C. Bischof, A. Carle, P. Kladem, and A. Mauer, Adifor 2.0: automatic differentiation of Fortran 77 programs, IEEE Computational Science and Engineering, vol.3, issue.3, pp.18-32, 1996.
DOI : 10.1109/99.537089

B. Bonnard, Contrôlabilité des systèmes non-linéaires. Note au CRAS, Série I Math, pp.535-537, 1981.

B. Bonnard, J. Caillau, and E. Trélat, Second order optimality conditions and applications in optimal control, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086380

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Number 40 in Math. and Applications, 2003.

B. Bonnard, L. Faubourg, and E. Trélat, Mécanique céleste et contrôle de systèmes spatiaux. To appear, Math. and Applications, 2005.

B. Bonnard and J. De-morant, Toward a Geometric Theory in the Time-Minimal Control of Chemical Batch Reactors, SIAM Journal on Control and Optimization, vol.33, issue.5, pp.1279-1311, 1995.
DOI : 10.1137/S0363012992241338

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée-sortie et optimalité des trajectoiressingulì eres dans leprobì eme du temps minimal, Forum Mathematicum, vol.5, pp.111-159, 1993.

B. Bonnard and E. Trélat, Une approche g??om??trique du contr??le optimal de l'arc atmosph??rique de la navette spatiale, ESAIM: Control, Optimisation and Calculus of Variations, vol.7, pp.179-222, 2002.
DOI : 10.1051/cocv:2002008

J. Caillau, ContributionàContribution`Contributionà l'´ etude du contrôle en temps minimal des transferts orbitaux, 2000.

J. Caillau and J. Noailles, Coplanar control of a satellite around the Earth, ESAIM: Control, Optimisation and Calculus of Variations, vol.6, pp.239-258, 2001.
DOI : 10.1051/cocv:2001109

URL : https://hal.archives-ouvertes.fr/hal-00540251

D. E. Chang, D. F. Chichka, and J. E. Marsden, Lyapunov-based transfer between Keplerian orbits. Discrete Cont, Dyn. Syst. Series B, vol.2, pp.57-67, 2002.

J. Coron and L. Praly, Transfert orbitaì a l'aide de moteurs ioniques, CNES, 1996.

J. De-morant, Contrôle en temps minimal des réacteurs chimiques discontinus, 1992.

S. Geffroy, Généralisation des techniques de moyennisation en contrôle optimal Application auxprobì emes de transfert et de rendez-vous orbitauxàorbitaux`orbitauxà poussée faible, 1997.

J. Kevorkian and J. D. Cole, Perturbation methods in applied mathematics, 1981.
DOI : 10.1007/978-1-4757-4213-8

A. J. Krener and H. Schättler, The Structure of Small-Time Reachable Sets in Low Dimensions, SIAM Journal on Control and Optimization, vol.27, issue.1, pp.120-147, 1989.
DOI : 10.1137/0327008

I. Kupka, Generalized Hamiltonians and optimal control: a geometric study of extremals, Proceedings of the International Congress of Mathematicians, pp.1180-1189, 1987.

C. T. Le, Contrôle optimal et transfert orbital en temps minimal, 1999.

E. B. Lee and L. Markus, Foundations of optimal control theory, 1967.

H. Pollard, Celestial mechanics. Number 19 in Carus Math, Monographs, 1976.

A. V. Sarychev, The index of second variation of a control system, Math USSR Sbornik GEOMETRIC OPTIMAL CONTROL OF ELLIPTIC KEPLERIAN ORBITS, vol.41, issue.27, pp.338-401, 1982.

H. Schättler, The Local Structure of Time-Optimal Trajectories in Dimension Three under Generic Conditions, SIAM Journal on Control and Optimization, vol.26, issue.4, pp.899-918, 1988.
DOI : 10.1137/0326050

H. J. Sussmann, The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: The $C^\infty $ Nonsingular Case, SIAM Journal on Control and Optimization, vol.25, issue.2, pp.433-465, 1987.
DOI : 10.1137/0325025

O. Zarrouati, Trajectoires spatiales, CNES?Cepadues Received November, 1987.