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Hybrid robust stabilization in the Martinet case

Christophe Prieur∗ Emmanuel Trélat†

Abstract

In a previous work [33], we derived a result of semi-global minimal time
robust stabilization for analytic control systems with controls entering lin-
early, by means of a hybrid state feedback law, under the main assumption
of the absence of minimal time singular trajectories. In this paper, we in-
vestigate the Martinet case, which is a model case in IR3 where singular
minimizers appear, and show that such a stabilization result still holds.
Namely, we prove that the solutions of the closed-loop system converge to
the origin in quasi minimal time (for a given bound on the controller) with
a robustness property with respect to small measurement noise, external
disturbances and actuator errors.

Keywords: Martinet case, hybrid feedback, robust stabilization, measurement
errors, actuator noise, external disturbances, optimal control, singular trajec-
tory, sub-Riemannian geometry.

AMS classification: 93B52, 93D15.

1 Introduction

Consider the so-called Martinet system in IR3

ẋ = u1f1(x) + u2f2(x), (1)

where, denoting x = (x1, x2, x3),

f1 =
∂

∂x1
+

x2
2

2

∂

∂x3
, f2 =

∂

∂x2
, (2)

and the control function u = (u1, u2) satisfies the constraint

u2
1 + u2

2 6 1. (3)
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System (1), together with the constraint (3), is said to be globally asymptotically
stabilizable at the origin, if there exists a control law x 7→ u(x), satisfying the
constraint (3), such that every solution of (1), associated to this control law,
tends to 0 as t tends to +∞ (and if a stability property holds, see Definition 2.5
below for a precise statement).

According to Brockett’s condition (see [10, Theorem 1, (iii)]), there does
not exist any continuous stabilizing feedback law x 7→ u(x) for (1). The robust
asymptotic stabilization problem is an active research topic. Many notions of
controllers exist to handle this problem, such as discontinuous sampling feed-
backs [11, 35], time varying control laws [12, 13, 25], patchy feedbacks [4], SRS
feedbacks [34], enjoying different robustness properties depending on the errors
under consideration. We consider here feedback laws having both discrete and
continuous components, which generate closed-loop systems with hybrid terms
(see [5, 33, 39]). Such feedbacks appeared first in [27] to stabilize nonlinear
systems having a priori no discrete state. Many results on the stabilization
problem of nonlinear systems by means of hybrid controllers have been recently
established (see for instance [9, 16, 17, 22, 24, 42]). The aim is to define a
switching strategy between several smooth control laws defined on a partition of
the state space. The notion of solution, connected with the robustness problem,
is by now well defined in the hybrid context (see for instance [16, 29]).

In [33], we proved the following general result. Let m and n be two positive
integers. Consider on IRn the control system

ẋ(t) =
m

∑

i=1

ui(t)fi(x(t)), (4)

where f1, . . . , fm are analytic vector fields in IRn, and where the control function
u(·) = (u1(·), . . . , um(·)) satisfies the constraint

m
∑

i=1

ui(t)
2

6 1. (5)

Let x̄ ∈ IRn. System (4), together with the constraint (5), is said to be globally
asymptotically stabilizable at the point x̄, if, for each point x ∈ IRn, there exists
a control law satisfying the constraint (5) such that the solution of (4) associated
to this control law and starting from x tends to x̄ as t tends to +∞. Consider
the minimal time problem for system (4) with the constraint (5), of steering a
point x ∈ IRn to the point x̄. Note that this problem is solvable as soon as the
Lie Algebra Rank Condition holds for the m-tuple of vector fields (f1, . . . , fm).
In general, it is impossible to compute explicitly the minimal time feedback
controllers for this problem. Moreover, Brockett’s condition implies that such
control laws are not smooth whenever m < n and the vector fields f1, . . . , fm

are independent. This leads to investigate the regularity of optimal feedback
laws. In an analytic setting, the problem of determining the analytic regularity
of the value function for a given optimal control problem, has been investigated
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in [37], among others. It is related to the existence of singular minimizing
trajectories (see [1, 3, 40]). More precisely, if there does not exist any nontrivial
singular minimizing trajectory starting from x̄, then the minimal time function
to x̄ is subanalytic outside x̄ (see [18, 19] for a definition of subanalyticity). In
particular, this function is analytic outside a stratified submanifold S of IRn,
of codimension greater than or equal to 1 (see [38]). As a consequence, outside
this submanifold, it is possible to provide an analytic minimal time feedback
controller for system (4) with the constraint (5). Note that the analytic context
is used so as to ensure stratification properties, which do not hold a priori if the
system is smooth only. These properties are related to the notion of o-minimal
category (see [15]). Then, in a second step, in order to achieve a minimal
time robust stabilization procedure, using a hybrid feedback law, a suitable
switching strategy (more precisely, a hysteresis) is defined between this minimal
time feedback controller and other controllers defined on a neighborhood of S.
The main result of [33] then asserts that, in these conditions, the point x̄ is semi-
globally robustly asymptotically stabilizable, with a minimal time property.

The strategy is to combine a minimal time controller that is smooth on a part
of the state space, and other controllers defined on the complement of this part,
so as to provide a quasi minimal time hybrid controller by defining a switching
strategy between all control laws. The resulting hybrid law enjoys a quasi
minimal time property, and robustness with respect to (small) measurement
noise, actuator errors and external disturbances.

In the present paper, we investigate the Martinet system (1), (3), for which
there exist singular minimizing trajectories, and thus [33] can not be applied.
However, the previous procedure can be used, for two main reasons. First, the
minimal time function can be proved to belong to the log-exp class (see [14]),
which is a o-minimal extension of the subanalytic class, and thus, its singular set
S is a stratified submanifold of codimension greater than or equal to one. This
stratification property allows to define a switching strategy near the manifold
S. Second, the set of extremities of singular trajectories is small in S, and
invariance properties for the optimal flow thus still hold in IR3 \ S. This fact is
however far from being general.

The paper is organized as follows. In Section 2, we first recall some facts
about the minimal time problem for system (1) with (3), and recall the def-
inition of a singular trajectory. Then, we recall a notion of solution adapted
to hybrid feedback laws, and the concept of stabilization via a minimal time
hybrid feedback law. The main result, Theorem 2.1, states that the origin is a
semi-globally minimal time robustly stabilizable equilibrium for the system (1),
(3). The remainder of the paper is devoted to the proof of this result. In Section
3, we gather some known results for the minimal time problem in the Martinet
case, and in particular, explain that the minimal time function belongs to the
log-exp class. A definition of a log-exp function is also provided, so as some
crucial properties of o-minimal classes. In Section 4, we define the components
of the hysteresis. The first component consists of the minimal time feedback
controller, defined on the whole IR3, except on a stratified submanifold. We
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then make precise the second component of this hysteresis, using Lie brackets
of the vector fields f1 and f2. Finally, an hybrid feedback law is defined, using
a hysteresis to connect both components. The main result is proved in Section
4.4. Section 5 is devoted to a conclusion and further comments.

2 Definitions and main result

2.1 The minimal time problem

Consider the minimal time problem for system (1) with the constraint (3). Since
the Lie Algebra Rank Condition holds for the pair (f1, f2), any two points of
IR3 can be joined by a minimal time trajectory of (1), (3). Denote by T (x) the
minimal time needed to steer system (1) with the constraint (3) from a point
x ∈ IR3 to the origin 0 of IR3.

Note that, obviously, the control function associated to a minimal time tra-
jectory of (1), (3), actually satisfies u2

1 + u2
2 = 1.

For T > 0, let UT denote the (open) subset of u(·) in L∞([0, T ], IR2) such
that the solution of (1), starting from 0 and associated to a control u(·) ∈ UT ,
is well defined on [0, T ]. The mapping

ET : UT −→ IR3

u(·) 7−→ x(T ),

which to a control u(·) associates the end-point x(T ) of the corresponding so-
lution x(·) of (1) starting at 0, is called end-point mapping at time T ; it is a
smooth mapping.

Definition 2.1. A trajectory x(·) of (1), with x(0) = 0, is said singular on
[0, T ] if its associated control u(·) is a singular point of the end-point mapping
ET (i.e., if the Fréchet derivative of ET at u(·) is not onto). In that case, the
control u(·) is said to be singular.

2.2 Class of controllers and notion of hybrid solution

In this section, we recall the general setting for hybrid systems.
Let f : IR3 × IR2 → IR3 be defined by f(x, u) = u1f1(x) + u2f2(x). System

(4) writes
ẋ(t) = f(x(t), u(t)). (6)

The controllers under consideration in this paper depend on the continuous
state x ∈ IR3 and also on a discrete variable sd ∈ N , where N is a nonempty
countable set. According to the concept of a hybrid system of [16], we introduce
the following definition (see also [33]).

Definition 2.2. A hybrid feedback is a 4-tuple (C,D, k, kd), where

• C and D are subsets of IR3 ×N ;
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• k : IR3 ×N → IR2 is a function;

• kd : IR3 ×N → N is a function.

The sets C and D are respectively called the controlled continuous evolution set
and the controlled discrete evolution set.

We next recall the notion of robustness to small noise (see [36]). Consider
two functions e and d satisfying the following regularity assumptions:

e(·, ·), d(·, ·) ∈ L∞
loc(IR

3 × [0,+∞); IR3),

e(·, t), d(·, t) ∈ C0(IR3, IR3), ∀t ∈ [0,+∞).
(7)

We introduce these functions as a measurement noise e and an external distur-
bance d. Below, we define the perturbed hybrid system H(e,d). The notion of
solution of such hybrid perturbed systems has been well studied in the literature
(see e.g. [5, 9, 23, 28, 29, 39]). Here, we consider the notion of solution given in
[16, 17].

Definition 2.3. Let S =
⋃J−1

j=0 [tj , tj+1] × {j}, where J ∈ IN ∪ {+∞} and

(x0, s0) ∈ IR3 ×N . The domain S is said to be a hybrid time domain. A map
(x, sd) : S → IR3 ×N is said to be a solution of H(e,d) with the initial condition
(x0, s0) if

• the map x is continuous on S;

• for every j, 0 6 j 6 J −1, the map x : t ∈ (tj , tj+1) 7→ x(t, j) is absolutely
continuous;

• for every j, 0 6 j 6 J − 1 and almost every t > 0, (t, j) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ C, (8)

and

ẋ(t, j) = f(x(t), k(x(t, j) + e(x(t, j), t), sd(t, j))) + d(x(t, j), t), (9)

ṡd(t, j) = 0; (10)

(where the dot stands for the derivative with respect to the time variable
t)

• for every (t, j) ∈ S, (t, j + 1) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ D, (11)

and

x(t, j + 1) = x(t, j), (12)

sd(t, j + 1) = kd(x(t, j) + e(x(t, j), t), sd(t, j)); (13)
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• (x(0, 0), sd(0, 0)) = (x0, s0).

In this context, we next recall the concept of stabilization of (6) by a minimal
time hybrid feedback law sharing a robustness property with respect to mea-
surement noise and external disturbances (see [31]). The usual Euclidean norm
in IR3 is denoted by | · |, and the open ball centered at 0 with radius R is denoted
B(0, R). Recall that a function of class K∞ is a function δ: [0,+∞) → [0,+∞)
which is continuous, increasing, satisfying δ(0) = 0 and limR→+∞ δ(R) = +∞.

Definition 2.4. Let ρ : IR3 → IR be a continuous function satisfying

ρ(x) > 0, ∀x 6= 0. (14)

We say that the completeness assumption for ρ holds if, for all (e, d) satisfying
the regularity assumptions (7), and such that,

sup[0,+∞)|e(x, ·)| 6 ρ(x), esssup[0,+∞)|d(x, ·)| 6 ρ(x), ∀x ∈ IR3, (15)

for every (x0, s0) ∈ IR3×N , there exists a maximal solution on [0,+∞) of H(e,d)

starting from (x0, s0).

Definition 2.5. We say that the uniform finite time convergence property holds
if there exists a continuous function ρ : IR3 → IR satisfying (14), such that the
completeness assumption for ρ holds, and if there exists a function δ : [0,+∞) →
[0,+∞) of class K∞ such that, for every R > 0, there exists τ = τ(R) > 0, for
all functions e, d satisfying the regularity assumptions (7) and inequalities (15)
for this function ρ, for every x0 ∈ B(0, R), and every s0 ∈ N , the maximal
solution (x, sd) of H(e,d) starting from (x0, s0) satisfies

|x(t, j)| 6 δ(R), ∀t > 0, (t, j) ∈ S, (16)

and
x(t, j) = 0, ∀t > τ, (t, j) ∈ S. (17)

Definition 2.6. The point 0 is said to be a semi-globally minimal time robustly
stabilizable equilibrium for system (6) if, for every ε > 0 and every compact
subset K ⊂ IR3, there exists a hybrid feedback law (C,D, k, kd) satisfying the
constraint

‖k(x, sd)‖ 6 1, (18)

where ‖ · ‖ stands for the Euclidian norm in IR2, such that:

• the uniform finite time convergence property holds;

• there exists a continuous function ρε,K : IR3 → IR satisfying (14) for
ρ = ρε,K , such that, for every (x0, s0) ∈ K×N , all functions e, d satisfying
the regularity assumptions (7) and inequalities (15) for ρ = ρε,K , the
maximal solution of H(e,d) starting from (x0, s0) reaches 0 within time
T (x0)+ε, where T (x0) denotes the minimal time to steer system (6) from
x0 to 0, under the constraint ‖u‖ 6 1.
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2.3 Main result

Theorem 2.1. The origin is a semi-globally minimal time robustly stabilizable
equilibrium for system (1) with the constraint (3).

The strategy is the following. The minimal time function T (x) to steer
system (1) from x to 0, under the constraint (3), belongs to the log-exp class,
and thus, is stratifiable (see next section). Hence, the corresponding minimal
time feedback controller is continuous (even analytic) on IR3 \ S, where S is
the set of points of IR3 at which T is not analytic. Since T is log-exp, S is
a stratified submanifold of IR3, of codimension greater than or equal to one.
In a neighborhood of S, it is therefore necessary to use other controllers, and
to define an adequate switching strategy. Notice that this neighborhood can
be chosen arbitrarily thin, and thus, the time ε needed for its traversing is
arbitrarily small. Therefore, starting from an initial point x0, the time needed
to join 0, using this hybrid strategy, is equal to T (x0) + ε.

3 The minimal time problem in the Martinet

case

In this section, we briefly recall some known results for the minimal time problem
in the Martinet case, gathered from [2, 6, 7, 8, 40]).

3.1 Parametrization of extremals

It follows from the Pontryagin Maximum Principle (see [26]) that every minimal
time trajectory of (1), (3), starting from 0, is the projection of an extremal, that
is, a 4-tuple (x(·), p(·), p0, u(·)) solution of the Hamiltonian system

ẋ =
∂H

∂p
(x, p, p0, u), ṗ = −

∂H

∂x
(x, p, p0, u),

∂H

∂u
(x, p, p0, u) = 0,

where H(x, p, p0, u) = 〈p, u1f1(x) + u2f2(x)〉 + p0(u2
1 + u2

2) is the Hamiltonian
function, p(·) is an absolutely continuous function called adjoint vector, and p0

is a nonpositive constant. If p0 6= 0, the extremal is said to be normal, and we
normalize to p0 = − 1

2 . Otherwise it is said abnormal. Note that every abnormal
extremal projects onto a singular trajectory (and conversely).

In the Martinet case, the abnormal extremals (that is, p0 = 0) correspond
to u1 = ±1, u2 = 0. Their projections are singular trajectories solutions of the
vector field ∂

∂x1

, contained in the plane x2 = 0. There exists a unique singular
direction passing through 0, given by x1(t) = ±t, x2(t) = x3(t) = 0. These
singular trajectories are indeed minimal time (see [2]).

Normal extremals are computed with p0 = −1/2. They are parametrized in
[2] using elliptic functions (see also [6] for details).
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3.2 The log-exp class

For the sake of completeness, we recall the definition of a subanalytic function
(see [18, 19]), then the one of a log-exp function (see [14]), and some properties
that are used in a crucial way in the present paper.

Let M be a real analytic finite dimensional manifold. A subset A of M is said
to be semi-analytic if and only if, for every x ∈ M , there exists a neighborhood
U of x in M and 2pq analytic functions gij , hij (1 6 i 6 p and 1 6 j 6 q), such
that

A ∩ U =

p
⋃

i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1 . . . q}.

Let SEM(M) denote the set of semi-analytic subsets of M . The image of a semi-
analytic subset by a proper analytic mapping is not in general semi-analytic,
and thus this class has to be enlarged.

A subset A of M is said to be subanalytic if and only if, for every x ∈ M ,
there exist a neighborhood U of x in M and 2p couples (Φδ

i , A
δ
i ) (1 6 i 6 p and

δ = 1, 2), where Aδ
i ∈ SEM(M δ

i ), and where the mappings Φδ
i : M δ

i → M are
proper analytic, for real analytic manifolds M δ

i , such that

A ∩ U =

p
⋃

i=1

(Φ1
i (A

1
i )\Φ

2
i (A

2
i )).

Let SUB(M) denote the set of subanalytic subsets of M .
The subanalytic class is closed by union, intersection, complementary, in-

verse image by an analytic mapping, image by a proper analytic mapping. In
brief, the subanalytic class is o-minimal (see [15]). Moreover subanalytic sets
are stratifiable in the following sense. A stratum of a differentiable manifold M
is a locally closed sub-manifold of M . A locally finite partition S of M is a
stratification of M if any S ∈ S is a stratum such that

∀T ∈ S T ∩ ∂S 6= ∅ ⇒ T ⊂ ∂S and dim T < dim S.

Finally, a mapping between two analytic manifolds M and N is said to be
subanalytic if its graph is a subanalytic subset of M × N .

The log-exp class, defined in [14], is an extension of the subanalytic class with
functions log and exp, sharing the same properties than the one of subanalytic
sets (namely, it is an o-minimal class). More precisely, a log-exp function is
defined by a finite composition of subanalytic functions, of exponentials and
logarithms; if g1, . . . , gm, are log-exp functions in IRn, and if F is a log-exp
function in IRm, then the composition F ◦ (g1, . . . , gm) is a log-exp function in
IRn. A log-exp set is defined by a finite number of equalities and inequalities
using log-exp functions.

Let M be an analytic manifold, and F be a log-exp function on M . The
analytic singular support of F is defined as the complement of the set of points
x in M such that the restriction of F to some neighborhood of x is analytic.
The following property is of great interest in the present paper.
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Proposition 3.1. [14, 38] The analytic singular support of F is log-exp (and
thus, in particular, is stratifiable). If F is moreover locally bounded on M , then
it is moreover of codimension greater than or equal to one.

3.3 Regularity of the minimal time function in the Mar-

tinet case

The following crucial result has been proved in [7] (see also [2, 8, 40], and also
the textbook [6] which contains a survey on the Martinet case).

Proposition 3.2. The minimal time function T to 0 of system (1), (3), belongs
to the log-exp class.

It has been proved in [2] that T is not subanalytic, by analyzing the extremal
flow given by the Pontryagin Maximum Principle, and using a parametrization
with elliptic functions. Note that this loss of subanalyticity is due to the presence
of the singular minimizing direction (0x1). A careful analysis then allows to
show that the minimal time function is expressed as an analytic function of
some specific monomials, themselves being particular log-exp functions (see [7]
for a general result, and an algorithm of computation in the log-exp class).

4 Components of the hysteresis, and hybrid strat-

egy

It follows from Proposition 3.2 that the minimal function T (·) is log-exp, and
hence, from Proposition 3.1, its singular set S = Sing T (·) (i.e., the analytic sin-
gular support of T (·)) is a stratified submanifold of IR3, of codimension greater
than or equal to one. The objective is to construct neighborhoods of S in IR3

whose complements share invariance properties for the optimal flow.

4.1 The optimal controller

In this section, we define the optimal controller, and give some properties of the
Carathéodory solutions of (1) with this feedback law.

Outside the set S, the function T is smooth. It follows from the Pontryagin
maximum principle and the Hamilton-Jacobi theory (see [26]) that the minimal
time control functions, steering a point x = (x1, x2, x3) ∈ IR3 \ S to the origin,
are given by the closed-loop formula

u1(x) = −
1

2
〈∇T (x), f1(x)〉 = −

1

2

(

∂T

∂x1
+

x2
2

2

∂T

∂x3

)

,

u2(x) = −
1

2
〈∇T (x), f2(x)〉 = −

1

2

∂T

∂x2
.

(19)

The set S actually consists of the union of the axis (0x1) (i.e., the singular
direction) and of the cut locus. Recall that, by definition, a point x ∈ IR3 is
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not a cut point with respect to 0 if there exists a minimizing trajectory joining
0 to x, which is the strict restriction of a minimizing trajectory starting from
0. The cut locus of 0, denoted by L(0), is defined as the set of all cut points
with respect to 0. Note that a general result of [20] implies that the minimal
time function is analytic at the point x, provided that x is not joined from 0
by a singular minimizing trajectory, and that there exists only one minimizing
trajectory steering 0 to x.

Moreover, it follows from the computations of [2] that the plane x2 = 0
is contained in S (see also [8]), and that the axis (0x1) is contained in the
adherence of the cut locus L(0).

Outside S, the smoothness of this optimal controller ensures a robustness
property of the stability. A switching strategy is then necessary between this
optimal controller, denoted uopt, and other controllers defined in a neighborhood
of S (see Section 4.2). The switching strategy is achieved by adding a dynamical
discrete variable sd and using a hybrid feedback law (see Section 4.3).

Lemma 4.1. For every neighborhood Ω of S in IR3, there exists a neighborhood
Ω′ of S, satisfying

Ω′ ( clos(Ω′) ( Ω, (20)

such that every trajectory of the closed-loop system (4) with the optimal con-
troller, joining a point x ∈ IR3 \ Ω to 0, is contained in IR3 \ Ω′.

The proof of this lemma follows [33, Lemma 4.2]. However, in this latter
reference, one has S = L(0). Here, S is the union of L(0) and of the axis (0x1).

Proof. It suffices to prove that, for every compact subset K of IR3, for every
neighborhood Ω of S \ {0} in IR3, there exists a neighborhood Ω′ of S \ {0}
in IR3, satisfying (20), such that every trajectory of the closed-loop system (4)
with the optimal controller, joining a point x ∈ (IR3 \Ω) ∩K to 0, is contained
in IR3 \ Ω′.

Let x ∈ (IR3 \ Ω) ∩ K. By definition of the cut locus L(0), every optimal
trajectory joining x to 0 does not intersect L(0). Moreover, it does not intersect
the axis (0x1) too; indeed, it follows from [2] that the unique optimal trajectory
joining 0 to a point (a, 0, 0) of the axis (0x1) is necessarily associated to the
control u1 = 1, u2 = 0 if a > 0 (resp., u1 = −1, u2 = 0 if a < 0), thus, is
singular, and contained in the axis (0x1). Finally, every optimal trajectory
joining x to 0 does not intersect S, and thus has a positive distance to the
stratified manifold S.

Since there does not exist any nontrivial singular minimizing trajectory start-
ing from 0 and joining a point of (IR3 \Ω) ∩K, it follows that the optimal flow
joining points of the compact set (IR3\Ω)∩K to 0 is parametrized by a compact
set (for the details of this general reasoning, we refer the reader to [1, 40, 41],
see also [33] where it is used in a crucial way). Hence, there exists a positive real
number δ > 0 so that every optimal trajectory joining a point x ∈ (IR3 \Ω)∩K
to 0 has a distance to the set S which is greater than or equal to δ. The existence
of Ω′ follows.
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Now this optimal controller has been defined, we investigate the robustness
properties of system (1) in closed-loop with this controller. Given e, d : IR3 ×
[0,+∞) → IR3, the perturbed closed-loop system under consideration in this
section has the form

ẋ(t) = f(x(t), uopt(x(t) + e(x(t), t))) + d(x(t), t). (21)

Below, a robust version of Lemma 4.1 is stated for every noise vanishing along
the discontinuous set of the optimal controller.

Lemma 4.2. There exist a continuous function ρopt : IR → IR satisfying

ρopt(ξ) > 0, ∀ξ 6= 0, (22)

and a continuous function δopt : [0,+∞) → [0,+∞) of class K∞ such that the
following three properties hold:

• Robust Stability

For every neighborhood Ω of S, there exists a neighborhood Ω′ ⊂ Ω of
S, such that, for all e, d : IR3 × [0,+∞) → IR3 satisfying the regularity
assumptions (7) and, for every x ∈ IR3,

sup[0,+∞)|e(x, ·)| 6 ρopt(d(x,S)), esssup[0,+∞)|d(x, ·)| 6 ρopt(d(x,S)),
(23)

and for every x0 ∈ IR3 \ Ω, there exists a unique Carathéodory solution
x(·) of (21) starting from x0, maximally defined on [0,+∞), and satisfying
x(t) ∈ IR3 \ Ω′, for every t > 0.

• Finite time convergence

For every R > 0, there exists τopt = τopt(R) > 0 such that, for all e, d :
IR3 × [0,+∞) → IR3 satisfying the regularity assumptions (7) and (23),
for every x0 ∈ IR3 with |x0| 6 R, and every maximal solution x(·) of (21)
starting from x0, one has

|x(t)| 6 δopt(R), ∀t > 0, (24)

x(t) = 0, ∀t > τopt, (25)

and
‖uopt(x(t))‖ 6 1, ∀t > 0. (26)

• Optimality

For every neighborhood Ω of S, every ε > 0, and every compact subset
K of IR3, there exists a continuous function ρε,K : IR3 → IR satisfying
(22) such that, for all e, d : IR3 × [0,+∞) → IR3 satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 min(ρopt(d(x,S)), ρε,K(x)),

esssup[0,+∞)|d(x, ·)| 6 min(ρopt(d(x,S), ρε,K(x)), ∀x ∈ IR3,
(27)
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and for every x0 ∈ K ∩ (IR3 \ Ω), the solution of (21), starting from x0,
reaches 0 within time T (x0) + ε.

Proof. Since Carathéodory conditions hold for system (21), the existence of
a unique forward Carathéodory solution of (21), for every initial condition,
is ensured. Note that, since the controller uopt is the minimal time control
steering x to the origin under the constraint (3), the inequality (26) holds. Since
the optimal controller uopt defined by (19) is continuous on IR3 \ S, Lemma
4.1 implies the existence of ρopt : [0,+∞) → [0,+∞). The last part of the
result follows from (19) and from the continuity of solutions with respect to
disturbances.

4.2 The second component of the hysteresis

In this section, we define the second component of the hysteresis, which consists
of a set of controllers, defined in a neighborhood of S.

Since S is a stratified submanifold of IR3 of codimension greater than or equal
to one (see Proposition 3.1), there exists a partition (Mi)i∈IN of S, where Mi is
a stratum, i.e. a locally closed submanifold of IR3. Recall that, if Mi∩∂Mj 6= ∅,
then Mi ⊂ Mj and dim(Mi) < dim(Mj).

Lemma 4.3. For every ε > 0, there exists a neighborhood Ω of S such that,
for every stratum Mi of S, there exist a nonempty subset Ni of IN, a locally
finite family (Ωi,p)p∈Ni

of open subsets of Ω, a sequence of smooth controllers
ui,p defined in a neighborhood of Ωi,p, satisfying ‖ui,p‖ 6 1, and there exists a
continuous function ρi,p : IR3 → [0,+∞) satisfying ρi,p(x) > 0 whenever x 6= 0,
such that every solution of

ẋ(t) = f(x(t), ui,p(x(t) + e(x(t), t))) + d(x(t), t), (28)

where e, d : IR3 × [0,+∞) → IR3 are two functions satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 ρi,p(x), esssup[0,+∞)|d(x, ·)| 6 ρi,p(x), (29)

starting from Ωi,p and maximally defined on [0, T ), leaves Ω within time ε;
moreover, there exists a function δi,p of class K∞ such that, for every R > 0,
every such solution starting from Ωi,p ∩ B(0, R) satisfies

|x(t)| 6 δi,p(R), ∀t ∈ [0, T ). (30)

This lemma is proved in [33]. It can be applied here, due to the crucial
fact that S is a stratified submanifold of IR3. For the sake of completeness, we
however give a proof below.

Proof. First of all, recall that, under the Lie Algebra Rank Condition, the topol-
ogy defined by the sub-Riemannian distance dSR coincides with the Euclidean
topology of IR3, and that, since IR3 is complete, any two points of IR3 can be
joined by a minimizing path.
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Let ε > 0 fixed. Since S is a stratified submanifold of IR3, there exists a
neighborhood Ω of S satisfying the following property: for every y ∈ S, there
exists z ∈ IR3 \ clos(Ω) such that dSR(y, z) < ε.

Consider a stratum Mi of S. For every y ∈ Mi, let z ∈ IR3 \ clos(Ω) such
that dSR(y, z) < ε. The Lie Algebra Rank Condition implies that there exists
an open-loop control t 7→ uy(t), defined on [0, T ) for a T > ε, satisfying the
constraint ‖uy‖ 6 1, such that the associated trajectory xy(·) (which can be
assumed to be one-to-one), solution of the Martinet system, starting from y,
reaches z (and thus, leaves clos(Ω)) within time ε. Using a density argument, the
control uy can be moreover chosen as a smooth function. Since the trajectory is
one-to-one, the open-loop control t 7→ uy(t) can be considered as a feedback t 7→
uy(xy(t)) along xy(·). Consider a smooth extension of uy on IR3, still denoted
uy, satisfying the constraint ‖uy(x)‖ 6 1, for every x ∈ IR3. By continuity,
there exists a neighborhood Ωy of y, and positive real numbers δy and ρy, such
that every solution of

ẋ(t) = f(x(t), uy(x(t) + e(x(t), t))) + d(x(t), t), (31)

where e, d : IR3 × [0,+∞) → IR3 are two functions satisfying the regularity
assumptions (7) and

sup[0,+∞)|e(x, ·)| 6 ρy, esssup[0,+∞)|d(x, ·)| 6 ρy ,

starting from Ωy and maximally defined on [0, T ), leaves Ω within time ε; more-
over,

|x(t)| 6 δy, ∀t ∈ [0, T ).

Repeat this construction for each y ∈ Mi.
Now, on the one part, let (yp)p∈Ni

be a sequence of points of Mi such that
the family (Ωyp

)p∈Ni
is a locally finite covering of Mi, where Ni is a subset of

IN. Define Ωi,p = Ωyp
and ui,p = uyp

.

On the other part, the existence of a continuous function ρi,p : IR3 →
[0,+∞), satisfying ρi,p(x) > 0 whenever x 6= 0, follows for the continuity of
solutions with respect to disturbances. The existence of a function δi,p of class
K∞ such that (30) holds is obvious.

Repeat this construction for every stratum Mi of S. Then, the statement of
the lemma follows.

4.3 Definition of the hybrid feedback law

The following construction of the hybrid feedback law, using an hysteresis, is
already known. The definitions and properties recalled in this section readily
follow those of [33], and are given hereafter for the sake of completeness.

Let F = {1, . . . , 7}, and N be a countable set. In the sequel, greek letters
refer to elements of N . Fix ω an element of N , considered as the largest element
of N , i.e., ω is greater than any other element of N . We however do not
introduce any order in N . This element ω has actually a particular role in the
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sequel, since it will refer to the optimal controller in the hybrid feedback law
defined below.

Given a set-valued map F : IR3
⇒ IR3, the solutions x(·) of the differential

inclusion ẋ ∈ F (x) consist of all absolutely continuous functions satisfying ẋ(t) ∈
F (x(t)) almost everywhere.

Definition 4.1. The family (IR3 \{0}, ((Ωα,l)l∈F , gα)α∈N ) is said to satisfy the
property (P) if:

1. for every (α, l) ∈ N × F , Ωα,l is an open subset of IR3;

2. for every α ∈ N , and every m > l ∈ F ,

Ωα,l ( clos(Ωα,l) ( Ωα,m; (32)

3. for every α in N , gα is a smooth vector field, defined in a neighborhood of
clos(Ωα,7), taking values in IR3;

4. for every (α, l) ∈ N × F , l 6 6, there exists a continuous function ρα,l :
IR3 → [0,+∞) satisfying ρα,l(x) 6= 0 whenever x 6= 0 such that every
maximal solution x(·) of

ẋ ∈ gα(x) + B(0, ρα,l(x)); (33)

defined on [0, T ) and starting from ∂Ωα,l, is such that

x(t) ∈ clos(Ωα,l+1) , ∀t ∈ [0, T );

5. for every l ∈ F , the sets (Ωα,l)α∈N form a locally finite covering of IR3 \
{0}.

We next define a class of hybrid controllers as those considered in Section 2
(see also [30]).

Definition 4.2. Let (IR3\{0}, ((Ωα,l)l∈F , gα)α∈N ) satisfy the property (P) as in
Definition 4.1. Assume that, for every α in N , there exists kα ∈ IR2, satisfying
the constraint (3), such that, for every x in a neighborhood of Ωα,7,

gα(x) = f(x, kα). (34)

Set

D1 = Ωω,2, (35)

Dα,2 = IR3 \ Ωα,6. (36)

Let (C,D, k, kd) be the hybrid feedback defined by

C =
{

(x, α) | x ∈
(

clos(Ωα,4) \ Ωω,1

)}

, (37)

D = {(x, α) | x ∈ D1 ∪ Dα,2}, (38)

k : IR3 ×N → IR2

(x, α) 7→ kα(x) if x ∈ Ωα,7,
0 else,

(39)
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and

kd : IR3 ×N ⇒ N
(x, α) 7→ α′ > α, if x ∈ clos(Ωα′,1 ∩ Dα,1) and if x 6∈ Dα,2,

α, if x ∈ clos(Ωα,1 ∩ Dα,2).
(40)

The 4-tuple (C,D, k, kd) is a hybrid feedback law on IR3 as considered in Sec-
tion 2.2. We denote by H(e,d) the system (6) in closed-loop with such a feedback
with the perturbations e and d as measurement noise and external disturbance
respectively.

To investigate the robustness properties, we introduce the following defini-
tion (see [33]).

Definition 4.3. Let χ : IR3 → IR be a continuous map such that χ(x) > 0, for
every x 6= 0.

• We say that χ is an admissible radius for the measurement noise, if, for
every x ∈ IR3 and every α ∈ N , such that x ∈ Ωα,7,

χ(x) <
1

2
min

l∈{1,...,6}
d(IR3 \ Ωα,l+1,Ωα,l). (41)

• We say that χ is an admissible radius for the external disturbances if, for
every x ∈ IR3, we have

χ(x) 6 max
(α,l), x∈Ωα,l

ρα,l(x).

There exists an admissible radius for the measurement noise and for the
external disturbances (note that, from (32), the right-hand side of the inequality
(41) is positive).

Consider an admissible radius χ for the measurement noise and the external
disturbances. Let e and d be a measurement noise and an external disturbance
respectively, such that, for all (x, t) ∈ IR3 × [0,+∞),

e(x, t) 6 χ(x), d(x, t) 6 χ(x). (42)

The properties of the solutions of the closed-loop with the hybrid feedback
law defined in Definition 4.2 have been stated in [33] (see also [31, 30]), and we
briefly recall them.

1. For all (x0, s0) ∈ IR3 × N , there exists a solution of H(e,d) starting from
(x0, s0). Recall that a Zeno-solution is a complete solution whose domain
of definition is bounded in the t-direction. A solution (x, sd), defined on
a hybrid domain S, is an instantaneous Zeno-solution, if there exist t > 0
and an infinite number of j ∈ IN such that (t, j) ∈ S.

2. There do not exist instantaneous Zeno-solutions, although a finite number
of switches may occur at the same time.
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3. Let (x, sd) be a maximal solution of H(e,d) defined on a hybrid time S.
Suppose that the supremum T of S in the t-direction is finite. Then,
lim supt→T,(t,l)∈S |x(t, l)| = +∞.

4. For every α ∈ A, set

τα = sup
{

T | x is a Carathéodory solution of ẋ ∈ f(x, kα) + B(0, χ(x))
with x(t) ∈ Ωα,7, ∀t ∈ [0, T )

}

.
(43)

Note that, at this stage, there may exist α ∈ A such that τα = +∞.
Let (x, sd) be a solution of H(e,d) defined on a hybrid time domain S and

starting in IR3 \ {0} ×N . Let T be the supremum in the t-direction of S.
Then, one of the two following cases may occur:

• either there exists no positive jump time, more precisely there exists
α ∈ N such that,

(a) for almost every t ∈ (0, T ) and for every l such that (t, l) ∈ S,
one has k(sd(t, l)) = kα;

(b) the map x is a Carathéodory solution of ẋ = f(x, kα) + d on
(0, T );

(c) for every t ∈ (0, T ), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;

(d) for all (t, l) ∈ S, t > 0, one has x(t, l) + e(x(t, l), t) 6∈ D, where
D is defined by (38);

(e) the inequality T < τα holds.

• or there exists a unique positive jump time, more precisely there exist
α ∈ N \{ω} and t1 ∈ (0, T ) such that, letting t0 = 0, t2 = T , α0 = α,
and α1 = ω, for every j = 0, 1, the following properties hold:

(f) for almost every t ∈ (tj , tj+1) and for every l such that (t, l) ∈ S,
one has k(sd(t, l)) = kαj

;

(g) the map x is a Carathéodory solution of ẋ = f(x, kαj
) + d on

(tj , tj+1);

(h) for every t ∈ (t0, t1), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;

(i) for every t in (tj , tj+1), and every l such that (t, l) ∈ S, one has
x(t, l) + e(x(t, l), t) 6∈ Dαj ,2, where Dαj ,2 is defined by (36);

(j) the inequality t1 < τα0
holds.

We next define our hybrid feedback law. Let ε > 0 and K be a compact
subset of IR3. Let Ω be the neighborhood of S given by Lemma 4.3. For this
neighborhood Ω, let Ω′ ⊂ Ω be the neighborhood of S yielded by Lemma 4.1.

Let N be the countable set defined by

N = {(i, p), i ∈ IN, p ∈ Ni} ∪ {ω},

where ω is an element of IN × IN, distinct from every (i, p), i ∈ IN, p ∈ Ni.
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We proceed in two steps.

Step 1: Definition of kα and Ωα,l, where α ∈ N \ {ω} and l ∈ F
Let i ∈ IN. Lemma 4.3, applied with the stratum Mi, implies the exis-

tence of a family of smooth controllers (ki,p)p∈Ni
satisfying the constraint (5),

and of a family of neighborhoods (Ωi,p,7)p∈Ni
. The existence of the families

(Ωi,p,1)p∈Ni
, . . . , (Ωi,p,6)p∈Ni

, satisfying

Ωi,p,l ( clos(Ωi,p,l) ( Ωi,p,m,

for every m > l ∈ F , follows from a finite induction argument, using Lemma
4.3.

Step 2: Definition of kω and Ωω,l, where l ∈ F
Let Ωω,1 be an open set of IR3 containing IR3 \

⋃

α∈N\{ω} Ωα,1 and contained

in IR3 \ S. The point 0 belongs to clos(Ωω,1). Lemma 4.1, applied with Ω =
IR3 \ clos(Ωω,1), allows to define kω as kopt, and Ω′ a closed subset of IR3 such
that

Ω′ ( Ω, (44)

and such that Ω′ is a neighborhood of S. Set Ωω,2 = IR3 \ Ω′; it is an open
subset of IR3, contained in IR3 \ S. Moreover, from (44),

Ωω,1 ( clos(Ωω,1) ( Ωω,2.

The existence of the sets Ωω,3, ... Ωω,7 follows from a finite induction argument,
using Lemma 4.1. Moreover, from Lemma 4.2, we have the following property:
for every l ∈ {1, . . . , 6}, for every x0 ∈ Ωω,l, the unique Carathéodory solution
x(·) of (21), with x(0) = x0, satisfies x(t) ∈ Ωω,l+1, for every t > 0.

¿From the two previous steps, we can easily check that all requirements of
Definition 4.1 are satisfied: The family (IR3 \ {0}, ((Ωα,l)l∈F , gα)α∈N ) satisfies
the property (P), where gα is a function defined in a neighborhood of Ωα,7 by

gα(x) = f(x, kα).

The hybrid feedback law (C,D, k, kd) is then defined according to Definition
4.2.

4.4 Proof of the main result

Now all ingredients have been introduced, the main result follows.
Let ε > 0, and K be a compact subset of IR3. Consider the hybrid feedback

law (C,D, k, kd) defined previously. Let χ : IR3 → IR>0 be an admissible radius
for the external disturbances and the measurement noise (see Definition 4.3).
Up to reduce this function, we assume that, for every α ∈ N \ {ω},

χ(x) 6 ρopt(d(x,S)), ∀x ∈ Ωω,7, (45)

χ(x) 6 ρα(x), ∀x ∈ Ωα,7. (46)
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Note that, from the choice of the components of the hybrid feedback law, and
from Lemma 4.3, for every α ∈ N \{ω}, the constant τα defined by (43) satisfies
τα < ε.

Let us prove that the point 0 is a semi-globally minimal time robustly stable
equilibrium for the system H(e,d) in closed-loop with the hybrid feedback law
(C,D, k, kd) as stated in Theorem 2.1.

Step 1: Completeness and global stability
Let R > 0 and δ : [0,+∞) → [0,+∞) of class K∞ be such that, for every

α ∈ N \ {ω},

δ(x) 6 δopt(R), ∀x ∈ Ωω,7, (47)

δ(x) 6 δα(R), ∀x ∈ Ωα,7. (48)

Let e, d be two functions satisfying the regularity assumptions and (42). Let
(x, sd) be a maximal solution of H(e,d) on a hybrid domain S starting from
(x0, s0), with |x0| < R. From Lemmas 4.2 and 4.3, we have, for every (t, l) ∈ S,

|x(t, j)| 6 δ(R). (49)

Therefore, since lim supt→T,(t,l)∈S |x(t, l)| 6= +∞, the supremum T of S in the t-
direction is infinite, and the maximality property follows. The stability property
follows from (49).

Step 2: Uniform finite time convergence property
Let x0 ∈ B(0, R), and s0 ∈ N . Let (x, sd) denote the solution of H(e,d)

starting from (x0, s0).
If x0 = 0, then, using (39) and the fact that χ(0) = 0, the solution remains

at the point 0.
We next assume that x0 6= 0. Let α0 ∈ N such that x(·) is a solution of

ẋ = f(x, kα0
(x)) + d on (0, t1) for a t1 > 0.

If α0 = ω, then the feedback law under consideration coincides with the
optimal controller and there does not exist any switching time t > 0. Then,
from Lemma 4.2, the solution reaches 0 within time T (x0) + ε.

If α0 6= ω, then, from Lemma 4.3, the solution leaves Ωα0,7 within time ε
and then enters the set Ωω,7. Therefore, with (43), the solution reaches 0 within
time T (x1) + ε, where x1 denotes the point of the solution x(·) when entering
Ωω,7.

Let τ(R) = maxx∈δ(R) T (x) + ε. With (49), we get (17) and the uniform
finite time property. Note that, from Lemma 4.3, the constraint (18) is satisfied.

Step 3: Quasi-optimality
Let K be a compact subset of IR3, and (x0, s0) ∈ K ×N . Let R > 0 be such

that K ⊂ B(0, R). From the previous arguments, two cases occur:

• the solution starting from (x0, s0) reaches 0 within time T (x0)+ε whenever
α0 = ω;
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• the solution starting from (x0, s0) reaches 0 within time T (x1) + ε, when-
ever α0 6= ω, where x1 denotes the point of the solution x(·) when entering
Ωω,7. Up to reducing the neighborhoods Ωα,l, one has |T (x0)−T (x1)| 6 ε.
Indeed, T is uniformly continuous on the compact K.

Hence, the maximal solution starting from (x0, s0) reaches 0 within time T (x0)+
2ε. This is the quasi-optimality property.

Theorem 2.1 is proved.

5 Conclusion and further comments

In our main result, we proved that the origin is semi-globally minimal time
robustly stabilizable, for the Martinet system (1), (3). This proves that the
main assumption of [33], namely, the absence of singular minimizing trajectories,
is not necessary to ensure such a stabilization result. Actually, the crucial fact
used in our proof relies on stratification properties of the minimal time function.
This holds whenever the minimal time function belongs to the subanalytic class,
or to the log-exp class. More generally, this holds in a o-minimal class. For
general analytic control systems of the form (4), (5), in the absence of singular
minimizing trajectory, the minimal time function to a point can be proved to
be subanalytic outside this point (see [33]). In the Martinet case, the minimal
time function is not subanalytic, due to the presence of a singular minimizing
trajectory, however, it belongs to the log-exp class, which is also o-minimal, and
hence, is still stratifiable.

This situation extends to the so-called Martinet integrable case (see [7]). In
a neighborhood of 0, a model of this latter case is given by the two vector fields

f1 = g1(x2)

(

∂

∂x1
+

x2
2

2

∂

∂x3

)

, f2 = g2(x2)
∂

∂x2
,

where g1 and g2 are germs of analytic functions at 0 such that gi(0) = 1. It is
proved in [7] that the minimal time function still belongs to the log-exp class
in this case. This is however no longer true whenever the functions g1, g2 also
depend on x1 and x3. In this case, it is conjectured in [8, 40] that the minimal
time function does not belong to the log-exp class. In this latter case, a larger
class is due for describing the regularity of the minimal time function, but it is
not clear if it is possible to find a suitable o-minimal class. This problem is very
intricate and is actually related to the Hilbert 16th problem (see [40]). Hence,
in the general case where singular minimizing trajectories exist, this problem of
regularity is widely open. Although less general, it is however intimately related
to the problem of robust stabilization.
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[11] F. H. Clarke, Yu. S. Ledyaev, L. Rifford and R. J. Stern, Feedback
stabilization and Lyapunov functions, SIAM J. Cont. Opt., 39 (2000), no.
1, pp. 25–48.

[12] R. T. Closkey and R. M. Murray, Exponential stabilization of drift-
less nonlinear control systems using homogeneous feedback, IEEE Trans.
Automat. Control, 42 (1997), no. 5, pp. 614–628.

[13] J.-M. Coron, Global asymptotic stabilization for controllable systems with-
out drift, Math. Control Signals Syst., 5 (1992), pp. 295–312.

20



[14] L. van den Dries, A. Macintyre and D. Marker, The elementary
theory of restricted analytic fields with exponentiation, Ann. of Math. 140

(1994), 183–205.

[15] L. van den Dries and C. Miller, Geometric categories and o-minimal
structures, Duke Math. Journal, 84 (1996), no. 2.

[16] R. Goebel and A. R. Teel, Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications, Automatica, 42
(2006), pp. 573–587.

[17] R. Goebel, J. Hespanha, A. R. Teel, C. Cai and R. Sanfelice,
Hybrid systems: generalized solutions and robust stability, IFAC Symp. on
Nonlinear Control Systems, Stuttgart, Germany (2004).

[18] R. M. Hardt, Stratification of real analytic mappings and images, Invent.
Math., 28 (1975).

[19] H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and
commutative algebra, in honor of Y. Akizuki, Tokyo (1973).

[20] S. Jacquet, Regularity of sub-Riemannian distance and cut locus, Lecture
Notes in Control and Information Sciences 258, A. Isidori, F. Lamnabhi
Lagarrigue and W. Respondek (Eds), Nonlinear Control in the Year 2000,
Springer (2001).

[21] Yu. S. Ledyaev and E. D. Sontag, A remark on robust stabilization
of general asymptotically controllable systems, Proc. Conf. on Information
Sciences and Systems, Johns Hopkins, Baltimore (1997), pp. 246–251.

[22] D. Liberzon, Switching in systems and control, Systems and control: foun-
dations and applications, Birkhäuser (2003).
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