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1 Département de Mathématiques, Université de Marne-la-Vallée, 5 boulevard Descartes,
Champs-sur-Marne, 77 454 Marne-la-Vallée, France. eymard@math.univ-mlv.fr
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Abstract

We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–
diffusion–reaction equations in two or three space dimensions. We discretize the time evolution,
convection, reaction, and sources terms on a given grid, which can be nonmatching and can
contain nonconvex elements, by means of the cell-centered finite volume method. To discretize
the diffusion term, we construct a conforming simplicial mesh with the vertices given by the
original grid and use the finite element method. In this way, the scheme is fully consistent and
the discrete solution is naturally continuous across the interfaces between the subdomains with
nonmatching grids, without introducing any supplementary equations and unknowns or using
any interpolation of the discrete solutions at the interfaces. We allow for general inhomogeneous
and anisotropic diffusion–dispersion tensors and use the local Péclet upstream weighting in
order to only add the minimal numerical diffusion necessary to avoid spurious oscillations in the
convection-dominated case. The scheme is robust, efficient, locally conservative, and satisfies
the discrete maximum principle under some conditions on the mesh and the diffusion tensor.
We prove its convergence using a priori estimates and the Kolmogorov relative compactness
theorem and illustrate its behavior on a numerical experiment.
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1 Introduction

Nonlinear convection–diffusion–reaction equations arise in many contexts, such as flow in porous
media, heat conduction, or free boundary problems. This paper is motivated by contaminant
transport in porous media with equilibrium adsorption reaction, described by the equation

∂β(c)

∂t
−∇ · (S∇c) + ∇ · (cv) + F (c) = q , (1.1)
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cf. [4, 6], where c is the unknown concentration of the contaminant, the function β(·) represents
time evolution and equilibrium adsorption reaction, S is the diffusion–dispersion tensor, v is the
velocity field, F (·) is a reaction function, and finally, q stands for sources. In (1.1), the tensor
S is usually inhomogeneous and anisotropic (nonconstant full-matrix) and the velocity field v is
dominating. Moreover, if β ′ is unbounded, the equation (1.1) is degenerate parabolic.

A large variety of methods has been proposed for the discretization of the problem (1.1). The
conforming piecewise linear finite element method has been studied e.g. by Barrett and Knab-
ner [4], Ebmeyer [12], and Rulla and Walkington [30], the cell-centered finite volume method by
Baughman and Walkington [5] and Eymard et al [15], the vertex-centered finite volume method
by Ohlberger [26], the combined finite volume–nonconforming finite element method by the au-
thors [18], the finite difference method by Karlsen et al [23], and the mixed finite element method by
Arbogast et al [3]. In all these references, only matching (conforming) grids have been considered.

In recent years, there was a growing interest in discretization methods for nonmatching grids,
usually proposed in the context of domain decomposition methods (cf. Quarteroni and Valli [29]).
The mortar method, developed for elliptic problems discretized by the finite element or spectral
methods by Bernardi et al [7], enforces a weak continuity of the discrete solution across the inter-
faces between the subdomains with nonmatching grids with the help of auxiliary spaces defined at
the interfaces. It is recognized for its stability and accuracy and it has been later extended to other
methods, such us to the mixed finite element method by Arbogast et al [2] and to the finite volume
element method by Ewing et al [13]. Analogous approaches for cell-centered finite volume methods
have been proposed by Achdou et al [1] or Faille et al [19]. Alternatively, other techniques use
interpolation of the discrete solutions at the interfaces. A different approach, avoiding the need to
introduce supplementary equations and unknowns or to interpolate at the interfaces and leading
to a simple and stable cell-centered finite volume scheme for nonoverlapping nonmatching grids
has been proposed by Cautrès et al [9]. Its disadvantage however is that the diffusive flux approx-
imation across the nonmatching interfaces is nonconsistent, which leads to the introduction of an
additional numerical error. In all the above references, only linear elliptic problems are considered.

The intention of this paper is twofold. Firstly, we want to propose a simple, stable, consistent,
and efficient method permitting the use of very general and in particular nonmatching grids.
Secondly, we want this method to enable the discretization of degenerate parabolic convection–
diffusion–reaction problems of type (1.1). We employ for this purpose the ideas of combined finite
volume–finite element schemes (cf. Sonier and Eymard [31], Feistauer et al [20], or Debiez et
al [11]) and in particular those of the scheme proposed and studied by the authors [18]. In these
schemes, one supposes that there is a given simplicial (consisting of triangles/tetrahedra) mesh
and discretizes the diffusion term of (1.1) by means of a finite element method on this mesh,
whereas the other terms are discretized by means of the cell-centered finite volume method on a
dual partition constructed on the basis of the simplicial one. In this paper, we rather start from
the finite volume partition, being motivated by the following consideration: for a pure cell-centered
finite volume discretization of the equation (1.1) without the diffusion term, the mesh can in fact
be nonmatching and can even contain nonconvex control volumes, cf. [14, Chapter VI]. The mesh
is required to match along hyperplanes and to consist of convex control volumes only when the
diffusion term is present, cf. [14, Chapter III]. At the same time, however, we notice that given a set
of points, we can always construct a simplicial mesh with vertices given by this set of points. Hence
an intuitive idea is as follows: given a nonmatching mesh (with possibly nonconvex elements) and
with a set of points associated with these elements, construct a simplicial mesh having this set of
points as vertices. Then consider a finite element discretization of the diffusion term of (1.1) on
the simplicial mesh and a finite volume discretization of the other terms of (1.1) on the original
mesh.
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We believe that our approach to nonmatching grids is in some sense the simplest, yet very
efficient. In particular, we do not introduce any supplementary equations and unknowns, nor do
we use any interpolation of the discrete solutions at the interfaces. There is no need for this for the
finite volume part of the scheme and the finite element part uses a conforming mesh. The proposed
scheme is in this respect similar to that from [9]. The essential difference is that we replace the
finite volume diffusion fluxes by the finite element ones. This is very important in the present
case, since the diffusion fluxes through the interfaces between the subdomains with nonmatching
grids of the scheme proposed in [9] are not consistent, whereas our discretization of the diffusion
term (over the interfaces) is fully consistent. We however have to construct a dual simplicial mesh,
which is not necessary in [9].

We can mention the following advantages of our scheme with respect to the convection–
diffusion–reaction equation (1.1). Our scheme is stable but not excessively diffusive in the convec-
tion-dominated case since we avoid the spurious oscillations by checking the local Péclet number
and by adding exactly the necessary amount of upstream weighting. It inherits the diffusion prop-
erties of the finite element method, enabling in particular an easy discretization of inhomogeneous
and anisotropic diffusion tensors. Moreover, in order to avoid the smearing of the fronts for highly
inhomogeneous problems, we give, in addition to the classical finite element discretization leading
to the arithmetic average of the diffusion–dispersion tensor, a second variant corresponding to the
harmonic average. Our scheme next possesses the discrete maximum principle in the case where
all transmissibilities are non-negative. This happens for instance when the diffusion tensor reduces
to a constant scalar function and when the simplicial mesh is Delaunay in two space dimensions, or
when the diffusion tensor is scalar and when the angles between the outward normal vectors of sides
of each simplex in the triangulation are greater or equal to π/2 in two or three space dimensions.
Our scheme only has the number of unknowns equal to the number of grid cells and the arising
matrices are positive definite (but generally nonsymmetric because of the upstream weighting). It
is also locally conservative. It next permits to efficiently discretize degenerate parabolic problems:
when we search for the discrete unknowns corresponding to β(c), the resulting system of nonlinear
algebraic equations can be solved by the Newton method without any parabolic regularization
(cf. [4]) or perturbation of initial and boundary conditions (cf. [27]), which make the equation
uniformly parabolic. Moreover, the resulting matrices are diagonal for the part of the unknowns
corresponding to the region where the approximate solution is zero. Finally, differing only in the
discretization of the diffusion term from standard cell-centered finite volume schemes, our scheme
can easily be implemented in any finite volume code, in order to permit a (nonmatching) local
refinement of the mesh and an easy discretization of inhomogeneous and anisotropic tensors, a
highly desirable feature e.g. in contaminant transport modeling. Finally, especially on rectangular
grids, the ease of (nonmatching) local refinement using our scheme makes it appealing for adaptive
simulations.

Our numerical scheme permits to construct approximate solutions that are piecewise constant
on the given mesh or piecewise linear and continuous on the simplicial mesh. We prove the
convergence of both these approximations to a weak solution of the continuous problem in this
paper. The methods of proof follow the lines previously given by the authors [18] and are based
upon the Kolmogorov relative compactness theorem and the finite volume tools from [14]. We only
suppose that β is continuous with the growth bounded from below in the case where the discrete
maximum principle is satisfied. In the general case we require in addition β to be bounded on
some interval and Lipschitz-continuous outside this interval. There is no restriction on the maximal
time step in the case where F is nondecreasing. If F does not posses this property, we impose an
appropriate maximal time step condition. For the sake of simplicity, we only consider the case of
a homogeneous Dirichlet boundary condition. Extensions to other types of boundary conditions
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and to the case where the equation (1.1) involves a nonlinear convection term are possible, using
the techniques from [14] and [15].

The rest of the paper is organized as follows. In Section 2 we state the assumptions on the
data and present a weak formulation of the continuous problem. In Section 3 we define admissible
grids, introduce the combined finite volume–finite element scheme, and give several remarks on
the scheme and its possible extensions. In Section 4 we present some properties of our scheme
and prove that it possesses a unique solution, which satisfies the discrete maximum principle
under the hypotheses stated above. In Section 5 we derive a priori estimates and estimates on
differences of time and space translates for the approximate solutions. Finally, in Section 6, using
the Kolmogorov relative compactness theorem, we prove the convergence of a subsequence of the
sequence of approximate solutions to a weak solution of the continuous problem. The results of a
numerical experiment are presented in Section 7.

2 The nonlinear degenerate parabolic problem

Let Ω ⊂ R
d, d = 2, 3, be a polygonal (we use this term for d = 3 as well instead of polyhedral)

domain (open, bounded, and connected set) with boundary ∂Ω, let (0, T ), 0 < T <∞, be a time
interval, and let us define QT := Ω × (0, T ). We consider the equation (1.1) in QT together with
the homogeneous Dirichlet boundary condition

c = 0 on ∂Ω × (0, T ) (2.1)

and the initial condition
c(·, 0) = c0 in Ω . (2.2)

Suppose that S is a domain of R
d. We use the standard notation Lp(S) and Lp(S) = [Lp(S)]d

for the Lebesgue spaces on S, (·, ·)S stands for the L2(S) or L2(S) inner product, and ‖ · ‖S for
the associated norm. We use dx as the integration symbol for the Lebesgue measure on S, dγ(x)
for the Lebesgue measure on a hyperplane of S, and dt for the Lebesgue measure on (0, T ). We
denote by |S| the d-dimensional Lebesgue measure of S, by |σ| the (d − 1)-dimensional Lebesgue
measure of σ ⊂ R

d−1, and in particular by |s| the length of a segment s. At the same time,
|A| is the cardinality of a set A. Next, H1(S) and H1

0 (S) are the Sobolev spaces of functions
with square-integrable weak derivatives and H(div, S) is the space of vector functions with square-
integrable weak divergences, H(div, S) = {v ∈ L2(S);∇ · v ∈ L2(S)}. In the subsequent text we
will denote by CA, cA a constant basically dependent on a quantity A but always independent of
the discretization parameters h and 4t whose definition we shall give later. We make the following
assumption on the data:

Assumption (A) (Data)

(A1) β ∈ C(R), β(0) = 0, is a strictly increasing function such that, for all a, b ∈ R,

|β(a) − β(b)| ≥ cβ|a− b| , cβ > 0

or

(A2) in addition to (A1), there exists P ∈ R, P > 0, such that |β(s)| ≤ Cβ in [−P, P ], Cβ > 0,
and β is Lipschitz-continuous with a constant Lβ on (−∞,−P ] and [P,+∞);

(A3) Sij ∈ L∞(QT ), |Sij | ≤ CS/d a.e. in QT , 1 ≤ i, j ≤ d, CS > 0, S is a symmetric and
uniformly positive definite tensor for almost all t ∈ (0, T ) with a constant cS > 0, i.e.

S(x, t)η · η ≥ cS η · η ∀η ∈ R
d , for a.e. (x, t) ∈ QT ;
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(A4) v ∈ L2(0, T ;H(div,Ω)) ∩L∞(QT ) satisfies ∇ · v = r ≥ 0 and |v| ≤ Cv, Cv > 0, a.e. in QT ;

(A5) F (0) = 0, F is a nondecreasing, Lipschitz-continuous function with a constant LF

or

(A6) F (0) = 0, F is a Lipschitz-continuous function with a constant LF and there holds sF (s) ≥ 0
for s < 0 and s > M , M > 0;

(A7) q ∈ L2(QT ), where q = r c with c ∈ L∞(QT ), 0 ≤ c ≤M a.e. in QT ;

(A8) c0 ∈ L∞(Ω), 0 ≤ c0 ≤M a.e. in Ω.

Remark 2.1 (Hypotheses on β). In contaminant transport problems one typically has β(c) =
c+ cα, α ∈ (0, 1). Assumption (A1) generalizes this type of functions; we in particular do not limit
the number of points where β ′ explodes. As we shall see, we will be able to prove the convergence of
the combined scheme with this assumption only for the case where the discrete maximum principle
(cf. Theorem 4.11 below) holds. In the general case we add Assumption (A2), which is however
still satisfied by all realistic functions β. Also, it is necessary that the function β was defined for
negative values since our scheme can take them in this latter case.

We now give the definition of a weak solution of (1.1)–(2.2), following essentially Knabner and
Otto [24].

Definition 2.2 (Weak solution). We say that a function c is a weak solution of the problem (1.1)–
(2.2) if

(i) c ∈ L2(0, T ;H1
0 (Ω)) ,

(ii) β(c) ∈ L∞(0, T ;L2(Ω)) ,

(iii) c satisfies the integral equality

−

∫ T

0

∫

Ω
β(c)ϕt dxdt−

∫

Ω
β(c0)ϕ(·, 0) dx +

∫ T

0

∫

Ω
S∇c · ∇ϕdxdt−

−

∫ T

0

∫

Ω
cv · ∇ϕdxdt+

∫ T

0

∫

Ω
F (c)ϕdxdt =

∫ T

0

∫

Ω
qϕdxdt

for all ϕ ∈ L2(0, T ;H1
0 (Ω)) with ϕt ∈ L∞(QT ), ϕ(·, T ) = 0 .

Remark 2.3 (Existence of a weak solution). The existence of at least one weak solution is proved
e.g. in Theorem 6.2 below (cf. also [18, Theorem 6.2]).

Remark 2.4 (Uniqueness of a weak solution). For a slightly more restrictive hypothesis on the
data than that given in Assumption (A), the uniqueness of a weak solution given by Definition 2.2
is guaranteed in [24]. Namely, no time-dependency of the diffusion–dispersion tensor S is still
required in [24].

3 Combined finite volume–finite element scheme

We will describe the space and time discretizations, define the approximation spaces, introduce
the combined finite volume–finite element scheme, and give several remarks in this section.
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3.1 Space discretization

As a primal mesh of Ω, we understand a partition Dh of Ω into closed polygons such that Ω =⋃
D∈Dh

D and such that the intersection of interiors of two different polygons is empty. We in
particular admit nonmatching grids, i.e. the case where there exist two different polygons D,E ∈
Dh such that their intersection is not an empty set but it is not a common vertex, edge, or face of
D and E. We also allow for nonconvex elements D. An example of an admissible primal grid is
given in Figure 1 by the dashed line. We suppose that there exists a family of points V int

h such that
there is one point VD in the interior of D associated with each D ∈ Dh. For D ∈ Dh, we denote by
FD the set of such subsets σ of ∂D that there exists E ∈ Dh such that σ = σD,E := ∂D ∩ ∂E has
a positive (d− 1)-dimensional Lebesgue measure. If there is a part of ∂D with a positive (d− 1)-
dimensional Lebesgue measure lying on the boundary ∂Ω, then FD contains in addition a union of
σ = σD,E ⊂ ∂D∩∂Ω covering ∂D∩∂Ω and such that each σD,E has a positive (d−1)-dimensional
Lebesgue measure and contains exactly one point VE ∈ Vn,ext

h defined below. We remark that
∂D =

∑
σD,E∈FD

σD,E, that σD,E is not necessarily a (whole) side (edge if d = 2, face if d = 3)

of D, and that σD,E not necessarily lies in a hyperplane of R
d, see Figure 1. We next denote by

Fh the union of all σ, by F int
h the union of all σD,E = ∂D ∩ ∂E for some D,E ∈ Dh, and by F ext

h

the union of all σ ⊂ ∂Ω. We also denote, for σD,E ∈ Fh, by bD,E the line segment connecting the
vertices VD and VE and put dD,E := |VD − VE |. Finally, denoting by hD the diameter of D, the
primal mesh discretization parameter hD is given by hD := maxD∈Dh

hD. We make the following
admissibility assumption on the family of primal meshes {Dh}h:

Assumption (B) (Admissibility of the primal meshes)

(B1) There exists a constant C1,D > 0 such that

|FD| ≤ C1,D ∀D ∈ Dh , ∀h > 0 ;

(B2) There exists a constant C2,D > 0 such that

|σD,E|dD,E ≤ C2,D|D| ∀D ∈ Dh , ∀σD,E ∈ FD , ∀h > 0 .

Assumption (B1) simply states that each D ∈ Dh has at most C1,D “neighbors”. Assump-
tion (B2) then expresses that the measure of each “side” σD,E ∈ FD is bounded with respect to
the measure of D and the distance of VD and VE .

A dual mesh of Ω is a partition Th of Ω into closed simplices which satisfies the following
properties: (i) The set of points V int

h is contained in the set of vertices of Th, denoted by Vh;
(ii) The vertices from Vext

h := Vh \ V int
h lie on the boundary of Ω; (iii) Th is conforming, i.e.

the intersection of two different simplices is either an empty set or their common vertex, edge,
or face; (iv) Ω =

⋃
K∈Th

K. This definition is not unique: we have a choice in connecting the

different points VD ∈ V int
h and also a choice in the definition of the vertices on the boundary.

The general intention is to find a triangulation such that the transmissibilities S
n
D,E defined below

by (3.3) were non-negative, since this will imply the discrete maximum principle, see Remark 3.7
and Theorem 4.11 below. An example of a dual grid to a primal nonmatching grid is given in
Figure 1 by the solid line. For K ∈ Th, we denote by hK the diameter of K; the simplicial mesh
discretization parameter hT is given by hT := maxK∈Th

hK . For a vertex VD ∈ Vh, we denote by
M(VD) the set of all vertices VE ∈ Vh such that there exists an edge of the dual grid Th between VD
and VE . We finally make the following shape regularity assumption on the family of dual meshes
{Th}h, denoting κK := |K|/hdK :
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Ω

Th

Dh

VE

VD

E

D
bD,E

VF

σD,E

σE,F

Figure 1: Primal nonmatching grid Dh (dashed) and dual triangular grid Th (solid) withD,E ∈ Dh,
VD, VE ∈ V int

h , VF ∈ Vext
h , σD,E = ∂D ∩ ∂E ∈ F int

h , and σE,F ∈ Fext
h

Assumption (C) (Shape regularity of the dual meshes)

There exists a constant κT > 0 such that

min
K∈Th

κK ≥ κT ∀h > 0 .

Let ρK denote the diameter of the largest ball inscribed in K ∈ Th. Then in view of the
inequalities |K| ≥ diam(K)d−1ρK/(d − 1)d, |K| ≤ (d + 1)diam(K)d−1ρK/(d − 1)d following from
geometrical properties of a triangle (tetrahedron) K, Assumption (C) is equivalent to the more
common requirement of the existence of a constant θT > 0 such that

max
K∈Th

diam(K)

ρK
≤ θT ∀h > 0 . (3.1)

We finally denote h := max{hD, hT } and make the following simultaneous assumption on the
meshes Dh and Th:

Assumption (D) (Primal and dual meshes)

(D1) There exists a constant C1,D,T > 0 such that for all σD,E ∈ Fh,

|σD,E||bD,E ∩K| ≤ C1,D,T |K| for all K ∈ Th such that bD,E ∩K 6= ∅ ;

(D2) There exists a constant C2,D,T ≥ 0 such that each K ∈ Th is intersected by at most C2,D,T

segments bD,E for some σD,E ∈ Fh.

Assumption (D1) expresses that the measure of each “side” σD,E ∈ Fh is bounded with respect
to the measure of all K ∈ Th “between” the vertices VD and VE and the length of the intersection
of the line segment connecting VD and VE and K. Together with Assumption (D2), it is satisfied
for any “reasonable” dual mesh Th to Dh.

Remark 3.1 (Terminology). We remark that in correspondence with the order of the construction
of the meshes, the terminology is reversed here with respect to standard finite volume–finite element
schemes [18, 20], where the simplicial mesh is termed primal, whereas the mesh for the finite volume
part of the scheme is termed dual.
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We define the following finite-dimensional spaces:

Xh := {ϕh ∈ C(Ω); ϕh|K is linear ∀K ∈ Th} ,

X0
h :=

{
ϕh ∈ Xh; ϕh(VD) = 0 ∀VD ∈ Vext

h

}
.

The basis of Xh is spanned by the standard finite element shape functions ϕVD
, VD ∈ Vh, such

that ϕVD
(VE) = δDE, VE ∈ Vh, δ being the Kronecker delta. We have the following lemma:

Lemma 3.2. Let cD = 0 for all VD ∈ Vext
h and let ch =

∑
VD∈Vh

cDϕVD
∈ X0

h. Then

∑

σD,E∈Fh

|σD,E|

dD,E
(cE − cD)2 ≤ C1,D,T C2,D,T ‖∇ch‖

2
Ω .

Proof:

Let σD,E ∈ Fh and recall that bD,E is the line segment connecting the vertices VD and VE . There
holds

|cE − cD| ≤
∑

K∈Th

χK,D,E|c2,K,D,E − c1,K,D,E| ,

where, for K ∈ Th, χK,D,E = 1 if bD,E∩K 6= ∅ and 0 otherwise and where c1,K,D,E is the value of ch
at the point where bD,E for the first time intersects (or “enters”) K and c2,K,D,E is the value of ch
at the point where bD,E for the second time intersects (or “leaves”) K. In the simplest case where
bD,E is an edge of the simplicial mesh Th, cE − cD = c2,K,D,E − c1,K,D,E for any of the simplices
K sharing this edge; we in such cases only put χK,D,E = 1 for one K ∈ Th. Note that the above
inequality holds true in the general case as well and in particular also if, for a nonconvex Ω, bD,E
“leaves” and “reenters” Ω (in this case, the fact that ch is zero on ∂Ω is important). Hence, by virtue
of the Cauchy–Schwarz inequality and of the fact that |c2,K,D,E − c1,K,D,E| ≤

∣∣∇ch|K
∣∣|bD,E ∩K|,

|cE − cD|
2 ≤

∑

K∈Th

χK,D,E|bD,E ∩K|
∑

K∈Th

χK,D,E|bD,E ∩K|
∣∣∇ch|K

∣∣2 .

Next, ∑

K∈Th

χK,D,E|bD,E ∩K| ≤ dD,E

(the inequality can appear at the boundary for nonconvex Ω), so that

∑

σD,E∈Fh

|σD,E|

dD,E
(cE−cD)2 ≤

∑

σD,E∈Fh

∑

K∈Th

χK,D,E|σD,E||bD,E∩K|
∣∣∇ch|K

∣∣2 ≤ C1,D,T C2,D,T ‖∇ch‖
2
Ω ,

using Assumption (D).

3.2 Time discretization

We suppose the partition of the time interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T
and define 4tn := tn − tn−1 and 4t := max1≤n≤N 4tn. In the case where Assumption (A5)
is satisfied we do not impose any restriction on the time step. When only Assumption (A6) is
satisfied, we suppose in addition:

Assumption (E) (Maximum time step for decreasing F )

The following maximum time step condition is satisfied:

4t <
cβ
LF

.
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3.3 The combined scheme

We are now ready to define the combined scheme.

Definition 3.3 (Combined scheme). The fully implicit combined finite volume–finite element
scheme for the problem (1.1)–(2.2) on the grids Dh and Th reads: find the values cnD, VD ∈ Vh,
n ∈ {0, 1, . . . , N}, such that

c0D =
1

|D|

∫

D

c0(x) dx D ∈ Dh , (3.2a)

cnD = 0 VD ∈ Vext
h , n ∈ {1, . . . , N} , (3.2b)

β(cnD) − β(cn−1
D )

4tn
|D| −

∑

E∈Dh

S
n
D,E c

n
E +

∑

σD,E∈FD

vnD,E cnD,E + F (cnD)|D| = qnD|D|

D ∈ Dh , n ∈ {1, . . . , N} . (3.2c)

In (3.2a)–(3.2c) we have denoted

vnD,E :=
1

4tn

∫ tn

tn−1

∫

σD,E

v(x, t) · nD,E dγ(x) dt

for D ∈ Dh, σD,E ∈ FD, and n ∈ {1, . . . , N}, with nD,E the unit normal vector of ∂D, outward to
D, and

qnD :=
1

4tn|D|

∫ tn

tn−1

∫

D

q(x, t) dxdt D ∈ Dh , n ∈ {1, . . . , N} .

Next, we first set

S̃n(x) :=
1

4tn

∫ tn

tn−1

S(x, t) dt x ∈ Ω , n ∈ {1, . . . , N} .

The elements S
n
D,E of the finite element diffusion matrix are then given by

S
n
D,E := −

∑

K∈Th

(Sn∇ϕVE
,∇ϕVD

)K VD, VE ∈ Vh , n ∈ {1, . . . , N} , (3.3)

where
Sn(x) = S̃n(x) n ∈ {1, . . . , N} , x ∈ Ω . (3.4)

An alternative choice is to define

Sn(y) =

(
1

|K|

∫

K

[S̃n(x)]−1 dx

)−1

y ∈ K , K ∈ Th , n ∈ {1, . . . , N} . (3.5)

In fact, the terms S
n
D,E for VD ∈ Vext

h or VE ∈ Vext
h do not occur in the scheme (3.2a)–(3.2c). It will

however show convenient to define these values. Finally, we define cnD,E for D ∈ Dh , σD,E ∈ FD,
and n ∈ {1, . . . , N} as follows:

cnD,E :=

{
cnD + αnD,E(cnE − cnD) if vnD,E ≥ 0

cnE + αnD,E(cnD − cnE) if vnD,E < 0
. (3.6)
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Here αnD,E is the coefficient of the amount of upstream weighting which is defined by

αnD,E :=





max
{
min

{
S
n
D,E,

1
2 |v

n
D,E|

}
, 0
}

|vnD,E|
if vnD,E 6= 0 and σD,E ∈ F int

h

or if σD,E ∈ Fext
h and vnD,E > 0

0 if vnD,E = 0 or if σD,E ∈ Fext
h and vnD,E < 0

. (3.7)

We remark that cnD,E = ĉnD,E + sign(vnD,E)αnD,E(cnE − cnD), where ĉnD,E stands for full upstream
weighting.

In the sequel we shall consider apart the following special case:

Assumption (F) (Diffusion matrix)

All transmissibilities are non-negative, i.e.

S
n
D,E ≥ 0 ∀D ∈ Dh , VE ∈ M(VD) ∀n ∈ {1, . . . , N} .

3.4 Remarks

We end this section by several remarks on the scheme and its possible extensions.

Remark 3.4 (Comparison with standard cell-centered finite volume schemes). We recall that
the scheme (3.2a)–(3.2c) only differs from standard cell-centered finite volume schemes (cf. [14])
in the discretization of the diffusion term (and in the treatment of the boundary condition). This
difference is however essential: not only that it allows the discretization on grids not necessarily sat-
isfying the “orthogonality condition” (see [14, Definition 9.1.(iv)]) and of full diffusion–dispersion
tensors, but the family of admissible grids is virtually unlimited and in particular comprises the
grids with nonmatching interfaces.

Remark 3.5 (Numerical flux). We can easily see from (3.7) that 0 ≤ αnD,E ≤ 1/2, i.e. the
numerical flux defined by (3.6) ranges from the full upstream weighting to the centered scheme.
The amount of upstream weighting is set with respect to the local proportion of convection and
diffusion.

Remark 3.6 (Arithmetic versus harmonic averaging). We remark that the choice (3.4) for Sn

corresponds to the arithmetic average of the diffusion–dispersion tensor S in space, whereas the
choice (3.5) corresponds to the harmonic one.

Remark 3.7 (Discrete maximum principle). We shall see in Theorem 4.11 below that the discrete
maximum principle for the combined scheme holds under Assumption (F). This is e.g. the case,
in two space dimensions, when S reduces to a constant scalar function and when Th is Delaunay,
that is the circumcircle of each triangle does not contain any vertex in its interior, and under the
additional condition that no circumcenters of boundary triangles lie outside the domain, cf. [21, 28].
Remark that given a set of points, we can always construct a Delaunay triangulation. In three space
dimensions, however, a Delaunay tetrahedral mesh in general does not guarantee the non-negativity
of the finite element transmissibilities, cf. [25, 28]. We refer to Remark 3.10 for the modification
of the proposed scheme, which guarantees the discrete maximum principle in both two and three
space dimensions under the condition that S is a constant scalar function.
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Remark 3.8 (Dual Delaunay triangulation for a locally refined square grid). Let us consider a
locally refined square grid, where a square is refined into 9 subsquares and where the difference of
levels of refinement of two neighboring squares is at most one, such as that given in Figure 2 in
Section 7 below by the dashed line. Then an example of a dual Delaunay triangulation is given in
Figure 2 by the solid line.

Remark 3.9 (Necessity to construct the dual mesh). In the otherwise straightforward implemen-
tation of the combined scheme, the only complex point may be the construction of the dual mesh
Th and the evaluation of the elements S

n
D,E of the finite element diffusion matrix, especially when

S is nonconstant. This may however not always be necessary: recall for example that the finite
volume stiffness matrix of a Laplacian on a Voronöı mesh and its finite element counterpart on
a dual Delaunay triangulation in two space dimensions coincide, see [14, Section III.12.2]. So
in particular on square meshes of the type of Figure 2 below, we may use the cell-centered finite
volume discretization in the unrefined parts and only construct the dual mesh at the nonmatching
refined interfaces.

Remark 3.10 (A two-grid finite volume scheme verifying the discrete maximum principle for
S scalar). When S is a scalar function, we can in spirit of the previous remark replace the dis-
cretization of the diffusion term by the finite element method on a dual simplicial grid by a finite
volume discretization on a Voronöı grid given by the points from Vh. Whereas in two space dimen-
sions for Th a Delaunay triangulation and under the additional assumption that S is constant, this
would lead to the same scheme, in three space dimensions, such a scheme would verify the discrete
maximum principle, since the finite volume discretization on a Voronöı grid still leads to positive
transmissibilities; compare this with Remark 3.7.

4 Existence, uniqueness, and discrete properties

In this section we first present some technical lemmas. We then show the conservativity of the
scheme, the coercivity and boundedness of the bilinear diffusion form corresponding to the diffusion
term, and an a priori estimate for an extended scheme, which is needed later in the proof of the
existence of the solution of the discrete problem. Finally, we show the uniqueness of this solution
and prove the discrete maximum principle when Assumption (F) is satisfied.

4.1 Discrete properties of the scheme

Lemma 4.1 (Finite element diffusion matrix). For all VD ∈ Vh and n ∈ {1, . . . , N}, S
n
D,D =

−
∑

VE∈M(VD) S
n
D,E.

Proof:

We will show the assertion for d = 2; the case d = 3 is similar. Let us consider a fixed vertex
VD ∈ Vh and a K ∈ Th having VD for vertex. We denote the two other vertices of K by VE and
VF . Now

−(Sn∇ϕVD
,∇ϕVD

)K = (Sn∇ϕVE
,∇ϕVD

)K + (Sn∇ϕVF
,∇ϕVD

)K ,

which follows immediately by

−ϕVD
|K = (ϕVE

+ ϕVF
)|K − 1 .

Since K ∈ Th creating a support for ϕVD
was arbitrary and noticing the definition (3.3) of S

n
D,E,

this concludes the proof.

11



Corollary 4.2 (Equivalent form of the diffusion term). Let VD ∈ Vh. Using the fact that S
n
D,E 6= 0

only if VE ∈ M(VD) or if E = D and Lemma 4.1, one has
∑

VE∈Vh

S
n
D,E c

n
E =

∑

VE∈M(VD)

S
n
D,Ec

n
E + S

n
D,Dc

n
D =

∑

VE∈M(VD)

S
n
D,E(cnE − cnD) .

Theorem 4.3 (Conservativity of the scheme). The scheme (3.2a)–(3.2c) is conservative with
respect to the mesh Dh.

Proof:

The equation (3.2c) defining the scheme and Corollary 4.2 imply that the combined finite volume–
finite element scheme is conservative on each time level and on each cell of the mesh Dh as the
pure finite volume is, cf. [14].

Lemma 4.4 (Equivalent form of the upwind part of the convection term). For all D ∈ Dh and
n ∈ {1, . . . , N},

∑

σD,E∈FD

vnD,E ĉnD,E =
∑

σD,E∈FD

(vnD,E)−(cnE − cnD) + rnDc
n
D|D| ,

where (vnD,E)− := min{vnD,E , 0} and

rnD :=
1

4tn|D|

∫ tn

tn−1

∫

D

r(x, t) dxdt ∀D ∈ Dh , ∀n ∈ {1, . . . , N} .

The assertion of this lemma is a simple consequence of Assumption (A4). The proof can be
found in [32].

Lemma 4.5 (Coercivity of the diffusion form). For all ch =
∑

VD∈Vh
cDϕVD

∈ Xh and n ∈
{1, . . . , N},

−
∑

VD∈Vh

cD
∑

VE∈Vh

S
n
D,EcE ≥ cS‖∇ch‖

2
Ω .

Proof:

We have
−
∑

VD∈Vh

cD
∑

VE∈Vh

S
n
D,EcE =

∑

K∈Th

(Sn∇ch,∇ch)K ≥ cS‖∇ch‖
2
Ω ,

using (3.3) and Assumption (A3) and the subsequent uniform positive definiteness of the diffusion
tensors (3.4) and (3.5).

Lemma 4.6 (Boundedness of the diffusion form). For all ch =
∑

VD∈Vh
cDϕVD

∈ Xh, uh =∑
VD∈Vh

uDϕVD
∈ Xh, and n ∈ {1, . . . , N},

∣∣∣∣−
∑

VD∈Vh

cD
∑

VE∈Vh

S
n
D,EuE

∣∣∣∣ ≤ CS‖∇ch‖Ω‖∇uh‖Ω .

Proof:

We have
∣∣∣∣−

∑

VD∈Vh

cD
∑

VE∈Vh

S
n
D,EuE

∣∣∣∣ =

∣∣∣∣
∑

K∈Th

(Sn∇ch,∇uh)K

∣∣∣∣ ≤ CS‖∇ch‖Ω‖∇uh‖Ω ,

using (3.3) and Assumption (A3).

12



Lemma 4.7 (Estimate on the convection term). For all values cD, VD ∈ Vh, such that cD = 0 for
all VD ∈ Vext

h and n ∈ {1, . . . , N},

∑

D∈Dh

cD
∑

σD,E∈FD

vnD,E cD,E ≥ 0 .

Proof:

We can write

∑

D∈Dh

cD
∑

σD,E∈FD

vnD,E cD,E

=
∑

σD,E∈F int

h
, vn

D,E
≥0

vnD,E
(
cD(cD − cE) − αnD,E(cE − cD)2

)
+

∑

σD,E∈Fext

h

cD vnD,E cD,E

=
1

2

∑

σD,E∈F int

h
, vn

D,E
≥0

vnD,E(c2D − c2E) +
∑

σD,E∈F int

h

|vnD,E|(cE − cD)2
(

1

2
− αnD,E

)

+
∑

σD,E∈Fext

h

{
1

2
vnD,Ec

2
D + |vnD,E|c

2
D

(
1

2
− αnD,E

)}
≥

1

2

∑

D∈Dh

c2D
∑

σD,E∈FD

vnD,E

=
1

2

∑

D∈Dh

c2Dr
n
D|D| ≥ 0 ,

where we have used the relation 2(a−b)a = (a−b)2+a2−b2, rewritten the summation over interior
σD,E with fixed denotation of the control volumes sharing given set σD,E such that vnD,E ≥ 0 and

over exterior σD,E, and the fact that cD = 0 for all VD ∈ Vext
h . In the last two estimates we have

used, respectively, the fact that 0 ≤ αnD,E ≤ 1/2, which follows from (3.7), and Assumption (A4).

Theorem 4.8 (A priori estimate for an extended scheme). Let us define an extended scheme by

c0D =
1

|D|

∫

D

c0(x) dx D ∈ Dh , (4.1a)

cnD = 0 VD ∈ Vext
h , n ∈ {1, . . . , N} , (4.1b)

u
β(cnD) − β(cn−1

D )

4tn
|D| −

∑

E∈Dh

S
n
D,E c

n
E + u

∑

σD,E∈FD

vnD,E cnD,E + uF (cnD)|D|

= u qnD|D| D ∈ Dh , n ∈ {1, . . . , N} (4.1c)

with u ∈ [0, 1]. Then ∑

D∈Dh

(cnD)2|D| ≤ Ces ∀n ∈ {1, . . . , N}

with

Ces :=
8

cβ
Mβ(M)|Ω| +

16T

c2β
‖q‖2

QT
+

8

cβ
LFM

2T |Ω| .

Proof:

The proof closely follows the proof of [18, Theorem 4.2]. We however detail it for the sake of
completeness.
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We multiply (4.1c) by 4tnc
n
D, sum over all D ∈ Dh and n ∈ {1, . . . , k}, and use the fact

that u ≥ 0 and Lemmas 4.5 and 4.7. Further, for cnD < 0 or cnD > M , F (cnD)cnD ≥ 0 follows
from Assumption (A5) or (A6). When 0 ≤ cnD ≤ M , −F (cnD)cnD ≤ |F (cnD)||cnD| ≤ LFM

2, which
altogether yields

u

k∑

n=1

∑

D∈Dh

[β(cnD) − β(cn−1
D )]cnD|D| + cS

k∑

n=1

4tn‖∇c
n
h‖

2
Ω (4.2)

≤ u
k∑

n=1

4tn
∑

D∈Dh

cnDq
n
D|D| + uLFM

2
k∑

n=1

∑

D∈Dh

4tn|D|

with cnh =
∑

D∈Dh
cnDϕVD

. Let us now introduce a function B,

B(s) := β(s)s−

∫ s

0
β(τ) dτ s ∈ R .

One then can derive

B(cnD) −B(cn−1
D ) = [β(cnD) − β(cn−1

D )]cnD −

∫ cn
D

cn−1

D

[β(τ) − β(cn−1
D )] dτ .

Using that β is nondecreasing, one can easily show that

∫ cn
D

cn−1

D

[β(τ) − β(cn−1
D )] dτ ≥ 0 .

In view of the two last expressions, one has

k∑

n=1

∑

D∈Dh

[B(cnD) −B(cn−1
D )]|D| ≤

k∑

n=1

∑

D∈Dh

[β(cnD) − β(cn−1
D )]cnD|D| ,

which yields

∑

D∈Dh

B(ckD)|D| −
∑

D∈Dh

B(c0D)|D| ≤
k∑

n=1

∑

D∈Dh

[β(cnD) − β(cn−1
D )]cnD|D| .

Using the growth condition on β from Assumption (A1), one can derive B(s) ≥ s2cβ/2 for all
s ∈ R, see [18, Lemma 8.2]. Thus, using in addition Assumption (A8)

cβ
2

∑

D∈Dh

(ckD)2|D| −Mβ(M)|Ω| ≤
k∑

n=1

∑

D∈Dh

[β(cnD) − β(cn−1
D )]cnD|D| .

We notice that
N∑

n=1

∑

D∈Dh

4tn|D|(qnD)2 ≤ ‖q‖2
QT

(4.3)

by the Cauchy–Schwarz inequality. Hence extending the summation over all n ∈ {1, . . . , N} in the
first term of the right-hand side of (4.2) and using the Cauchy–Schwarz and Young inequality, we
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have

k∑

n=1

4tn
∑

D∈Dh

cnDq
n
D|D| ≤

( N∑

n=1

4tn
∑

D∈Dh

(cnD)2|D|

) 1

2

‖q‖QT

≤
ε

2

N∑

n=1

4tn
∑

D∈Dh

(cnD)2|D| +
1

2ε
‖q‖2

QT
.

Hence, substituting these estimates into (4.2), we obtain

u
cβ
2

max
n∈{1,...,N}

∑

D∈Dh

(cnD)2|D| + cS

N∑

n=1

4tn‖∇c
n
h‖

2
Ω ≤ 2uMβ(M)|Ω| (4.4)

+uεT max
n∈{1,...,N}

∑

D∈Dh

(cnD)2|D| + u
1

ε
‖q‖2

QT
+ 2uLFM

2T |Ω| ,

considering the fact that k was arbitrarily chosen. We now put ε = cβ/(4T ). When u 6= 0, this
already yields the assertion of the lemma. When u = 0, it follows from (4.4) that cnD = 0 for
all D ∈ Dh and all n ∈ {1, . . . , N}, since in view of (4.1b), ‖∇(·)‖Ω is a norm on Xh. Thus the
assertion of the lemma is trivially satisfied in this case.

4.2 Existence, uniqueness, and the discrete maximum principle

The proof of the following theorem follows the ideas of the proof given in [17]. It makes use of the
a priori estimate for the extended scheme given by Theorem 4.8 and of the (Brouwer) topological
degree argument:

Theorem 4.9 (Existence of the solution of the discrete problem). The problem (3.2a)–(3.2c) has
at least one solution.

We state the uniqueness without a proof as well (cf. [18, Theorem 4.4]):

Theorem 4.10 (Uniqueness of the solution of the discrete problem). The solution of the prob-
lem (3.2a)–(3.2c) is unique.

In standard cell-centered finite volume schemes (cf. [14]), as well as in the combined finite
volume–nonconforming finite element scheme [18], there can be nonzero convective and diffusive
fluxes between D and E only if the control volumes D and E neighbors. This is however not the
case with the scheme (3.2a)–(3.2c): there can be a nonzero convective flux between D and E only
if D and E neighbors, but there can be a nonzero diffusive flux between D and E even if D and
E are not neighbors (because the transmissibility between D and E is given by the grid Th). The
following theorem shows that the local Péclet upstream weighting (3.6) still guarantees, adding
minimal numerical diffusion, the stability of the scheme:

Theorem 4.11 (Discrete maximum principle). Under Assumption (F), the solution of the prob-
lem (3.2a)–(3.2c) satisfies

0 ≤ cnD ≤M

for all D ∈ Dh, n ∈ {1, . . . , N}.
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Proof:

Setting T
n
D,E := S

n
D,E − |vnD,E|α

n
D,E , D ∈ Dh, E ∈ L(D), where E ∈ L(D) if σD,E ∈ FD or if

VE ∈ M(VD), and using Corollary 4.2 and Lemma 4.4, we can rewrite (3.2c) as

β(cnD) − β(cn−1
D )

4tn
|D| −

∑

E∈L(D)

T
n
D,E(cnE − cnD) +

∑

σD,E∈FD

(vnD,E)−(cnE − cnD)

+rnDc
n
D|D| + F (cnD) |D| = qnD |D| D ∈ Dh , n ∈ {1, . . . , N} . (4.5)

In view of Assumption (F) and of (3.7), one has T
n
D,E ≥ 0 for all D ∈ Dh, E ∈ L(D), and

n ∈ {1, . . . , N}. We now make use of an induction argument. We remark that 0 ≤ cnD ≤ M is
satisfied for n = 0 by Assumption (A8) and (3.2a). Let us suppose that 0 ≤ cn−1

D ≤ M for all
D ∈ Dh and for a fixed (n − 1) ∈ {0, 1, . . . , N − 1}. Since |Dh| is finite, there exist D0, D1 ∈ Dh

such that cnD0
≤ cnD ≤ cnD1

for all D ∈ Dh. Using a contradiction argument we prove below that
cnD0

≥ 0 and cnD1
≤M . Suppose that cnD0

< 0. Then, since T
n
D0,E

≥ 0 and −(vnD0,E
)− ≥ 0, we have

∑

E∈L(D0)

T
n
D0,E

(cnE − cnD0
) +

∑

σD0,E∈FD0

−(vnD0,E
)−(cnE − cnD0

) ≥ 0 .

This yields, using (4.5),

β(cnD0
) − β(cn−1

D0
)

4tn
|D0| + rnD0

cnD0
|D0| + F (cnD0

) |D0| − qnD0
|D0| ≥ 0 .

Now cnD0
< 0 implies rnD0

cnD0
≤ 0 and F (cnD0

) ≤ 0 using, respectively, Assumption (A4) and (A5) or

(A6). Also −qnD0
≤ 0, using Assumption (A7). Hence β(cnD0

) ≥ β(cn−1
D0

), which is a contradiction,
since β is strictly increasing from Assumption (A1).

Let us now suppose cnD1
> M . Similarly as in the previous case, one comes to

β(cnD1
) − β(cn−1

D1
)

4tn
|D1| + rnD1

cnD1
|D1| + F (cnD1

) |D1| − qnD1
|D1| ≤ 0 .

We can estimate
−qnD1

|D1| ≥ −MrnD1
|D1| ≥ −cnD1

rnD1
|D1|

using, respectively, Assumption (A7) and (A4). It follows from (A5) or (A6) that F (cnD1
) ≥ 0.

This implies β(cnD1
) ≤ β(cn−1

D1
), which is again a contradiction, using Assumption (A1).

5 A priori estimates

In this section we give a priori estimates and estimates on differences of time and space translates
of the approximate solutions that we shall define.

5.1 Discrete energy-type estimates

We now give energy-type a priori estimates for the approximate solution values cnD, D ∈ Dh,
n ∈ {1, . . . , N}.
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Theorem 5.1 (A priori estimates). The solution of the combined scheme (3.2a)–(3.2c) satisfies

cβ max
n∈{1,...,N}

∑

D∈Dh

(cnD)2|D| ≤ Cae , (5.1)

max
n∈{1,...,N}

∑

D∈Dh

[β(cnD)]2|D| ≤ Caeβ , (5.2)

cS

N∑

n=1

4tn‖∇c
n
h‖

2
Ω ≤ Cae (5.3)

with cnh =
∑

D∈Dh
cnDϕVD

,

Cae := 8Mβ(M)|Ω| +
16T

cβ
‖q‖2

QT
+ 8LFM

2T |Ω| ,

Caeβ := [β(M)]2|Ω|

when Assumption (F) is satisfied and only Assumption (A1) holds and

Caeβ := (2C2
β + 4L2

βP
2)|Ω| +

4L2
β

cβ
Cae

when Assumption (F) is not satisfied but Assumption (A2) holds.

Proof:

Estimates (5.1) and (5.3) follow immediately from (4.4) for ε = cβ/(4T ), since for u = 1 the
extended scheme (4.1a)–(4.1c) completely coincides with the scheme (3.2a)–(3.2c). To see the
boundedness of the term on the left-hand side of (5.2) under Assumption (F) is immediate, using
the discrete maximum principle stated by Theorem 4.11. In this case Assumption (A1) suffices. In
the general case one has to use Assumption (A2) to show [β(s)]2 ≤ 2C2

β +4L2
βP

2 +4L2
βs

2, see [18,
Lemma 8.3]. Hence, for all n ∈ {1, . . . , N},

∑

D∈Dh

[β(cnD)]2|D| ≤ (2C2
β + 4L2

βP
2)|Ω| + 4L2

β

∑

D∈Dh

(cnD)2|D| .

Using the values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}, we now define two approximate solutions.

Definition 5.2 (Approximate solutions). Let the values cnD with VD ∈ Vh, n ∈ {0, 1, . . . , N}, be
the solutions to (3.2a)–(3.2c). As the approximate solutions of the problem (1.1)–(2.2) by means
of the combined finite volume–finite element scheme, we understand:

(i) The function ch,4t defined by

ch,4t(x, 0) = c0h(x) for x ∈ Ω ,

ch,4t(x, t) = cnh(x) for x ∈ Ω , t ∈ (tn−1, tn] n ∈ {1, . . . , N} , (5.4)

where cnh =
∑

D∈Dh
cnDϕVD

;
(ii) The function c̃h,4t defined by

c̃h,4t(x, 0) = c0D for x ∈ D◦ , D ∈ Dh ,

c̃h,4t(x, t) = cnD for x ∈ D◦ , D ∈ Dh , t ∈ (tn−1, tn] n ∈ {1, . . . , N} . (5.5)
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The function ch,4t is continuous and piecewise linear in space and piecewise constant in time.
The function c̃h,4t is given by the values of ch,4t in the vertices from V int

h and is piecewise constant
on the control volumes in space and piecewise constant in time. The following important relation
between ch,4t and c̃h,4t is a simple consequence of the a priori estimate (5.3):

Lemma 5.3 (Relation between ch,4t and c̃h,4t). There holds

‖ch,4t − c̃h,4t‖QT
−→ 0 as hT → 0 .

Remark 5.4 (Interpretation of the values cnD). We remark that the approximate solutions ch,4t,
c̃h,4t are only interpretations of the values cnD, VD ∈ Vh, n ∈ {0, 1, . . . , N}. In particular, we may
work with c̃h,4t as in the finite volume method and then use Lemma 5.3 to extend the convergence
results also to ch,4t.

5.2 Estimates on differences of time and space translates

Estimates on differences of time and space translates have been used in [16, 17, 18] to prove the
relative compactness property of the sequence of approximate solutions. We give below the time
translate estimate for c̃h,4t given by (5.5). The main difficulty is in the simultaneous treatment of
the general grid Dh and the dual simplicial partition Th and of the approximate solution c̃h,4t on
them; Lemma 3.2 is important in this respect.

Lemma 5.5 (Time translate estimate). There exists a constant Ctt > 0 such that

∫ T−τ

0

∫

Ω

(
c̃h,4t(x, t+ τ) − c̃h,4t(x, t)

)2
dxdt ≤ Ctt(τ + 4t)

for all τ ∈ (0, T ).

Proof:

We set

TT :=

∫ T−τ

0

∫

Ω

(
c̃h,4t(x, t+ τ) − c̃h,4t(x, t)

)2
dxdt .

Using the definition of c̃h,4t given by (5.5), we can rewrite TT as

TT =

∫ T−τ

0

∑

D∈Dh

|D|
(
c
n1(t)
D − c

n2(t)
D

)2
dt ,

where

n1(t) ∈ {1, . . . , N} is such that tn1−1 < t+ τ ≤ tn1
,

n2(t) ∈ {1, . . . , N} is such that tn2−1 < t ≤ tn2
.

We now use the growth condition imposed on β in Assumption (A1) and estimate

TT ≤
1

cβ

∫ T−τ

0

∑

D∈Dh

|D|
(
c
n1(t)
D − c

n2(t)
D

)(
β
(
c
n1(t)
D

)
− β

(
c
n2(t)
D

))
dt

=
1

cβ

∫ T−τ

0

∑

D∈Dh

|D|
(
c
n1(t)
D − c

n2(t)
D

) N∑

n=1

χ(n, t)
(
β(cnD) − β(cn−1

D )
)
dt ,
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where the function χ(n, t) is defined as

χ(n, t) :=

{
1 if t ≤ tn−1 < t+ τ
0 otherwise

.

In view of the definition (3.2a)–(3.2c) of the combined scheme, we have

TT ≤
1

cβ

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
n1(t)
D − c

n2(t)
D

)( ∑

E∈Dh

S
n
D,Ec

n
E

−
∑

σD,E∈FD

vnD,E cnD,E − F (cnD) |D| + qnD |D|

)
dt . (5.6)

We now estimate each term separately.

Diffusion term

We set

TD :=
N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
n1(t)
D − c

n2(t)
D

) ∑

E∈Dh

S
n
D,Ec

n
E dt .

Using Lemma 4.6 and the inequality ab ≤ a2/2 + b2/2, we can write

TD ≤ CS

(
T ∗
X1

+
1

2
T ∗
X2

+
1

2
T ∗
X3

)
, (5.7)

where

T ∗
X1

:=

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)‖∇cnh‖

2
Ω dt

and

T ∗
Xi

:=

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∥∥∇
(
c
ni−1(t)
h

)∥∥2

Ω
dt i ∈ {2, 3} .

We will need below the additional terms

T ∗
L1

:=
N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(cnD)2|D|dt

and

T ∗
Li

:=

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
ni−1(t)
D

)2
|D|dt i ∈ {2, 3} .

It follows from [18, Lemma 5.2] that

T ∗
X1

≤ τ
Cae

cS
, (5.8)

T ∗
L1

≤ τT
Cae

cβ
(5.9)

and that

T ∗
Xi

≤ τ
Cae

cS
, T ∗

Li
≤ τT

Cae

cβ
i ∈ {2, 3} (5.10)
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for a constant time step and

T ∗
Xi

≤ (τ + 4t)
Cae

cS
, T ∗

Li
≤ (τ + 4t)T

Cae

cβ
i ∈ {2, 3} (5.11)

for a generally nonconstant time step.

Convection term

We set

TC := −
N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
n1(t)
D − c

n2(t)
D

) ∑

σD,E∈FD

vnD,E cnD,E dt .

Now using that cnD = c
n1(t)
D = c

n2(t)
D = 0 for VD ∈ Vext

h , we can rewrite TC as a summation over
σD,E ∈ Fh,

TC = −
N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

σD,E∈Fh

vnD,E cnD,E

(
c
n1(t)
D − c

n1(t)
E + c

n2(t)
E − c

n2(t)
D

)
dt .

Using the inequality ±ab ≤ εa2/2 + b2/(2ε), ε > 0, where we put ε = dD,E , we come to

TC ≤ TC1
+ TC2

+ TC3

with

TC1
:=

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

σD,E∈Fh

|vnD,E |dD,E
(
cnD,E

)2
dt ,

TC2
:=

1

2

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

σD,E∈Fh

|vnD,E|

dD,E

(
c
n1(t)
E − c

n1(t)
D

)2
dt ,

TC3
:=

1

2

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

σD,E∈Fh

|vnD,E|

dD,E

(
c
n2(t)
E − c

n2(t)
D

)2
dt .

Using the definition of cnD,E by (3.6), the fact that 0 ≤ αnD,E ≤ 1/2 following from (3.7), and the

inequality (a+ b)2 ≤ 2a2 + 2b2,

(
cnD,E

)2
≤ 3(cnD)2 + 3(cnE)2 .

Hence

∑

σD,E∈Fh

|vnD,E|dD,E
(
cnD,E

)2
≤ 3Cv

∑

σD,E∈Fh

|σD,E|dD,E
{
(cnD)2 + (cnE)2

}

≤ 3CvC1,DC2,D

∑

D∈Dh

(cnD)2|D| ,

where we have used Assumption (A4), which implies |vnD,E| ≤ Cv|σD,E|, and Assumption (B).
Thus, we have

TC1
≤ 3CvC1,DC2,DT

∗
L1
.
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Finally, using |vnD,E| ≤ Cv|σD,E| and Lemma 3.2, we have

TCi
≤
Cv

2
C1,D,T C2,D,T T

∗
Xi

i ∈ {2, 3} ,

which altogether leads to

TC ≤ Cv

(
3C1,DC2,DT

∗
L1

+
1

2
C1,D,T C2,D,T

(
T ∗
X2

+ T ∗
X3

))
. (5.12)

Reaction term

We denote

TR := −
N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
n1(t)
D − c

n2(t)
D

)
F (cnD)|D|dt .

We estimate

−F (cnD)(cn1

D − cn2

D ) ≤
(cn1

D − cn2

D )2

2
+

(F (cnD))2

2
≤ (cn1

D )2 + (cn2

D )2 +
L2
F (cnD)2

2
,

using the inequalities ab ≤ a2/2+ b2/2, (a− b)2/2 ≤ a2 + b2, the Lipschitz continuity of F with the
constant LF , and the fact that F (0) = 0, following either from Assumption (A5) or (A6). This
implies

TR ≤

(
L2
F

2
T ∗
L1

+ T ∗
L2

+ T ∗
L3

)
. (5.13)

Sources term

We denote

TS :=

N∑

n=1

4tn

∫ T−τ

0
χ(n, t)

∑

D∈Dh

(
c
n1(t)
D − c

n2(t)
D

)
qnD|D|dt .

Using the same estimate as for the reaction term and (4.3), we come to

TS ≤
1

2
τ‖q‖2

QT
+ T ∗

L2
+ T ∗

L3
. (5.14)

The proof of the lemma is concluded by introducing (5.7), (5.12), (5.13), and (5.14) into (5.6),
while using the estimates (5.8), (5.9), and (5.11).

Remark 5.6 (Time translate estimate for a constant time step). For a constant time step, we
have indeed an O(τ) estimate, using (5.10) instead of (5.11).

We give below a space translate estimate for c̃h,4t given by (5.5). It is a variant of the estimates
from [16, 17, 18] for nonmatching grids Dh possibly containing nonconvex elements, where the
gradient is given by the associated piecewise linear continuous approximation on Th.

Lemma 5.7 (Space translate estimate). Let us define c̃h,4t(x, t) by zero outside of Ω. Then there
exists a constant Cst > 0 such that

∫ T

0

∫

Ω

(
c̃h,4t(x + ξ, t) − c̃h,4t(x, t)

)2
dxdt ≤ Cst

(
|ξ|(|ξ| + hT ) + 2hD(hD + hT )

)

for all ξ ∈ R
d.
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Proof:

We first estimate

∫ T

0

∫

Ω

(
c̃h,4t(x + ξ, t) − c̃h,4t(x, t)

)2
dxdt ≤ 3

N∑

n=1

4tn

∫

Ω

{(
cnh(x + ξ) − cnh(VD(x + ξ))

)2

+
(
cnh(x + ξ) − cnh(x)

)2
+
(
cnh(x) − cnh(VD(x))

)2}
dx ,

using the definition (5.5) of c̃h,4t, the fact that cnh(VD(x)) = cnD, where VD(x) is such VD ∈ Vh that
x ∈ D, and the Cauchy–Schwarz inequality. We next define a function χK(x) for each K ∈ Th by

χK(x) :=

{
1 if K ∩ [x,x + ξ] 6= ∅
0 if K ∩ [x,x + ξ] = ∅

.

The fact that cnh is continuous leads to,

cnh(x + ξ) − cnh(x) =
∑

K∈Th

(cn2,K,x − cn1,K,x)χK(x)

for a.e. x ∈ Ω, where cn1,K,x is the value of ch at the point where [x,x + ξ] for the first time
intersects (or “enters”) K and c2,K,x is the value of ch at the point where [x,x + ξ] for the second
time intersects (or “leaves”) K, with the obvious modification for the points x and x+ξ themselves
(cf. also the proof of Lemma 3.2). Hence, using that |cn2,K,x− c

n
1,K,x| ≤

∣∣∇cnh|K
∣∣|[x,x+ ξ]∩K| and

the Cauchy–Schwarz inequality,

(
cnh(x + ξ) − cnh(x)

)2
≤
∑

K∈Th

χK(x)|[x,x + ξ] ∩K|
∑

K∈Th

χK(x)|[x,x + ξ] ∩K|
∣∣∇ch|K

∣∣2 .

Next, ∑

K∈Th

χK(x)|[x,x + ξ] ∩K| ≤ |ξ|

for a.e. x ∈ Ω and ∫

Ω
χK(x)|[x,x + ξ] ∩K|dx ≤ (|ξ| + hT )|K| ,

so that

N∑

n=1

4tn

∫

Ω

(
cnh(x + ξ) − cnh(x)

)2
dx ≤ |ξ|(|ξ| + hT )

N∑

n=1

4tn
∑

K∈Th

∣∣∇ch|K
∣∣2|K| ≤ |ξ|(|ξ| + hT )

Cae

cS
,

using in addition the a priori estimate (5.3). The remaining estimates follow similarly, using that
|x− VD(x)| ≤ hD.

Remark 5.8 (Space translate estimate). In space translate estimates in [16, 17, 18], the upper
bound is given by Cst|ξ|(|ξ| + h) for some constant Cst. We pay for the grid Dh by an additional
O(h) factor. This is however still sufficient for the convergence proof presented in the next section.

6 Convergence

Using the a priori estimates of the previous section and the Kolmogorov relative compactness
theorem, we show in this section that the approximate solutions converge strongly in L2(QT ) to a
function c and we prove that c is a weak solution of the continuous problem.
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6.1 Strong convergence in L2(QT )

Theorem 6.1 (Strong convergence in L2(QT )). There exist subsequences of c̃h,4t and ch,4t which
converge strongly in L2(QT ) to a function c ∈ L2(0, T ;H1

0 (Ω)).

Proof:

Let us consider the sequence c̃h,4t. The a priori estimate (5.1) and Lemmas 5.5 and 5.7 imply
that c̃h,4t satisfies the assumptions of [18, Lemma 8.4]. Thus c̃h,4t verifies the assumptions of
the Kolmogorov theorem ([8, Theorem IV.25 ], [14, Theorem 14.1]) and consequently is relatively
compact in L2(QT ). This implies the existence of a subsequence of c̃h,4t which converges strongly
to some function c in L2(QT ). Moreover, due to the space translate estimate of Lemma 5.7, [14,
Theorem 14.2] gives that c ∈ L2(0, T ;H1

0 (Ω)). Finally, considering Lemma 5.3, ch,4t converges to
the same c.

6.2 Convergence to a weak solution

We have shown in Theorem 6.1 that subsequences of c̃h,4t and ch,4t, which we still denote by c̃h,4t
and ch,4t, converge strongly in L2(QT ) to some function c ∈ L2(0, T ;H1

0 (Ω)). We now show that
c is a weak solution of the continuous problem. For this purpose, we introduce

Ψ :=
{
ψ ∈ C2,1(Ω × [0, T ]), ψ = 0 on ∂Ω × [0, T ], ψ(·, T ) = 0

}
. (6.1)

We then take an arbitrary ψ ∈ Ψ, multiply (3.2c) by 4tn ψ(VD, tn−1), and sum the result over
D ∈ Dh and n = 1, . . . , N . This gives

TT + TD + TC + TR = TS (6.2)

with

TT :=

N∑

n=1

∑

D∈Dh

(
β(cnD) − β(cn−1

D )
)
ψ(VD, tn−1)|D| ,

TD :=

N∑

n=1

4tn
∑

D∈Dh

∑

E∈Dh

cnE
∑

K∈Th

(Sn∇ϕVE
,∇ϕVD

)K ψ(VD, tn−1) ,

TC :=
N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

vnD,E cnD,E ψ(VD, tn−1) ,

TR :=
N∑

n=1

4tn
∑

D∈Dh

F (cnD)ψ(VD , tn−1)|D| ,

TS :=

N∑

n=1

4tn
∑

D∈Dh

qnD ψ(VD, tn−1)|D| .

The proofs of

TT −→ −

∫ T

0

∫

Ω
β(c(x, t))ψt(x, t) dxdt−

∫

Ω
β(c0(x))ψ(x, 0) dx , (6.3)

TR −→

∫ T

0

∫

Ω
F (c(x, t))ψ(x, t) dxdt , (6.4)

TS −→

∫ T

0

∫

Ω
q(x, t)ψ(x, t) dxdt , (6.5)
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as h,4t → 0 are completely analogous to those given in [18, Section 6.2]. We thus only show the
convergence of TD and TC to their continuous versions.

Diffusion term

We rewrite TD as

TD =

N∑

n=1

4tn
∑

K∈Th

∫

K

Sn∇cnh(x) · ∇

( ∑

D∈Dh

ψ(VD, tn−1)ϕVD
(x)

)
dx ,

using the definition of cnh ∈ Xh, and define

S4t(x, t) := Sn(x) for x ∈ Ω , t ∈ (tn−1, tn] n ∈ {1, . . . , N} , (6.6)

where Sn is given by (3.4) or by (3.5). We will show the validity of two passages to the limit. We
begin by proving that

N∑

n=1

4tn
∑

K∈Th

∫

K

Sn∇cnh(x) · ∇

( ∑

D∈Dh

ψ(VD, tn−1)ϕVD
(x)

)
dx (6.7)

−
N∑

n=1

4tn
∑

K∈Th

∫

K

Sn∇cnh(x) · ∇ψ(x, tn−1) dx −→ 0 as h→ 0 .

We set
Iψ(·, tn−1) :=

∑

D∈Dh

ψ(VD, tn−1)ϕVD

and

TD1
:=

N∑

n=1

4tn
∑

K∈Th

∫

K

Sn∇cnh(x) · ∇
(
Iψ(x, tn−1) − ψ(x, tn−1)

)
dx .

We then estimate

|TD1
| ≤ CS

N∑

n=1

4tn‖∇c
n
h‖Ω‖∇(Iψ(·, tn−1) − ψ(·, tn−1))‖Ω ,

using the Cauchy–Schwarz inequality. Next we use the interpolation estimate

‖∇(Iψ(·, tn−1) − ψ(·, tn−1))‖Ω =

( ∑

K∈Th

∫

K

∣∣∇
(
Iψ(·, tn−1) − ψ(·, tn−1)

)∣∣2 dx

) 1

2

≤ CIθT h

( ∑

K∈Th

|ψ(·, tn−1)|
2
2,K

) 1

2

≤ CIθT C1,ψh ,

where θT is given by the consequence (3.1) of Assumption (C), CI does not depend on h (nor
on 4t), and | · |2,K denotes the H2 seminorm, see for instance [10, Theorem 3.1.5]. Finally, the
Cauchy–Schwarz inequality yields

|TD1
| ≤ CSCIθT C1,ψh

( N∑

n=1

4tn‖∇c
n
h‖

2
Ω

) 1

2

( N∑

n=1

4tn

) 1

2

= CSCIθT C1,ψT
1

2

(
Cae

cS

) 1

2

h ,
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using the a priori estimate (5.3). Hence (6.7) is fulfilled.
We next show that

N∑

n=1

4tn
∑

K∈Th

∫

K

Sn∇cnh(x) · ∇ψ(x, tn−1) dx −→

∫ T

0

∫

Ω
S∇c(x, t) · ∇ψ(x, t) dxdt (6.8)

as h,4t → 0. We see that both cnh(x) and ψ(x, tn−1) are constant in time, so that we can easily
introduce an integral with respect to time into the first term of (6.8). We further add and subtract∑N

n=1

∫ tn
tn−1

∫
Ω Sn∇cnh(x)∇ψ(x, t) dxdt and introduce

TD2
:=

N∑

n=1

∫ tn

tn−1

∑

K∈Th

∫

K

Sn∇cnh(x) ·
(
∇ψ(x, tn−1) −∇ψ(x, t)

)
dxdt ,

TD3
:=

∫ T

0

∑

K∈Th

∫

K

S4t∇ch,4t(x, t) · ∇ψ(x, t) dxdt

−

∫ T

0

∫

Ω
S∇c(x, t) · ∇ψ(x, t) dxdt ,

where ch,4t is given by (5.4). Clearly, (6.8) is valid when TD2
and TD3

tend to zero as h,4t→ 0.
We first estimate TD2

. We have, for t ∈ (tn−1, tn],

|∇ψ(x, tn−1) −∇ψ(x, t)| ≤ g(4t) ,

where g satisfies g(4t) > 0 and g(4t) → 0 as 4t→ 0. Thus

|TD2
| ≤ CSg(4t)

N∑

n=1

4tn
∑

K∈Th

∣∣∇cnh|K
∣∣|K| ≤ CSg(4t)

(
Cae

cS

) 1

2

T
1

2 |Ω|
1

2 ,

using the Cauchy–Schwarz inequality and the a priori estimate (5.3).
To prove that TD3

→ 0 as h,4t→ 0, we first show that

T ′
D3

:=

∫ T

0

∫

Ω

(
∇ch,4t(x, t) −∇c(x, t)

)
·w(x, t) dxdt −→ 0 (6.9)

as h,4t→ 0 for all w ∈ [C1(QT )]d. This is however immediate, since

T ′
D3

=

∫ T

0

∫

Ω

(
c(x, t) − ch,4t(x, t)

)
∇ · w(x, t) dxdt ,

using the Green theorem for ch,4t and c (recall that c ∈ L2(0, T ;H1
0 (Ω)) by Theorem 6.1) and w,

which tends to zero by the strong L2(QT ) convergence of ch,4t to c.
We next show that the density of the set [C1(QT )]d in [L2(QT )]d and (6.9) implies a weak

convergence of ∇ch,4t (piecewise constant function in space and time) to ∇c. Indeed, let w ∈
[L2(QT )]d be given and let wn be a sequence of [C1(QT )]d functions converging in [L2(QT )]d to
w. Then

∫ T

0

∫

Ω
(∇ch,4t −∇c) · w dxdt =

∫ T

0

∫

Ω
(∇ch,4t −∇c) · wn dxdt

+

∫ T

0

∫

Ω
(∇ch,4t −∇c) · (w −wn) dxdt .
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Since both ch,4t and c belong to L2(0, T ;H1
0 (Ω)), the second term of the above expression tends

to zero as n→ ∞ by the Cauchy–Schwarz inequality. Hence the whole expression tends to zero as
h,4t→ 0 for each w ∈ [L2(QT )]d, using (6.9) for the first term.

We now finally conclude that TD3
→ 0 as h,4t→ 0. We can write

TD3
=

∫ T

0

∫

Ω
(S4t − S)∇ch,4t · ∇ψ dxdt−

∫ T

0

∫

Ω
S(∇c−∇ch,4t) · ∇ψ dxdt .

Since (S4t)i,j , 1 ≤ i, j ≤ d, converge strongly in L1(QT ) to Si,j by its definition (6.6), the bounded-
ness of S4t and S given by Assumption (A3) implies a strong L2(QT ) convergence as well. Hence
the first term of the above expression tends to zero as h,4t→ 0, using the boundedness of |∇ψ|,
the a priori estimate (5.3), and the Cauchy–Schwarz inequality. The second term converges to zero
by the L∞ boundedness of S and the weak convergence of ∇ch,4t to ∇c shown in the previous
paragraph. Altogether, combining (6.7) and (6.8) gives

TD −→

∫ T

0

∫

Ω
S∇c(x, t) · ∇ψ(x, t) dxdt as h,4t→ 0 . (6.10)

Convection term

We recall that

TC =

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

vnD,E cnD,E ψ(VD, tn−1)

and denote

vn(x) :=
1

4tn

∫ tn

tn−1

v(x, t) dt n ∈ {1, . . . , N} , x ∈ Ω . (6.11)

We first intend to show that

TC +
N∑

n=1

4tn
∑

D∈Dh

cnD
∑

σD,E∈FD

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) (6.12)

−
N∑

n=1

4tn
∑

D∈Dh

cnD

∫

D

∇ · vn(x)ψ(x, tn−1) dx −→ 0 as h→ 0 .

We add and subtract cnDψ(VD, tn−1)v
n
D,E and cnD,E

∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) to the sum-

mations in the first two terms of (6.12). We denote

TC1
:=

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

(cnD,E − cnD)

(
ψ(VD, tn−1)v

n
D,E

−

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x)

)
,

TC2
:=

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

cnD,E

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) ,

TC3
:=

N∑

n=1

4tn
∑

D∈Dh

cnDψ(VD, tn−1)
∑

σD,E∈FD

vnD,E ,

TC4
:=

N∑

n=1

4tn
∑

D∈Dh

cnD

∫

D

∇ · vn(x)ψ(x, tn−1) dx .
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One can easily verify that (6.12) is satisfied when TC1
→ 0, TC2

→ 0, and (TC3
− TC4

) → 0 as
h→ 0.

We begin with TC2
. We denote

vnψ;D,E :=

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) .

Since the summation in TC2
is over all D ∈ Dh and σD,E ∈ FD, each interior σD,E is in the

summation just twice. We consider one fixed interior set σD,E, where we have denoted D and E
such that vnD,E ≥ 0, and have

(
cnD + αnD,E(cnE − cnD)

)
vnψ;D,E +

(
cnD + αnD,E(cnE − cnD)

)
vnψ;E,D = 0 ,

considering the definition of the local Péclet upstream weighting (3.6) and the fact that vnψ;D,E =
−vnψ;E,D. Thus

TC2
=

N∑

n=1

4tn
∑

σD,E∈Fext

h

cnD,E

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) .

Now cnE = 0 for all VE ∈ Vext
h and all n ∈ {1, . . . , N} implies cnD,E ≤ |cnD − cnE | for σD,E ∈

Fext
h by (3.6) and (3.7). Hence, using in addition |ψ| ≤ C2,ψ, |vnD,E | ≤ Cv|σD,E| following from

Assumption (A4), the Cauchy–Schwarz inequality, Lemma 3.2, once more the Cauchy–Schwarz
inequality, and finally the a priori estimate (5.3),

|TC2
| ≤ CvC2,ψ

N∑

n=1

4tn
∑

σD,E∈Fext

h

|cnE − cnD||σD,E |

≤ CvC2,ψ

N∑

n=1

4tn

( ∑

σD,E∈Fext

h

|σD,E |

dD,E
(cnE − cnD)2

) 1

2

( ∑

σD,E∈Fext

h

|σD,E|dD,E

) 1

2

≤ CvC2,ψ

(
C1,D,T C2,D,T |∂Ω|h

) 1

2

N∑

n=1

4tn‖∇c
n
h‖Ω ≤ CvC2,ψ

(
C1,D,T C2,D,T |∂Ω|Th

) 1

2
Cae

cS
,

so that TC2
→ 0 as h→ 0.

Next we consider TC3
and TC4

. We immediately have that

∑

σD,E∈FD

vnD,E =

∫

D

∇ · vn(x) dx ∀D ∈ Dh ,

using the definition of vnD,E. We further estimate

|TC3
− TC4

| =

∣∣∣∣
N∑

n=1

4tn
∑

D∈Dh

cnD

∫

D

∇ · vn(x)
(
ψ(VD, tn−1) − ψ(x, tn−1)

)
dx

∣∣∣∣

≤ C3,ψh
N∑

n=1

∑

D∈Dh

|cnD|

∫ tn

tn−1

∫

D

r(x, t) dxdt (6.13)

≤ C3,ψh

( N∑

n=1

∑

D∈Dh

4tn|D|(cnD)2
) 1

2

(
N∑

n=1

∑

D∈Dh

(∫ tn
tn−1

∫
D
r(x, t) dxdt

)2

4tn|D|

)1

2

≤ C3,ψh

(
Cae

cβ
T

) 1

2

‖r‖QT
,
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considering
|ψ(VD, tn−1) − ψ(x, tn−1)| ≤ C3,ψh (6.14)

for all x ∈ D,

∫

D

|∇ · vn(x)|dx =
1

4tn

∫

D

∫ tn

tn−1

∇ · v(x, t) dtdx =
1

4tn

∫

D

∫ tn

tn−1

r(x, t) dtdx ,

which follows using Assumption (A4), the Cauchy–Schwarz inequality, and the a priori esti-
mate (5.1). Thus (TC3

− TC4
) → 0 as h→ 0.

We finally turn to TC1
. We first define

TC5
:=

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

|σD,E |

dD,E
(cnD,E − cnD)2 .

We have

(cnD,E − cnD)2 =
(
αnD,E(cnE − cnD)

)2
≤

1

4
(cnE − cnD)2

when vnD,E ≥ 0, considering the definition of the local Péclet upstream weighting (3.6) and Re-
mark 3.5, which gives 0 ≤ αnD,E ≤ 1/2. Similarly, when vnD,E < 0, we come to

(cnD,E − cnD)2 =
(
(cnE − cnD)(1 − αnD,E)

)2
≤ (cnE − cnD)2 .

Thus

TC5
≤ 2

N∑

n=1

4tn
∑

σD,E∈Fh

|σD,E|

dD,E
(cnE − cnD)2

≤ 2C1,D,T C2,D,T

N∑

n=1

4tn‖∇c
n
h‖

2
Ω ≤ 2C1,D,T C2,D,T

Cae

cS
,

noticing that each interior σD,E is in the original summation twice and using Lemma 3.2 and the
a priori estimate (5.3). We next define

TC6
:=

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

dD,E
|σD,E|

(∫

σD,E

vn(x) · nD,E
(
ψ(VD, tn−1) − ψ(x, tn−1)

)
dγ(x)

)2

and estimate

TC6
≤ C2

3,ψh
2C2

v

N∑

n=1

4tn
∑

D∈Dh

∑

σD,E∈FD

dD,E|σD,E|

≤ C2
3,ψh

2C2
vC1,DC2,D

N∑

n=1

4tn
∑

D∈Dh

|D| ≤ C2
3,ψh

2C2
vC1,DC2,D|Ω|T ,

using (6.14), |vnD,E| ≤ Cv|σD,E| following from Assumption (A4), and finally Assumption (B). We
now notice that

T 2
C1

≤ TC5
TC6

,
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using the Cauchy–Schwarz inequality, and hence TC1
→ 0 as h→ 0. Thus (6.12) is satisfied.

Using the Green theorem, we easily come to

N∑

n=1

4tn
∑

D∈Dh

cnD
∑

σD,E∈FD

∫

σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) =
N∑

n=1

4tn (6.15)

∑

D∈Dh

cnD

∫

D

vn(x)∇ψ(x, tn−1) dx +

N∑

n=1

4tn
∑

D∈Dh

cnD

∫

D

∇ · vn(x)ψ(x, tn−1) dx .

Therefore it follows from (6.12) that if we can prove that

N∑

n=1

4tn
∑

D∈Dh

cnD

∫

D

vn(x) · ∇ψ(x, tn−1) dx (6.16)

−→

∫ T

0

∫

Ω
c(x, t)v(x, t) · ∇ψ(x, t) dxdt as h,4t→ 0 ,

then we will have that

TC −→ −

∫ T

0

∫

Ω
c(x, t)v(x, t) · ∇ψ(x, t) dxdt as h,4t→ 0 . (6.17)

To prove (6.16), we introduce

TC7
:=

N∑

n=1

∫ tn

tn−1

∫

Ω
c̃h,4t(x, t)v

n(x) ·
(
∇ψ(x, tn−1) −∇ψ(x, t)

)
dxdt ,

TC8
:=

N∑

n=1

∫ tn

tn−1

∫

Ω

(
c̃h,4t(x, t) − c(x, t)

)
vn(x) · ∇ψ(x, t) dxdt ,

TC9
:=

N∑

n=1

∫ tn

tn−1

∫

Ω
c(x, t)

(
vn(x) − v(x, t)

)
· ∇ψ(x, t) dxdt .

We have
|∇ψ(x, tn−1) −∇ψ(x, t)| ≤ g(4t)

for t ∈ (tn−1, tn] and thus

|TC7
| ≤ g(4t)

N∑

n=1

∑

D∈Dh

|cnD|

∫

D

∫ tn

tn−1

|v(x, t)|dxdt ≤ g(4t)

(
Cae

cβ
T

) 1

2

‖v‖QT
,

using the same estimate as in (6.13). Thus TC7
→ 0 as 4t → 0. It is immediate that TC8

→ 0
as h,4t → 0, using the strong (and consequently weak) convergence of c̃h,4t to c. By Assump-
tion (A4) and (6.11) v and vn are bounded, and hence the piecewise constant in time approximation
given by vn converges strongly in L2(QT ) to v as 4t→ 0. Since |∇ψ| ≤ C3,ψ and c ∈ L2(QT ), it
suffices to use the Cauchy–Schwarz inequality to conclude that TC9

→ 0 as 4t → 0. Thus (6.16)
and consequently (6.17) is fulfilled.

We are now ready to give the final theorem of this paper:
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Th

Dh

Figure 2: Primal locally refined square grid Dh (dashed) and dual triangular grid Th (solid)

Theorem 6.2 (Convergence to a weak solution). There exist subsequences of c̃h,4t and ch,4t, the
approximate solutions of the problem (1.1)–(2.2) by means of the combined finite volume–finite
element scheme given by Definition 5.2, which converge strongly in L2(QT ) to a weak solution of
the problem (1.1)–(2.2) given by Definition 2.2. If the weak solution is unique, then the whole
sequences c̃h,4t, ch,4t converge to the weak solution.

Proof:

We have from Theorem 6.1 that subsequences of c̃h,4t and ch,4t converge strongly in L2(QT ) to
some function c ∈ L2(0, T ;H1

0 (Ω)). The function c satisfies

−

∫ T

0

∫

Ω
β(c(x, t))ψt(x, t) dxdt−

∫

Ω
β(c0(x))ψ(x, 0) dx

+

∫ T

0

∫

Ω
S(x, t)∇c(x, t) · ∇ψ(x, t) dxdt−

∫ T

0

∫

Ω
c(x, t)v(x, t) · ∇ψ(x, t) dxdt

+

∫ T

0

∫

Ω
F (c(x, t))ψ(x, t) dxdt =

∫ T

0

∫

Ω
q(x, t)ψ(x, t) dxdt

for all test functions ψ ∈ Ψ, given by (6.1). This follows from (6.3), (6.10), (6.17), (6.4), (6.5),
and (6.2). In addition, β(c) ∈ L∞(0, T ;L2(Ω)), which follows from (5.2). Thus c is a weak
solution of the problem (1.1)–(2.2), since Ψ is dense in the set {ϕ; ϕ ∈ L2(0, T ;H1

0 (Ω)), ϕt ∈
L∞(QT ), ϕ(·, T ) = 0}.

7 Numerical experiment

We present the results of a numerical experiment in this section. The computations were done
with the code TALISMAN [33], where our scheme is implemented.

We consider a model degenerate parabolic convection–diffusion problem with a known traveling
wave solution (cf. [22]). In particular, we take the equation (1.1) for Ω = (0, 1)× (0, 1) and T = 0.5
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Figure 3: Initial space mesh Dh and the approximate solution at t = 0.5, δ = 0.025

with

β(c) = c
1

2 for c ≥ 0 ,

S = δ

(
1 0
0 1

)
,

v = (v, 0) ,

F (c) = 0 , q = 0 .

Here, δ > 0 and v > 0 are parameters. We fix v to 0.8 and consider two values of δ: for δ = 0.025,
the problem is not too convection-dominated, which is the case for δ = 0.0001. The initial and
boundary conditions (Dirichlet on x = 0 and x = 1 and Neumann on y = 0 and y = 1) are given
by the exact solution

c(x, y, t) =
(
1 − e

v
2δ

(x−vt−p)
)2

for x ≤ vt+ p , c(x, y, t) = 0 for x ≥ vt+ p .

The shift p defines the position of the front of the wave at t = 0 and is set to 0.2. Note that the
problem is degenerate parabolic since β ′(0) = +∞ and the solution takes the value of 0.

We perform the simulations on locally refined nonmatching square meshes with the initial one
(r = 0) given in Figure 3. The initial time step is T/2. We refine the space mesh (twice, r = 2, and
four-times, r = 4) by dividing each square into four subsquares and each time the space mesh is
refined, the time step is divided by two. The simulated problem is in fact only one-dimensional and
we use this fact to test the performance of the numerical scheme that we propose for this type of
grids. Since the difference of levels of refinement of two neighboring squares in the given example
is more than one (cf. Remark 3.8), the underlying triangulation is not Delaunay and hence the
discrete maximum principle (see Theorem 4.11) does not necessarily hold. Hence we need to define
the function β(c) for c < 0. To fulfill Assumptions (A1) and (A2), we set β(c) := −β(−c) for c < 0.

We have depicted the approximate solution for δ = 0.025 and r = 0 at t = 0.5 in Figure 4
and give the profiles of approximate solutions in y = 0.5 for the different values of δ and r in
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Figure 4: Approximate solution on the dual mesh Th to Dh from Figure 3 at t = 0.5, δ = 0.025

Figure 5. The profile is defined by all the calculated values cD in squares whose centers QD satisfy
|QD − l0.5| ≤ 0.05 · 2−r, where l0.5 is the line y = 0.5. We have purposely chosen the grid such
that in its lower part (y ≤ 0.4), the combined scheme coincides with a pure finite volume one. We
thus can clearly observe the influence of the nonmatching refinement. It can be seen from Figure 4
that not only that we do not introduce any error at the interfaces between the subdomains with
nonmatching grids, but since the mesh size is smaller in the refined parts, the solution is sharper
here. Similarly, the points with bigger error (more distant from the exact solution curve) in Figure 5
represent the original unrefined cells.

At each discrete time level, we had to solve the nonlinear system of algebraic equations given
by (3.2a)–(3.2c). Since β ′(0) = +∞ and since the solution takes the value 0, we could not directly
apply the Newton method for this purpose. We have thus introduced new unknowns unD = β(cnD)
and rewritten this system for these new unknowns, cf. [18]. This allowed us to apply the Newton
method directly and thus to avoid any parabolic regularization (cf. [4]) or perturbation of initial
and boundary conditions (cf. [27]). Preconditioned bi-conjugate gradients stabilized method (Bi-
CGStab) was used for the solution of the associated linear systems.

As the results demonstrate, our scheme works easily for the given locally refined nonmatching
square grid, which would not be the case for the standard finite volume method, cf. [14]. Next, the
local Péclet upstream weighting reduces the numerical diffusion of full upstream weighting but still
guarantees the stability of the scheme and finally, the scheme is computationally very inexpensive,
having just one unknown per cell and leading to positive definite matrices. We currently study
the a posteriori error estimates for this scheme, with the perspective of using the adaptive grid
refinement technique.
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Figure 5: Solution profiles for y = 0.5 at t = 0.5, δ = 0.025 (left) and δ = 0.0001 (right)
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[14] Eymard, R., Gallouët, T., and Herbin, R. Finite volume methods. In Handbook of
Numerical Analysis, Vol. VII. North-Holland, Amsterdam, 2000, pp. 713–1020.
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