 0 , the point M, is a focus.

g4 =

e Near M. We set ¢y = # — m and the linearized system is :
Y=
v = —(—t¢ —efv+ela’y)
and the eigenvalues are the two real numbers :

el + 2/1+e2(5 — a?)
N+ = )

and the point M, is a saddle.
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Figure 1: The conservative and the dissipative cases.

Integrability properties of F

e Near M; We must distinguish between two cases :

Case B #0: M; is a focus. The equation can be linearized in the real
analytic category ; hence the system can be locally integrated using the
following elementary functions : exp, sin, cos. This does not mean that
the system can be (even locally) integrated by quadratures. In particular
a focus does not admit any continuous first integral.

Case f# =0: In this case M; is a center. The global solution will be
given later.

e Near M5 The integrability problem is much more complex because M5 is
a saddle. The formal linearization depends upon the resonant situation:
N+ /n— € Q , and the non resonant situation : n4/n— € Q ; but in both
cases there erists a formal first integral (see [6], and the discussion of
section 4).

The analytic integrability requires some extra work but we can conjecture :

Conjecture : For @ # 0 , there exists € such that the saddle is not
integrable in the real analytic category.

Global discussion For 3 =0, the foliation (F) is described by :
6" + sinf + c2a’sinf cosf =0 (12)



where @' is the derivative with respect to s. This equation is integrable and
is indeed a standard equation from elasticity theory, see [14], [4]. It can be
integrated as follows. Multiplying by 6’ we get :

0"9' +sinf 0 +c*a”sinfcosf 6 =0
Integrating we obtain :

1 2,2

50" (5) = 07(0)) = cosb(s) — cos 6(0) + =% (cos® f(s) — cos?6(0)  (13)

Remark In our problem %p:o is computed using : ¢(0) = (z(0), y(0), 2(0)) = 0.
We observe that # can be integrated with only one quadrature using equation
(13). Hence we have :

Proposition 2.1. The foliation (F) is integrable in the C°-category if and only
if 5 =0. In this case it 1s integrable in the C¥-category. The condition § = 0
1s equivalent to the fact that 6 can be integrated using one quadrature.

Integration in the case § =10

This case is called the conservative case and the Hamiltonian H,, has two
cyclic coordinates : z and z, and the geodesics equations have the three first
integrals : p,, p, and H, = %(Pf + PZ) whose Poisson brackets are zero. The
angle f can be computed using one quadrature and the same is true for y using
the relation between y and # coming from the equation p, = constant.
Using the analogy with the pendulum where the derivative of the angle can be
represented with the Jacobi functions cn and dn (see [10]), we can compute y
using the same Jacobi functions. This comes from the following analysis. The

characteristic equation (6) can be written using the parametrization dr = jﬁ/E :

dy\* v\’

2N 2
Hence setting : F(y) = (1+ay)? — (px + P, %) , we observe that F' is a quartic

where a = (1 + ay)?.

which can be written as Fy Fs with :

2

2
F1:(1+ay)—<px+pz%) s F2:(1+Oly)+<Px+Pz%>

and we can write :

=337 o3 0+30)

Where2m2:1—px+% . 2m”:1+pz—%andm2+m”:1.

We have p, = cos 0(0) , hence |p;| < 1. Then m? > 0ifa #0;m? >0ifa =0

10



and 6(0) # 2n.

If we set :
_\/Xy o 7_\/Xy+ o
= 2m 2mv A » 1= 2m 2mvV A

we can write :

F(y) = 4m*(1 —n)(m" + m*7°) (15)

and F is a quartic whose roots on C are = +1 , 7 = £¥™" The case m” =0

m
is called eritical and it corresponds to a double root for F'.

Lemma 2.2. If a # 0 in the gradated normal form of order 0, there exist
geodesics starting from 0 which are critical.

Geometric interpretation If @ = 0, the geodesics can be integrated like in
the flat case studied in [2] : m” = k'* = V/T — k2, where k is the modulus of the
elliptic functions, and &’ is the complementary of the modulus. When p, — —1,
k' — 0, then y behaves like a sech. In the (f,0) projection, the system has a
saddle connection and the projections of the geodesics tend to the separatriz.
When « # 0, the separatrix is the projection of a geodesic starting from 0.
The role of the parameter o 1s to make the separatriz and hence some rotating
trajectories of the pendulum as projection of geodesics starting from 0.

Normal form The characteristic equation can be normalized using a classical
method, see [10,p.55]. We proceed as follows ; F is factorized into Fy F5 and we
consider the pencil Fy + vFs of two quadratic forms.

If @ # 0, there exists two distinct real numbers vy, v9 such that Fy + v Fs is a
perfect square : Kq1(y — p)?, Ka2(y — q)?.

Using the homographic transformation :

y—pr
y="— (16)
y—1
the characteristic equation can be written in the normal form :

dy (p—q)~'du

VW) B V/(A1u? 4 By)(Azu® + Bo) (17)

Excepted the critical case m” = 0, the solution in the u-coordinate can be
computed as follows :

e if the quartic F' admits two real roots, u can be parametrized using the
cn Jacobi function ;

e if the quartic F' admits four real roots, u can be parametrized using the
dn Jacobi function.

11



If @ = 0, the analysis is simplier ; indeed F(y) can be written :
Fly) = 4k*(1 — p?) (K" + k*n?)
Viy

where n = ;% and n can be computed using only the cn function.

Hence we have proved the following :
Proposition 2.3. We have two cases :

(i) Ifa=0,y= \2/—%77 where 1 is the cn Jacobi function.

(it) If « # 0, y is generically the image by an homography of the cn or dn
Jacobi function.

Geometric interpretation If a = 0, the motion of y is a cn whose amplitude
is \2/—% ; in particular the motion is symmetric with respect to y = 0 and the
amplitude tends to 0 when X tends to the infinity.

If o # 0, we can expand the homography : y = 2=F near u = 0. The motion
of y is no more symmetric with respect to y = 0 ; there is a constant term in
the expansion. Hence y can generically be approximated for u small enough by

a shift plus a cn or dn motion.

Integrating z or z Both z(7) and z(7) can be computed using only one inte-
gral. The integrand is a polynomic function of y. Moreover y can be expanded
into a power series in u. Hence the transcendence we need to compute z or z 1s
given by primitives of the form :

Im :/cnmudu , Km :/dnmudu

Those primitives are computed by recurrence in [10, p.87]. It involves a new
transcendence : the Jacobi epsilon function FE(u, k) defined by :

E(u,k):/ dn®(v, k) dv
0

This function was already needed in the flat case, see [2].

Arc-length parameter To recover the length parameter we use the formula:
dt = (1 + ay)(1 +~vy)dr. As previously y can be computed as a power series in
u ; hence it can be evaluated using the same primitives J,, and K,,.

2.4 Application : computation of conjugate points

One interesting and non trivial application of the previous parametrizations is
the computation of the conjugate points ; they are solutions of the equation :

Oz 0y Oy Ox

A A ey

OX 08y  OXOOy

where 6y = 6(0) and z,y are the two first components of a normal geodesic.
This equation was used in the flat case to evaluate the conjugate points.

12



3 Transcendence of the sphere and the wave front
near the abnormal line. The exp-log category.

3.1 The geometric framework

In order to study the structure of the sphere or wave front near the abnormal
direction it is convenient to consider the following traces :

5(0,7)=5(0,7)Nn{y=0} and W(0,r) = W(0,r)N{y =0}
This leads to the important concept of return mapping :

Definition 3.1. Let ¢ : t € [0,7T] — (z(2),y(t), 2(t)) be a normal geodesic
parametrized by arc-length. If y(t) Z 0 we can define : 0 <t; < --- <ty T
as the times corresponding to y(t;) = 0. The first return mapping is :

Ry : (A, 0(0)) — (x(t1), 2(t1))
and more generally the n-th mapping s the map :
Ry (X, 0(0) —> (2(tn), 2(tn))

If the length is fixed at r, we observe that IV is the union of the image of
the return mapping with z = +r, z = 0.
The following proposition is straightforward, see[4] :

Proposition 3.2. For each n > 1, the return mapping R, is not proper.

by z
Ry
T
\d Bl
cos #(0) x
“ 0 i (—r.0) 0 (r,0)
Dom R, Im R,

Figure 2: The first return mapping in the flat case.
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3.2 Formulas in the conservative case

If the metric ¢ 1s not depending on z, it is convenient to use the following
formulas from [8]. We introduce :

”— sign y(0) if y(0) #0
| sign g(0) ify(0)=0
If the motion of y i1s periodic with period P, we set :

= t _ = 1 t
Y+ tg[loég]y() ;Y t?’[ol,%]y()

Parametrizing the geodesics by y we must solve the equations :

dr _ /e Py dz _y* e P g = Yy

dy — JaP, dy  2vap, TRV

where Py (y) = ov/1 — PZ(y) for t € [0,4].

If y(T) =0 for T' = tx we get the formulas :

e N odd

Ly [TV P vy [P
z(T)=2 i aﬁmdzﬂr(]\f 1)/y_ \/a—mdy
amy= [ Ve yEPi(y) dy+ (N =1y [ Ve  yPi(y)

"l VA= R v WAT=PE()

dy

(18)
e N even
2(T) = N/y+ Ve Py
z(T) = N/y+ Ve yh) dy
Y- 2\/5\/1_}312(2‘/)
and the period is given by :
v+
P = 2/ Lz dy (20)
Y- 1= P{(y)

3.3 Computations in the flat case

The basis of the general algorithm to compute the image of the return mapping
is coming from the flat case where g = dz?+dy?. The algorithm is the following.

14



Both sets §(O, r) and W(O, r) are symmetric with respect to 0 and we can assume
z > 0. From [2] the image of Ry in z > 0 is parametrized by :

4F
:l:(k, )\) = -1+ —
, (21)
9.2 2 -
where K and E are the complete elliptic integrals with modulus k = 1_%,
pr = cosf(0), k' =+/1 —k? and 0(0) € [-m, 0] :
3 do 3
K:/ _— E:/ 1—k2sin?6df
0 V1—k?sin*0 0
and the period P = %K(k).
Both parameters A, k are related when we fix the length to r :
2K
t=r=— 22
A 22)
Hence the image of Ry in z > 0 is given by :
E
r = —r+2r7
o ) (23)
- 9.2 _ 12 1.
2= (2K = 1)E + KK

It is a parametric curve parametrized by k’. Tt is semi-analytic excepted when
6(0) — —m and k —> 17. This can be seen using the following expansions for
E,K when ¥/ — 0 :

2 4
E = ul(k’?)lnp+U2(k’2)
. 2 4
K = u;;(k'?)lnp—i—uzl(kﬂ)

where the u;’s are analytic functions and moreover :
m(k?) = 4ok wk?) = 15 (k)
us(K?) = 145 4ok wa(k'?) = —EX 4ok

In particular both E and K have a logarithmic singularity when k' — 0
and hence, using [11], the branch of (23) near z = —r, denoted by Bj, can be
computed in the exp-log category by eliminating k’. More precisely the algorithm
is the following :

15



E ul(k’2)ln%+u2(k’2)
K U3(k’2)ln% —|—U4(k’2)

_ 1 57,2 12 7~ c
Z = |2k = 1)+ 1 K] (25)

Then :

Step 1 : ‘Compactification’ If we introduce :

1

X, =k Xy =
1 ) 2 hl%

we have : X1, X3 — 0 when ¥/ — 01 and both X and Z are analytic func-
tions of X; and X-.

Step 2 : ‘Finding equivalents’ An easy computation using (24) shows the fol-
lowing :

Xi~4e"% | X9~X  when X — 0%
and we can write :
Xy =4 X (14 Y1(X)) , Xy=X(1+4Yy(X))

where Y7,Y> — 0 when X — 01
Both Y7 and Y5 can be compared and a computation gives us :

Y,
Yy =X A (X,Y7) wa? when X — 0%

where A; is a germ of analytic function at 0.
Step 3 : ‘Solving equation (24) in the analytic category’ The equation (24) can

be solved in the variables Y1, X7, Xy by using the implicit function theorem in
the analytic category and the computations show the following :

e %

X )
where As is a germ at 0 of an analytic function.
Using this relation we end with :

Y1 = Ay (X,

e_%
X )

where F' is a germ at 0 of an analytic function.

7 =F(X,

N.B. If we use only the fact that the u;’s functions are analytic with respect

-1
to k' we get a scale -
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3.4 Computations in the general conservative case

The algorithm is similar to the flat case using the integral formulas of subsection
3.2, but the computations are much more complex. The additional complexity
is coming from two phenomena called respectively the double log and the period

halfing.

3.4.1 Double log

In the flat case the relation (22) expressing the fact that the length is fixed to
r is trivial. In general this is no longer true and we must solve an equation of
the type :

z=ylny y — 00

We set :

o

Y e
and plugging y into the equation we get, using the implicit function theorem in
the analytic category, a relation :

(14+7Yi(z)) withYy =o(1)

Yy = A(Xy, Xo)

where A 1s a germ at 0 of an analytic function, and X;, X5 represent the scale

factors :

1 Inln:
X = X2:nn13
Inz

Inz

3.4.2 The period halfing

In the flat case, the image of R; contains only one branch Bj in the domain
z > 0 which is not sub-analytic. It corresponds to the limit behavior of the
oscillating trajectories of the pendulum when 6(0) — —m, which tend to the
separatrix. When a # 0 it comes from our analysis that we must consider :
on one side, oscillating trajectories, where y is parametrized by the cn Jacobi
elliptic function ; on the other side, rotating trajectories, where y is parametrized
by the dn Jacobi elliptic function. It can be interpreted as a period halfing
phenomenon by using for fixed k the relation : dn’s = k'* + k%cn?s and taking
k — 1. In this case the image of Ry contains two branches By and Bz which
end at x = —r, z = 0 and they are not sub-analytic. The branch B; corresponds
to a cn-behavior and the branch B5 to a dn-behavior. The branch Bs shrinks
to 0 when a — 0.

The figure 3 illustrates the role of the parameter o. Indeed imposing y(0) = 0
and y(r) = 0, this defines a section S given in the space (4, %) by the equation :

do
ds

The role of the parameter a is to push the separatrix ¥ as an admissible tra-

= e(acosfl — Bsinf)

jectory ; hence we get the two non sub-analytic branches B; and B;. This
phenomenon is illustrated on figure 3.
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dé
ds

Ry

Figure 3: The separatrix X

3.5 The algorithm to compute B; and the complexity of
By

The aim is to give the precise transcendence of the branch B; in the general
conservative case. From now on, An(.) and Ang(.) denote a germ of analytic
function at 0, and moreover Ang(0) = 0.

Recall the general formulas that give a parametrization of this branch :

Va o P
z(r = -2 = 26
") L (26
Y1 e yP
z(r = — ———d 27
") 1 (27
v, 1
r = =2 c——d 28
where :
aly) = An(y) = l+ay+ay’ +...
cly) = An(y) = l+yw+...
and :
pe + 397 < 3., A) )
P = z — Pe Y+ sl —a')+ - +
1 () ) R S A )+ 5 |y



and y_; is the negative root of 1 — Py (y) (we will justify it later).

The objective is to express x and z as a parametric curve in the exp-log category
and compute the graph in the same category by elimination of the parameter.

3.5.1 Precision on parameters

We study the system near the abnormal direction, so we have :

A— 40, p; ——1

Precision on y_; In the flat case, P;’s graph is a parabola, represented on
figure 4.

P1 Pl
1 1
Y+ 0 Y Y- 0
-1 -1
Flat case Perturbed case

Figure 4: P;’s graph

The general integrable case can be considered as a perturbation of the flat
case where the parabola is deformed into a non symmetric graph (see figure 4).
Hence the existence of y_1, as a negative simple root of P; = 1, is straight-
forward.
Using the implicit function theorem, we get :

Moreover, by continuity with the flat case : y_; ~ — %(1 - Ps)
\/X—>+oo

19



Precision on Pj(y)’s roots

Proposition 3.3. There is in the foregoing domain an unique root S of PJ.

Moreover : 1

« Pra
= —An(py, ~) ~
S=3An 7).

Remark 3.4. S=0& a=0.

<0

Proof. Tf X is large enough, then :  Vy P/ (y) >0
. / 2 / 2
Moreover : P <_ﬁ) P (W) <0
We can deduce that P; admits an unique root in this domain. The remaining
goes as before. O

Remark 3.5. In the flat case, we have : S =0, P;(S) = p;.

This remark leads us to define :

Definition 3.6. k' = 4/ %ﬁl . k= \/#ﬂ

As in the flat case, we have : k2 + k'> = 1, and then : k = 1 + An(k’z).
Note that p, — —1, so k¥’ — 0.

k' and X are our new parameters. They are the initial conditions for the
geodesics. Our aim is the following : from (27) and (28) we express z and z
in terms of & and A ; from (28) we get an implicit relation between &' and A.
Solving this implicit equation, we will get A in terms of k', so that we get =
and z in terms of k’. Then the problem is to eliminate the parameter k', to get
finally the graph z(z).

As we will see, the previous expansions are in the exp-log category (see [11]),
e.g. these are analytic expansions in k' and some functions composed of exp
and log. Hence the aim is to express the graph z(z) in this category, with a
precise scale.

We meet two technical problems :

1. justifying the convergence of the expansions.
2. solving algorithmically this problem of elimination of parameter in the
ezxp-log category.
The problem of analyticity of the expansions is based on the following :
Proposition 3.7. Let f,(z) = Y anp2P, n € N, be a family of entire series

P
that converge for |z| < 1. Suppose : AA | Vp > |anp| < A.

Then f(z) = > fo(z) = > (O an p)2? is analytic and converges for |z| < 1.
n p n

In what follows, we will not detail all these calculations, which would be too
long. Note that, to do this, formal computations using Maple packages was very
helpful.

We will now express all our parameters in terms of k¥’ and ﬁ
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Expresgion of p, By definition : k> = %ﬁl with S = 2An(p,, 1)
So: 2k'"" — 1= Pi(S) = pa + +An(pz, 3)
And, using the implicit function theorem, we conclude that :

1

Expression of S We get easily :

1 1
§=1An (k’2, X) ~— (30)

Expression of y_; We obtain :

y-1= %An <k’2, %) ~ _\% (31)

3.5.2 Preliminaries before calculating integrals

The aim is to expand analytically all the integrands, so that very simple refer-
ence integrals appear, which will give the precise transcendence of the branch.

Expansion of P; with the new parameters P; appears in all formulas, so
it’s natural to work on its expression.

Recall that : Py (y) = 1L\/(%_y)2 — An (Pz, %’ \/Xy)
a(y

Let’s make a change of variable :

<2k77 + Sx/X) (32)

y:

-

We get actually, recalling that P{(S) =0 :
Pi(y) = Pi(S) + 2k%n? (1 +1ip (p L)) + A <l<:’2 — i) (33)
ATV VA VATV
with F' analytic.

Expansion of m From (33) we get :

1= Pi(y) = 2k* — 2k*n* (1 +Lan ( o L)) I an <k’2, - i)
A VA VA PNRVAY

Hence, remarking that k = An(k’2) :

(valid if |Py(y)| < 1, which will be the case in our integrals...)
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1

Expansion of From (33), we get :

14+Pi(y)
1 1 7]3 2 1 77
1+ Pi(y) = 2k + 2k2p? <1+—F< z,—))—{-—An <k/ __)
e U AR)) TR A
If we make the change of variable : n = %’ 1+§F(lpm,%)
Then :
k'u3 2 1 ku
ep) = o (1ee s S (k2,02 L)
1(y) VA VATV
k'u3 5 1 ku
= 2kl2 1+U2 (1'1'71471 (kl ,_a_))
( ) V(1 + u?) VATV
Hence :

1 1 1 <1+A (](7/2 1 ku k3 )) (3r)
= n ) _7_77 9
1+ Pi(y)  KV2V1+u? VIV VAL + u?) '

(same remark on the validity of the expansion)

3.5.3 Expansions of the integrals

Reference integrals As we will see later, the following integrals are useful.
They will be, in our expansions of z, z, and r, our reference integrals.

Proposition 3.8. Let p,i € N. Then :

ol uzi 1 2p—1
———du = —————— | o (V1+2? ln(m—}— 1—1—:132)
/0 (VI u2)"* Vit 27! ( o )

+pix 4 psrd 4 -+ N%_lx?i—l)

x w2t 1 _
_— I 2 21
/ ( du = i+ (/10+/12I + 4 oz )
0

VIt u2) ™t (VTi+22)?™

Proof. The proof is elementary. Let I; , be one of both integrals studied. We
have immediately :

Livip=1ip-1—1Lip
So it’s enough calculating (I; o)ien and (Io p)pen to get all I; , , which iseasy. O
Proposition 3.9. Let i € N. Then :
Ifix1: [Jt5V/1+82dt = Xln(z+V1+22) +MaV1+a2?
+(1+ 2232 (12 + psa® + - + pgio12? )
Ifi=1: foxtzx/l—k—t?dt /\Oln(m+\/1—|——m2)+/\1rm
Ifi=0: [JVI+t2dt = Xoln(z++/1+2?)

22



Proof. The change of variable : ¢+ = sh(u) leads to the formulas. O

Expansion of the length Recall the formula :

RV —

1—P2<>

It is an improper integral, because Py(y—1) = 1. Since y_, is a simple root, the
integral exists. We see easily that the formal expansions done previously are
relevant, and that we can exchange f and Y , which is not obvious a priori.
From our previous calculations, and both changes of variables, we get :

B
r:2/ Cdu
A

with :
1

2
A = E7<—L+An%’,

1
)
« 12 1
C = Vex1/\/1—=P x1/3/1+ P xdy

<1+An( \}.iq) V;<1+A(M2;§Aﬂu{g%ox

1 1 <1+A (k,2 k'u k' )) " 2k Y <1+A (k'2 1 )>
S = s n bl _7 _7 PPN = n bl =
: + u* + u
k2 VT +u? VA VATV + u? VA VA
Hence :
r‘/_ j/ J/ An(k?, K K e
V14 u? \/1+u2 VI VY VA 4 u?)
=hLh+1D
Calculation of I I is sum of the following integrals :
B klp+m+2n u3p+m+2n
A ()T (vTF e

Hence from (3.8) and (3.9) we get :

fm(yﬂfayﬁn%wﬂmvﬁ) ifa 40
Jp,m,n == /2

An(kﬂ RV

|,_.

3 if o =0

ﬂ
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Remark that k' always appears squared. This induces that the expression of
z in function of  + r will not contain any +/x + r.
Moreover, a detailed analysis gives :

In2 + Ang (k’2 %, k’zlnk,,k’2ln\/—) if a #0
I, =
2+ Ang (K2, 2 k7 In L) ifa=0

Calculation of I;

I = Argsh(B) — Argsh(A)
But, if X —» +o0:

1
Argsh(X)=In(X + V1+ X2)=InX +ln2+A”0(ﬁ)
Hence :
Y 1 12 1 12 .
. 21In ln\/X+ln()+An0<k 5ok A) if o #0

In L +In2 + Ang (k"),\/_,k’?)\) ifa=0

Remark 3.10. Here we can state that there is a ‘period doubling’ if and only
if a £ 0.

We obtain actually an implicit equation in v/X :

/X 2In % — Inv/X +In2a + Ang(k"*, 2 oS k2 In & kX K2 Inv/A) i a#£ 0
2 = 1n—+21n2+An0(k’2 k' X) if =0

’\/)\’
Resolution of the implicit equation From now on, we set : .
We must distinguish between two cases :

e Case o # 0 We have :

A 1 A 1 1
r\'Z/— =Iln- — ln(r\/—) + In(ra) + Ang(t, —=,tIn ?,t)\ tln\/X)

t 2 VA

Easily : ’%@Nln% . We set : %Q:ln%—i—u.Hence:

1 u /1 1
,vin —,
"Imi’nl t

1 1
tIn? = ¢Inln =)
: : t t

= — lnln — + In(ra) + Ang(t,

Then we set : u=—Inln1 +In(ra) +v . We get :

1 Inln+ 1 1 1
,—1,& tln ,tIn? = tInln =, v)
In ; lnt t t

v = Ang(¢

24



And the implicit function theorem allows us to conclude that :

v = Ang(t,

‘Int’ Inl’
1 Inlnl 1
=A —t 4In?Z
no(ln% ln% o t)
A 1 Inlni 1
cel : 7“\2/__1 _—hlhl—-l-ln(roz)—}-Ano(l T —Iinn%t,tlﬁ ?v)

e Case a = 0 We set : ’"\/Xzéln%—i—Zln?—}—u.Hence:

2

1 1 1
u = Ang(t, —1,tln—,tln2 -, u)
ln? t t

And, in the same way, thanks to the implicit function theorem, we obtain :

A1 1 5 1
5 ——l —+21n2+An0(1n%,tln ;)

ccl :

Expansion of z Recall that :

Y_q P
z(r) = —2 ve B dy
o Va./1-P?

Write . Py _ 14+P _ 1 _ 1+P; 1

VAR AR VR ViRV
nd using :

=-2
0 fﬁ Y

We get :

el R [ ()

Now, with the previous notations, we have :

N
S
3

\/_ 2 k'u
© =LA 5 )

o VTTP = VIV (14 An(k? o B ke

Thus we obtain X = % as an analytic sum of integrals of following type :

du

B klP+m+2ﬂ+2u3p+m+2n

A (\/X)P+m+1(\/1+—u2)2p_1
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From (3.8), we get :

1 21 12 1 12 .
prn’m:{ S An(K?, S K In kflnﬁz) ifa#0
1T @ =

H
S
3
=
=
[V
|)—‘
=
[V
_
=
%) %
KBNS

Knowing \/LX’ we obtain :

: 1 1 Inlni 1
fa#0: X = T — An —,&,tlrﬁ—
2r ln% 1 % ln% t
2 C 1
= —+—+4+0(— 36
fa=0: X = T = %An Ll,tan1
2r ln? ln? t

Expansion of z Recall that :

In the same way, we prove :

1 1 Inlni .1
Ifoz;éO: Z = lnTl <1 T lnlt’tln ¥>
¢ ¢ ¢
4 1
= 3+O—3 37
s +olsy) (37)
1 1 1
fa=0: 7 = —5An —1,tln2—
ln% In ¢ t

Now we have a parametrization (X (t), Z(t)), the problem is to eliminate the
parameter t.

3.5.4 Inversion of the parameter : ¢ in function of X

Set X = %
The method to express t in function of X is general in the category of functions
in which we work. In our example, X is an analytic function of ¢ and some
functions composed of In and ¢, which tend to 0 when ¢ tends to 0. So we work
in a sub-class of the exp-log category (see [11]), denoted by LE. The general
theory from [11] tells us that + = F/(X) with F € LE. But this general theorem,
whose proof is based on Weierstrass preparation theorem, is not algorithmic.
Our problem is more specific : we work with a parametrization with a specific
scale. In this case we can develop an algorithm to compute precisely F', and
thus find the sub-class of LE which is needed to express ¢ as a function of X.
First of all we give the algorithm in the particular case of our example, then
we give a general result :
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Algorithm Let u = —Lr. Then :

T
In 3

X = An (u,ulnl,e_;)

1
= u+ulln=+ C’u2—|—o(u2)
u

where C' is a constant (which can be precisely computed).
We get easily :

1
u=X — len} — OX? 4+ 0o(X?)
which leads us to set :

1
u:X—X2lny—CX2+X2v

Then :
1 1 1 1 1
— = Ao+ C— vt An(X, XIn? 2, XIn = v)
e_% = e_CXe_%(l—FUATL(U))
mY = I 4 An(X, XIn—, X
Ilu nX+ Tl( ) nXJ U)

Plugging into (38), we get :

1 e
0=X%v+ An(X, XIn —, —
v+ An(X, nX, ~ V)

the analytic function being a o(X?), which allows us to divide this equation by
X2, Then :

1

1 9 1 31 e X
0=v+ AH(X,XIH },Xhl },Xhl }, F, 'U)
Applying the implicit function theorem, we get :
1 1 1 e x
v = An(X, XIn X’Xhﬁ y,Xln3 X eX; )
and the same goes for u.
Plugging into the expansion of Z, we conclude :
1 5, 1 31 e x ,
7 = An(X, XIn X,Xln X,Xln X' X5 ) (39)
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Remark 3.11. we can be more specific on the first terms of the expansion :

1 .
7 = EXS + X*An(X) 4+ O(X*e™x).

Our computations have proved the following :
Theorem 3.12. The sub-Riemannian sphere in the general Martinet conser-
vative case is in the log-exp category.
3.5.5 Generalization of the algorithm

The previous algorithm can be generalized in the following manner. Our aim is
to build a sub-class of the general log-exp category (see [11]) with the following
functions :

hl(t) =1
hQ(t) = ln%
hs(t) = e 7

Notation AP means h x h x ... x h (p times).
APl means hoho ... oh (p times).

Definition 3.13. We set :

& = {h’l7 H (hgk])k /i, €Z"meN, (p=1 and i <0) 0r(p22)}

7 = {hf{ II (hg]) / (p>1) or (p=0 and i1:1,i'1<—2)}

0<i1<i2< <im

& — {h;{ I (h[;k])ii‘e‘% /peZ,i;eZ,feI}

0<i1<i2<<im

Proposition 3.14. Let F(Xg, X1,...,X,) be an analytic function near 0, so
that : F ’5’ Xo‘
Let X(t) = F(t, f1(t), ..., fa(t)) where f; € £ U Es.

Let r be the greatest degree of meromorphy in the expressions of the f;’s, i.e.

the greatest power to which appears % wn the expressions of the f;’s.

Let g1(t) so that : X(t) = g1(t) + o(t"*tY) (in fact : g1 € Vect(h1,&1))
Then :
1. Hgg c V€Ct(h1,gl) / t= gg(X) + O(Xr+1)‘

2. If we set : t = go(X) + X"T1u, then u can be computed using the analytic
implicit function theorem.
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Remark 3.15. This algorithm implies not only that t can be expressed as a
function of X wn the log-exp category ; it gives a precise scale.

4 The general gradated case of order 0

To investigate the general case a method is to consider the general case as a
perturbation of the integrable case. This point of view is similar to the one used
to solve the 16" Hilbert problem about limit cycles.

We proceed as follows : if § # 0 in the gradated normal form of order 0, the
basic second order equation (11) describes a non conservative pendulum. The
asymptotic expansions of the SR-distance near the abnormal direction can be
evaluated by estimating the solutions near the saddle.

Since this saddle is not a priori integrable in the analytic category for any
value of the parameter ¢ = %, we use the procedure of [13, p91] to compute
the Poincaré transition map near an hyperbolic saddle point depending on a
parameter.

It is based on the ezistence of a formal first integral and uses the following
normal form near a saddle :

9 3 N
X, ~ zo + y(—r(e) + ; Oti+1(5)(l‘y)l)%

where r(e) is defined using the linearized system :

X0 =egn—rChgy o re) =]

where A1, Ay are the two eigenvalues of the saddle, and »(0) = 1 (flat case) in
our situation.

The previous vector field can be integrated by making the following (toric)
blowing-up : v = zy,v = xz. This procedure allows to compute asymptotic
expansions for the solutions near the saddle. By essence this method will not
provide converging erpansions.

This procedure is based on the use of our normal form. Moreover for com-
puting z and z we require one more integration. Hence we can imagine that
the final expansions are converging. Another method which could be used to
compute converging expansions is the use of Briot-Bouquet theory. This method
is the following :

Similarly to the general conservative case, the objective is to express X and
Z in terms of k’. To understand precisely the role of the parameter 3, one may
study the system with the following particular metric :

a=1, c=(1+px)?

In this particular case, the general differential system (3) is simplier. Indeed
dividing by y we obtain :
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dx , Py

— = o(l+pz)— 40
dz y? Py
— = o(l+pr)—m— 41
R (41)
P
L = Ay+eoy/1— P2 (42)
dy
where o = sign(y).
Moreover we fix the length to 7, hence :
Y1 P1
r= 2/ (14 fzr) —=dy (43)
Y1 V11— P}

Contrary to the conservative case where P} was explicitly given, P; is solu-
tion of a differential equation.
It seems reasonable to think that one could express P, analytically in some class
of functions. Indeed plugging in (41) one would express z(y), then the relation
(43) would give A(k'), and finally it would go as before.In this analysis the key-
equation is equation (42) :

If we set : P =—1+2f% f(0) =k, and n =)y, we get :

d 1 1 ©
2f—f:.—77+5fv1—f2=,—77+6f+52anf2”+1
dn 2 2

n=1

This is a Briot-Bouquet equation, studied by Boutroux, see [5]. We can expect
to get sectorially converging expansions of P;, which could help us to compute
expansions of X and Z. More precisely we conjecture that :

e for D; = {0 < n < k'}, P; has a convergent Taylor series (which is
computable thanks to (42)).

o for Dy = {k’ < 7 < 1}, P; can be analytically expanded in some scale.
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