Effets d’anisotropie par homogénéisation dans un problème à frontière libre
Guy Bayada, Sébastien Martin, Carlos Vazquez

To cite this version:

Guy Bayada, Sébastien Martin, Carlos Vazquez. Effets d’anisotropie par homogénéisation dans un problème à frontière libre. 2004. <hal-00085966>
Anisotropic effects by homogenization in a free boundary problem

Effets d’anisotropie par homogénéisation dans un problème à frontière libre

Guy Bayadaa,b, Sébastien Martina Carlos Vázquezc

aMAPLY CNRS-UMR 5585, INSA Lyon, Bât. Léonard de Vinci, F-69621 Villeurbanne Cedex, France.
bLAMCOS CNRS-UMR 5514, INSA Lyon, Bât. D’Alembert, F-69621 Villeurbanne Cedex, France.
cDepartment of Mathematics, Faculty of Informatics, University of A Coruña, Campus Elviña, 15071-A Coruña, Spain

Abstract

The Elrod-Adams model is a pressure-saturation formulation which takes into account cavitation phenomena in thin fluid films mechanics. We study the asymptotic behavior of the model, using the two-scale convergence technique, in devices such as journal bearings. Interest is highly motivated by the roughness effects of the surfaces. Anisotropic effects appear on the coefficients, which is usual, but also on the saturation function, since various saturation functions appear through the homogenization process.

Résumé

Le modèle d’Elrod-Adams est une formulation en pression-saturation, qui permet de prendre en compte les phénomènes de cavitation en mécanique des films minces. Nous étudions le comportement asymptotique, par homogénéisation double-échelle, de la solution dans des mécanismes lubrifiés de type coussinet, dont l’intérêt est motivé par la prise en compte des rugosités des surfaces. Les effets d’anisotropie apparaissent sur les coefficients, ce qui est classique, mais aussi sur la saturation.

Mots-clés : lubrification ; cavitation ; frontière libre ; homogénéisation double-échelle ; anisotropie

Abridged English version

We consider a bearing involving two rigid surfaces. The space between the surfaces is very thin and filled with some lubricant. In order to take into account cavitation phenomena, we use the Elrod-Adams model, which introduces a saturation function in the right-hand side of the Reynolds equation:

\begin{align*}
\end{align*}

\text{Email addresses: guy.bayada@insa-lyon.fr, [Tel./Fax. : +33 4 72 43 83 12 / 85 29] (Guy Bayada),}
sebastien.martin@insa-lyon.fr (Sébastien Martin), carlosv@udc.es (Carlos Vázquez).

18th February 2005
- $\nabla \cdot (h^3 \nabla p) = - \frac{\partial}{\partial x_1} (\theta h), \quad p \geq 0, \quad H(p) \leq \theta \leq 1.$

The gap h is the normalized distance between the two surfaces, (p, θ) is the pressure-saturation, and H is the Heaviside graph. Actually, the saturation denotes the local ratio of liquid fluid between the two surfaces, so that a free boundary separates non-cavitated areas (in which $p > 0$ and $\theta = 1$) from cavitated areas (in which $p = 0$ and $0 \leq \theta < 1$). The weak formulation is given by:

$$
(P) \begin{cases}
 \text{Find } (p, \theta) \in V_a \times L^\infty(\Omega) \text{ such that} \\
 \int_\Omega h^3 \nabla p \cdot \nabla v \, dx = \int_\Omega \theta h \frac{\partial v}{\partial x_1} \, dx, \quad \forall \, v \in V_0, \\
 p \geq 0, \quad H(p) \leq \theta \leq 1 \quad \text{a.e. in } \Omega,
\end{cases}
$$

the functional spaces being defined as

$$
V_a = \{v \in H^1(\Omega), \ v \text{ is } 2\pi x_1\text{-periodic, } v|_{\Gamma_a} = 0, \ v|_{\Gamma_b} = p_0 \},
$$

$$
V_0 = \{v \in H^1(\Omega), \ v \text{ is } 2\pi x_1\text{-periodic, } v|_{\Gamma_a} = 0, \ v|_{\Gamma_b} = 0 \},
$$

with $\Omega = [0, 2\pi[\times]0, 1[, \ \Gamma_0 = [0, 2\pi[\times \{0\}, \ \Gamma_a =]0, 2\pi[\times \{1\}$ and $p_0 > 0$. h is a regular bounded function which is greater than a strictly positive constant. From the techniques used in [4,5], we prove:

Theorem 0.1 Problem (P) admits at least one solution (p, θ). Moreover, the pressure p is unique, and if there exists a set of positive measure such that $p(x_1, x_2) > 0$, for almost every $x_2 \in [0, 1[$, then the saturation θ is unique. In particular, if h can be written as $h(x_1, x_2) = h_1(x_1)h_2(x_2)$ (where h_i is a regular bounded function, greater than a strictly positive constant), problem (P) admits a unique solution.

The homogenization study is motivated by the roughness of the surfaces due to the manufacturing process. Thus the effective gap, denoted $h_\varepsilon(x) = h(x, x/\varepsilon)$, is highly oscillating. Our purpose is to study the behaviour of the problem when ε tends to 0. In Section 1, we state the homogenized problem in a somewhat general case. Anisotropic effects not only appear on the coefficients but also on the saturation:

Theorem 0.2 There exists a pressure p_0, two saturation functions Ξ_1, Ξ_2 such that (p_0, Ξ_1, Ξ_2) is a solution of the homogenized problem:

$$
(P^*) \begin{cases}
 \text{Find } (p_0, \Xi_1, \Xi_2) \in V_a \times L^\infty(\Omega) \times L^\infty(\Omega) \text{ such that} \\
 \int_\Omega A \cdot \nabla p_0 \nabla \phi = \int_\Omega \frac{\partial}{\partial x_1} \nabla \phi, \quad \forall \, \phi \in V_0, \\
 p_0 \geq 0 \quad \text{et} \quad p_0 \cdot (1 - \Xi_i) = 0, \ (i = 1, 2) \quad \text{a.e. in } \Omega,
\end{cases}
$$

with $A = \begin{pmatrix} a_{11}^* & a_{12}^* \\ a_{21}^* & a_{22}^* \end{pmatrix}$, $b = \begin{pmatrix} \Xi_1 b_1^* \\ \Xi_2 b_2^* \end{pmatrix}$, the coefficients a_{ij}^* and b_i^* being given in definition 1.5.

It is obvious that the homogenized problem is not so clear since we are unable to prove that the two saturation functions belong to $[0, 1]$ in cavitated areas. However we can prove that the homogenized problem has a particular solution with an isotropic saturation belonging to $[0, 1]$, that is:

Theorem 0.3 (P^*) admits at least one solution (p_0, Ξ, Ξ) satisfying $H(p_0) \leq \Xi \leq 1$.

In Section 2, we treat some particular case, i.e. the oblique roughness case, in which two different saturation functions belonging to $[0, 1]$ appear. Interestingly, the transverse / longitudinal roughness case is derived from the previous description and appears to be well posed. At last, in Section 3, a numerical simulation illustrates the behaviour of both pressure and saturation when ε tends to 0.
1. Homogénéisation du modèle d’Elrod-Adams - Cas général

Hypothèse 1 Soient $Y = [0, 1]^2$, a et b deux fonctions définies sur $\Omega \times \mathbb{R}^2$, appartenant à $L^2(\Omega; C(Y))$ ou $L^2(Y; C(\Omega))$, Y-périodiques, bornées, supérieures à une constante strictement positive.

Définition 1.1 Soient a_ε et b_ε définies sur Ω par $a_\varepsilon(x) = a\left(x, \frac{x}{\varepsilon}\right)$ et $b_\varepsilon(x) = b\left(x, \frac{x}{\varepsilon}\right)$. Soit le problème

\[
\begin{aligned}
\text{(P)} \quad & \int_\Omega a_\varepsilon \nabla p_\varepsilon \cdot \nabla v \, dx = \int_\Omega b_\varepsilon \frac{\partial \theta_\varepsilon}{\partial x} \, dx, \\
& \forall v \in V_0, \quad \theta_\varepsilon \geq 0, \quad H(p_\varepsilon) \leq \theta_\varepsilon \leq 1 \quad \text{p.p. dans } \Omega.
\end{aligned}
\]

Lemme 1.2 Il existe $(p_0, p_1, \theta_0) \in V_0 \times L^2(\Omega; H^1_0(Y)/\mathbb{R}) \times L^2(\Omega \times Y)$ tel que $(p_\varepsilon, \nabla p_\varepsilon, \theta_\varepsilon)$ converge double-échelle, à une sous-suite près, vers $(p_0, \nabla p_0 + \nabla y p_1, \theta_0)$.

Preuve Les convergences sont issues d’estimations a priori indépendantes de ε (voir [1,10,11]), en norme H^1 pour la pression, en norme L^2 pour la saturation.

En choisissant des fonctions tests particulières dans le problème (P_ε) (voir [1,11]), on établit :

Proposition 1.3
- **Équation macroscopique** : pour tout ϕ appartenant à V_0,

\[
\int_\Omega \left(\int_Y a \left[\nabla p_0 + \nabla y p_1 \right] \, dy \right) \cdot \nabla \phi \, dx = \int_\Omega \left(\int_Y \theta_0 b \, dy \right) \frac{\partial \phi}{\partial x_1} \, dx.
\]

- **Équation microscopique** : pour presque tout $x \in \Omega$, pour tout ψ appartenant à $H^1_0(Y)$ (voir [1,11]) pour la définition de $H^1_0(Y)$,

\[
\int_Y a \left[\nabla p_0 + \nabla y p_1 \right] \cdot \nabla y \psi \, dy = \int_Y \theta_0 b \frac{\partial \psi}{\partial y_1} \, dy.
\]

Définition 1.4 Les problèmes locaux (resp. notés (\mathcal{M}_i^*), (\mathcal{N}_i^*) et (\mathcal{N}_0^*), $i = 1, 2$) sont ainsi définis :

\[
\begin{aligned}
\text{Trouver } W_i^*, \chi_i^*, \chi_i^0 \in L^2(\Omega; H^1_0(Y)/\mathbb{R}) \text{ tels que, pour presque tout } x \in \Omega, \text{ et pour tout } \psi \in H^1_0(Y),
\end{aligned}
\]

\[
\begin{aligned}
& \int_Y a \nabla_y W_i^* \cdot \nabla_y \psi = \int_Y a \frac{\partial \psi}{\partial y_i}, \\
& \int_Y a \nabla_y \chi_i^* \cdot \nabla_y \psi = \int_Y b \frac{\partial \psi}{\partial y_i}, \\
& \int_Y a \nabla_y \chi_i^0 \cdot \nabla_y \psi = \int_Y \theta_0 b \frac{\partial \psi}{\partial y_i}.
\end{aligned}
\]

Définition 1.5 $a_{i,j}^* = \tilde{a} \delta_{ij} - \left[a \frac{\partial W_i^*}{\partial y_j} \right]$, $b_i^* = \tilde{b} \delta_{i} - \left[a \frac{\partial \chi_i^*}{\partial y_i} \right]$, avec $\tilde{f}(x) = \int_Y f(x, y) \, dy$.

Nous établissons la preuve du théorème 0.2, qui décrit le problème homogénéisé :

Preuve du théorème 0.2 On montre, par les techniques d’éclatement périodique [10], à partir des propriétés des solutions $(p_\varepsilon, \theta_\varepsilon)$, que $p_0 \geq 0$ et $H(p_0) \leq \theta_0 \leq 1 \text{ p.p. dans } \Omega \times Y$. Par ailleurs, le problème local (\mathcal{M}_i^*) (resp. (\mathcal{N}_i^*), (\mathcal{N}_0^*)) admet une unique solution W_i^* (resp. χ_i^*, χ_i^0). Par suite, on obtient

\[
p_1(x, y) = - \left(\frac{W_1^*(x, y)}{W_2^*(x, y)} \right) \cdot \nabla p_0(x) + \chi_0^0(x, y), \text{ dans } L^2(\Omega; H^1_0(Y)/\mathbb{R}).
\]

Le problème homogénéisé est obtenu en remplaçant p_1 par l’expression ci-dessus dans l’équation macroscopique (1), et en définissant les quantités

\[
b_1^0 = \left(\theta_0 b \right) \delta_{11} - \left(a \frac{\partial \chi_1^0}{\partial y_1} \right), \quad b_i^* = \tilde{b} \delta_{i} - \left(a \frac{\partial \chi_i^0}{\partial y_i} \right) \text{ et } \Xi_i = b_i^0 / b_i^*.
\]
Remarque 1 Dans les zones non-cavitées (i.e. $p_0 > 0$, $\Xi_i = 1$), nous obtenons l'équation de Reynolds homogénéisée classique [6,8]. Cependant :

(a) la propriété $(H(p_0) \leq \Xi_i \leq 1)$ n’est pas garantie, i.e. nous ne savons pas montrer que les fonctions de saturation homogénéisées sont inférieures à 1 dans les zones de cavitation ! Nous montrons dans la section 2 qu’il est possible, sous des hypothèses supplémentaires, de dépasser ces difficultés partiellement ou complètement. Par ailleurs, les techniques utilisées pour le problème (\mathcal{P}) ne permettent plus d’établir un résultat d’unicité pour (\mathcal{P}^*).

(b) des algorithmes permettent la résolution numérique du problème (\mathcal{P}) (voir [3,7]), mais ne permettent pas de construire une solution de (\mathcal{P}^*) avec deux fonctions de saturation distinctes.

Le théorème 0.3 établit, parmi les solutions de (\mathcal{P}^*), l’existence d’une solution (p_0, Ξ, Ξ) satisfaisant la propriété $H(p_0) \leq \Xi \leq 1$:

Preuve du théorème 0.3 On introduit un problème pénalisé (\mathcal{P}_η), dans lequel la saturation θ est remplacée par $H_\eta(p)$, où H_η est une approximation du graphe de Heaviside, par exemple

$$H_\eta(z) = \chi_{[0,\eta]}(z) + \frac{\eta}{\Xi} \chi_{[0,\eta]}(z).$$

Le résultat est obtenu par homogénéisation de (\mathcal{P}_η), puis passage à la limite sur le paramètre de pénalisation.

2. Cas particulier : rugosités obliques

En homogénéisation, la séparation des variables microscopiques permet classiquement d’obtenir des résultats significatifs ; l’hypothèse suivante est inspirée de cette remarque.

Hypothèse 2 Soit $\alpha \in \mathbb{R}$, a_z et b_z deux fonctions telles que

$$\forall x \in \Omega, \quad \begin{cases} a_z(x) = a_1 \left(x, \frac{X^1(x)}{\varepsilon} \right) a_2 \left(x, \frac{X^2(x)}{\varepsilon} \right), \\ b_z(x) = b_1 \left(x, \frac{X^1(x)}{\varepsilon} \right) b_2 \left(x, \frac{X^2(x)}{\varepsilon} \right), \end{cases}$$

avec $X^1(x) = \cos \alpha x_1 + \sin \alpha x_2$, $X^2(x) = \sin \alpha x_1 + \cos \alpha x_2$,

les fonctions a_i et b_i étant bornées, supérieures à une constante strictement positive.

Théorème 2.1 Sous l’hypothèse 2, le problème homogénéisé est ainsi défini :

$$(\mathcal{P}^*) \begin{cases} \text{Trouver} \ (p_0, \ \Xi_1, \ \Xi_2) \in V_0 \times L^\infty(\Omega) \times L^\infty(\Omega) \ \text{tel que} \\ \int_\Omega A \cdot \nabla p_0 \nabla v \ dx = \int_\Omega b_1^0 \frac{\partial v}{\partial x_1} \ dx + \int_\Omega b_2^0 \frac{\partial v}{\partial x_2} \ dx, \ \forall v \in V_0, \\ p_0 \geq 0, \ H(p_0) \leq \Xi_i \leq 1, \quad (i = 1, 2) \quad \text{p.p. dans} \ \Omega, \end{cases}$$

avec les expressions

$$A(x) = \begin{pmatrix} a_1^1(x) & 0 \\ 0 & a_2^1(x) \end{pmatrix} + (a_1^2(x) - a_2^2(x)) \sin \alpha \begin{pmatrix} -\sin \alpha \cos \alpha \\ \cos \alpha \sin \alpha \end{pmatrix},$$

$$b_1^0(x) = -D \left(b_1^1(x) \Xi_1(x) - b_2^1(x) \Xi_2(x) \right) \sin^2 \alpha + b_1^2(x) \Xi_1(x),$$

$$b_2^0(x) = \left(b_1^1(x) \Xi_1(x) - b_2^1(x) \Xi_2(x) \right) \sin \alpha \cos \alpha,$$
et les coefficients homogénéisés \((i, j = 1, 2, j \neq i)\) :

\[
a^*_i = \frac{\tilde{a}_j}{a_i} \quad \text{et} \quad b^*_i = \frac{1}{a_i} \left(\frac{\tilde{b}}{a_i}\right)
\]

De plus, \((p_0, \theta_0)\) étant la limite double-échelle de \((p_\varepsilon, \theta_\varepsilon)\) (solution du problème \((P^\varepsilon)\)), le problème \((P^*)\) admet une solution \((p_0, \Xi_1, \Xi_2)\), avec

\[
\Xi_i = \frac{1}{a_i} \left(\frac{\theta_0 b}{a_i}\right), \quad i = 1, 2.
\]

Preuve La démonstration s’effectue en trois étapes : 1- Réécriture du problème \((P_\varepsilon)\) dans le système de coordonnées \(X^\alpha = (X^\alpha_1, X^\alpha_2)\), 2- Homogénéisation du problème dans le système de coordonnées \(X^\alpha\), 3- Réécriture du problème homogénéisé dans le système de coordonnées initial.

Remarque 2 L’hypothèse 2 permet de poser un problème homogénéisé dans lequel apparaissent deux fonctions de saturation distinctes satisfaisant la propriété \(H(p_0) \leq \Xi_i \leq 1\). Par ailleurs, dans le cas des rugosités transverses et/ou longitudinales \((\alpha = k\pi/2, k \in \mathbb{Z})\), le problème homogénéisé est un problème de Reynolds généralisé dans lequel n’intervient qu’une seule fonction de saturation et pour lequel on peut obtenir des résultats d’unicité.

Remarque 3 Une démarche initiale "naïve" consisterait à tenter de déterminer une équation limite satisfaite par les limites faibles de \((p_\varepsilon, \theta_\varepsilon)\) (en norme \(H^1\) pour la pression, \(L^2\) pour la saturation), i.e. \((p_0, \theta_0)\). Or, si la limite faible de la pression intervient effectivement dans l’équation homogénéisée, ce n’est pas la limite faible de la saturation qui joue le rôle de saturation macroscopique : l’équation (3) montre en effet que les saturations limites \(\Xi_i\) sont des moyennes de \(\theta_0\) pondérées par l’influence des rugosités, même lorsque le problème est bien posé. Cette équation traduit l’anisotropie sur les fonctions de saturation, et donne un lien explicite entre ces fonctions - macroscopiques - et la saturation microscopique \(\theta_0\).

Remarque 4 La formulation du problème de la digue pour des configurations géométriques générales, introduite dans [2,9], est similaire à celle du problème de lubrification. Il est possible d’homogénéiser le problème afin de prendre en compte l’influence de couches stratifiées (coefficient de perméabilité variable et oscillant). L’analyse de configurations avec des strates obliques fait également apparaître des phénomènes de double saturation. Dans le cas -plus général- où la perméabilité est décrite par une matrice non diagonale, il est possible d’établir la non-convergence des zones non-saturées [12].

3. Un exemple de résultat numérique

Un des enjeux est de savoir si la saturation microscopique \(\theta_0\) dépend effectivement de la variable \(y\). En effet, si ce n’est pas le cas, il est facile de conclure à l’isotropie des saturations homogénéisées (i.e. \(\Xi_1 = \Xi_2\)). Néanmoins, les simulations numériques indiquent que cette hypothèse ne peut être retenue (voir Fig. 1).

Les simulations de la Fig. 1 correspondent à un régime de fonctionnement réaliste pour un coussinet [7]. On compare la solution homogénéisée avec les solutions associées à des rugosités transverses \((\varepsilon = 1/N = 1/30, 1/80)\). Une coupe est effectuée à \(x_2\) fixée (afin d’observer les effets d’oscillations dans la direction \(x_1\)) et permet d’illustrer la convergence de la pression ainsi que le comportement de la saturation. La convergence forte de la pression dans \(L^2(\Omega)\) est évidente (l’amplitude des oscillations diminue) et il est
clair que θ_ε converge dans $L^2(\Omega)$ seulement en un sens faible; en particulier, l’amplitude du gradient explode quand ε tend vers 0, indiquant que $\theta_0(x,y)$ dépend effectivement de la variable y.

Remerciements

Nous remercions F. Murat pour les fructueuses discussions sur le sujet.

Références