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A note on the generalized fractal dimensions
of a probability measure

Charles-Antoine Guérin? ’ B
Institut Fresnel, UMR CNRS 6133, Faculte des Sciences de Saint-Jerome,
Case 162, F-13397 Marseille Cedex 20, France

We prove the following result on the generalized fractal dimensions in of a prob-
ability measure w on R". Let g be a complex-valued measurable function on R"
satisfying the following conditions: (1) g is rapidly decreasing at infinity, (2) g is
continuous and nonvanishing at (at least) one point, (3) S g # 0. Define the partition
function A ,(u,q) =a”(q_l)||ga*,u||g, where g,(x)=a " "g(a" 'x) and * is the con-

volution in R". Then for all ¢>1 we have in =1/(g—Dlim,_,g .7 * X[log Aau(r,q)/
log r].

I. INTRODUCTION

Since the apparition of the fractal formalism in the late 1970s, there has been a huge amount
of literature devoted to the different definitions of the fractal dimensions of probability measures
(see, e.g., Refs. 1 and 2 for reviews). Roughly speaking, there are two types of fractal dimensions:
the pointwise dimensions, which give essentially the local Holder exponents of the measure, and
the global ones, which can be seen as regularity indices in a scale of Besov spaces. Both families
of dimensions are related to one another by the so-called multifractal formalism. The global
dimensions were originally introduced by Renyi® and rediscovered by Hentschel and Procaccia in
their seminal paper;* they are a generalization of the usual fractal dimension or capacity, and are
therefore called ““generalized fractal dimensions.” They are obtained by a box-counting algorithm,
which amounts to partitioning the space in elementary cells and suming up powers of the indi-
vidual contributions to the measure into what is called a partition function. There are several
variants of this definition, according to the kind of covering that is chosen (grids, balls, redundant,
nonredundant, etc.) and the kind of partition function (discrete or continuous). First used in the
context of chaos and dynamical systems, the generalized fractal dimensions have regained interest
in the framework of quantum diffusion in the presence of fractal spectra. After the pioonering
work of Guarneri® many relations were established between the diffusive behavior of quantum
wave packets and the generalized fractal dimensions (see, e.g., Refs. 69 for some recent results).

In order to simplify the numerous definitions and unify the results arising in dimension theory,
it is important to find equivalences between the different approaches. This has been the aim of
some recent works (e.g., Refs. 10—12, 2). In this short note we show that the generalized fractal
dimensions can be obtained by replacing the boxes by arbitrary rapidly decaying complex-valued
functions in the partition function, provided only these functions have nonzero mean.

Il. THE GENERALIZED FRACTAL DIMENSIONS

Let u be a probability Borel measure on R" and consider a partition of the space in a grid of
cubes Q(X;,r) of center X; and side 2r. For =0, form the following partition function:
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A1M<r,q>=§ p(Q(x;,r))0. (2.1)

The so-called Rényi dimensions D qi (Ref. 4) of the measure w are defined as the limiting expo-
nents of the last function as r— 0, precisely:

D, = il #1 2.2
q _q_l 4 q ( . )
with
N sup log A r,
r—o0 ogr

This normalization recasts the dimensions on the unit interval, 0= in <1, at least for q>1 (see
Ref. 12 for a detailed discussion). Note that (2.2) is not defined for = 1. Hentschel and Proccacia®
have shown heuristically the existence of the limit q— 1, thereby defining D|" by continuity. A
rigorous analysis'?> however, shows that D(_f are only left- and right-continuous about =1, with
a possible discontinuity. The dimension D, is the usual fractal dimension or capacity. The dimen-
sion D, is known as the correlation dimension. A continuous version*'® of the partition function
(2.1) is

Asu(r.q)= fanzs’(x,r))q—‘ dpa(). (2.4)

where B(X,r) is the ball of center X and radius r. The corresponding limiting exponents, defined
after (2.2) and (2.3), are called generalized fractal dimensions. Note that the integration is per-
formed against the measure w, which is possibly singular. A more tractable definition consists in
integrating versus the Lebesgue measure, by formally replacing du(x) by the absolutely continu-
ous measure I "u(B(x,r)):

A3,u(r,q)=r_nJRn,u,(B(X,r))qu. (25)

Although more convenient, this formula seems to be less popular in the literature. The equivalence
of definitions (2.1) and (2.4) has been shown in Ref. 13 for q>1 (also rewritten in Ref. 2, p. 184),
and the equivalence of (2.1) and (2.5) follows by an obvious adaptation of the proof. The equiva-
lence for 0<q<1 has been proved more recently.'> We thus have, for all q>0(q#1), three
equivalent definitions of the generalized fractal dimensions:

+ 1 . Sup logAj,u(raq)
Dj =—lim o — e
q—1,_, In logr

. j=1.23. (2.6)

lll. MAIN RESULT

As we are going to show, the balls or boxes used to define the partition functions Aju can be
replaced by arbitrary measurable functions, provided the latter are rapidly decreasing. This is very
natural for non-negative functions, which can be seen as smooth cutoff functions, but less obvious
for complex or signed functions. For any measurable complex-valued function g on R" denote by
g.(x)=a " "g(a"'x), a>0, its dilated version and define the partition function

Aa(M,Q):a”(q_l)Hga*MHg:a”(q_l)J db|ga*ﬂ(b) q,
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where the asterisk (*) stands for the convolution:

g u(b) = f 0a(b—X)d(x),

We start by recalling a useful rule of computation for the limiting exponents. A proof of this
result can be found in Ref. 14, for example.
Lemma 3.1: Let s be a non-negative measurable function. Then

.. logs(t)

lim inf =sup{y:st(t)<O(t”), t—0},
o logt

, logs(t) .

lim sup =inf{y:t”<0O(s(t)), t—0}.
o logt

Next we consider the case of non-negative functions.
Lemma 3.2: Let g be a non-negative measurable function g on R" which is continuous and
nonvanishing at (at least) one point and rapidly decreasing at infinity. Then for all g>1 we have

N 1 sup log A u(r,
DF=——Ilim | ?M. (3.1)
q—1,_, In logr

Proof: First note that we do not change the limit (3.1) on replacing g by a translated and
rescaled version Ag(at— ). Since g remains positive in some neighborhood of, say, t,, we can
rescale g in such a way that ch=g=<Ch, where h is some non-negative function with h(t)=1 for
te[—1,1] and c,C are two positive constants. Hence it suffices to prove the lemma for such a
function h. Let €>0. For all a>0 small enough and b € R we have

|ha*/“(b)| = J ha(t)du(b—1)

= ﬁtsalﬂha(t)dﬂ(b—t)
Ba_”min|t‘$ae{h(t)},u(8(b,a1+€))
=a "u(B(b,a'*e)).
Integrating over b this yields to
e A WHELERY) 32)

The reverse estimation is more touchy. For all e>0 we have

hp®)]= [ Inldet-0+ | Jnldet-o

It] >

<alglaBba N+ [ | Iholdub-0

[t]
and thus

LRCEF ) REE)

b—t|>al~

||ha*M||3<an“‘”“f”AW(alf,q)+CqJ db(f|
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for some constant C;. We have to show that the contribution of the second term is negligible. By
Jensen’s inequality, we have for all q>1,

q q—1 .
( J|t|>alEha(t)d'u(b_t)) \< J|b—t|>a1€d#(t)) Jlb—t|>a15ha(b_t)df“(t)'

Thus, calling 1(a) the second term on the right-hand side of (3.3), we have
|(a)scqj dbf hi(t)du(b—t)
t|>al~€

=qu . hg(t)Jdu(b—t)=an“q)”f g,
[t|>a" "€ [t|>a~ €

where we use the finiteness of u to exchange the integrals. Now since ¢ is rapidly decreasing at
infinity, the tails of its integrals also and thus I(a)<O(a”),a—0. Since (3.2) and (3.3) hold for
arbitrarily small €, the conclusion follows from Lemma 3.1. [
Note: A proof of this result in the case 0<<q<1 has been given in Ref. 12, Theorem A.1.
We now can state the main result:
Theorem 3.3: Let g be a complex-valued measurable function on R" satisfying the following
conditions:

(1) g is rapidly decreasing at infinity,
(2) g is continuous and nonvanishing at (at least) one point,
(3) fg#o.

Then for all g>1 we have

sup log Aau(r,q)

1
D qur Ln; inf logr

. (3.4)

This will be an easy consequence of the following lemma.

Lemma 3.4: Let g be a rapidly decreasing complex-valued measurable function such that
Sg#0. Then there exists a non-negative function ¢ in S(R") (the Schwartz space of infinitely
differentiable rapidly decreasing functions) and a complex-valued function e S(R™) such that

d=9*¢.

Proof: Let § be the notation for the Fourier transform of a L! function g:

@(k)zj e 1% (x)dx.

Without restriction we may suppose |[g|=|G(0)|=1. Since § is a continuous function, we can
find some neighborhood V =B(0,€) about the origin in which |§|>1/2 on V. Now take a smaller
neighborhood V' =B(0,€/2) and some nonzero h e C;(R") with support in V'. Define ¢ by its

Fourier transform: ¢=hx*h, where h(x)=h(—x) and h is the complex conjugate of h. Then
support (a)) CV and ¢p= |F1|2 is a non-negative function in S(R"). It remains to construct . This
can be done by setting fp= &5/ gonV, fp= 0 elsewhere. The two functions then satisty ¢p=g* ¢
and ¢ is in S(R") for ¢ is in Cj(RM). O

Proof (of Theorem 3.3): Take two functions ¢ and ¢ as in Lemma 3.4. Then for all q>1, we
have by Young’s inequality:

e ballq=(e*ga) * allg =<l *gallgll ] -
On the other hand,



||M*9a||q$||ﬂ*|9a|||q .

Both functions ¢ and |g| fulfill the hypothesis of Lemma 3.2. The partition functions
a7 D] ux dyll, and @@ V| ux|g,||lq therefore satisfy (2.6), and since they *“sandwich”
Aa(w,q), the conclusion follows. U
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