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Abstract

The interaction of two parallel vortices of equal circulation is observed experimentally. For low

Reynolds numbers (Re), the vortices remain two-dimensional and merge into a single one, when

their time-dependent core size exceeds approximately 30% of the vortex separation distance. At

higher Re, a three-dimensional instability is discovered, showing the characteristics of an elliptic

instability of the vortex cores. The instability rapidly generates small-scale turbulent motion,

which initiates merging for smaller core sizes and produces a bigger �nal vortex than for laminar

2D 
ow.
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The merging of two vortices into a single one (also known as `pairing') has been ob-

served in mixing layers [1], and in the wake of aircraft wings [2{4], and it may play an

active role in turbulent 
ows [5, 6]. In a theoretical study, Sa�man and Szeto [7] considered

two-dimensional inviscid 
ow and modeled the vortices as two surfaces of constant vorticity.

They found solutions, in which the two patches rotate around each other inde�nitely, when

their characteristic diameter is smaller than a certain fraction of their separation distance.

These solutions are two-dimensionnally linearly [8] and non-linearly [9] stable. Beyond this

limit, no such solution exists, and Overman and Zabusky [10] showed numerically that the

two patches are rapidly deformed, growing arms of vorticity and merging into a single vortex.

Experimental observations made by GriÆths and Hop�nger [11] seem to be in agreement

with this size criterion for the evolution of corotating vortex pairs. However, the e�ect

of viscosity, which smoothes the vorticity distribution and makes the core size increase in

time, may signi�cantly change this picture. Moreover, the possibility of a three-dimensional

instability of the vortex pair has so far not been taken into account. In recent experi-

ments [12], two distinct instabilities have been observed in counterrotating vortex pairs: a

long-wavelength instability, treated theoretically by Crow [13], and a short-wavelength in-

stability, identi�ed as the so-called elliptic instability [14{17] of the vortex cores. Whereas a

corotating vortex pair was shown theoretically to be stable with respect to long-wavelength

perturbations [18], Le Diz�es [19] recently predicted the persistence of the short-wavelength

instability. A di�erent kind of three-dimensional instability, occurring in columnar corotat-

ing vortices, in a rapidly rotating strati�ed 
uid has recently been reported [20]. However,

in the absence of strati�cation and background rotation, the underlying mechanism cannot

act in the present 
ow. In this study, we investigate experimentally the in
uence of viscous

and three-dimensional e�ects on the merging of two corotating laminar vortices.

The 
ow is generated in a water tank of dimensions 50�50�130 cm3, using two 
at plates

with sharpened edges, impulsively rotated in a symmetric way by computer-controlled step

motors. The vorticity created in the boundary layer of each plate rolls up into two starting

vortices, which are laminar, uniform along their axes, and without axial velocity at the



beginning. They are visualized using di�erent dyes, illuminated with laser light in volume

or in cross-sections. For quantitative velocity measurements, Particle Image Velocimetry is

used. The water is seeded with small re
ecting particles and a digital camera captures pairs

of images in sections perpendicular to the vortex axes. The images are then treated with a

cross-correlation algorithm to extract the velocity and vorticity �eld [21]. The vortex pair

is characterized by the circulation � of each vortex, the separation b between the two vortex

centers (located at the maxima of vorticity) and the vortex core size a, de�ned as the radius

for which the averaged azimuthal velocity is maximum. Measurements have shown that the

initial vorticity distribution of each vortex is approximately Gaussian (see Eq. (1) below).

In this paper, we consider pairs of equal vortices, for which the dynamics depend on two

non-dimensional parameters: 1) the Reynolds number Re = �=� (varying between 700 and

4000 here), where � is the kinematic viscosity of the 
uid, and 2) the initial ratio a0=b0

of core size and separation distance (initial meaning at the end of the vortex formation),

which is in the range 0.1{0.2 in the present experiments. Two point vortices of the same

circulation � and separated by a distance b0 rotate around each other by mutual induction

(the surrounding 
uid being irrotationnal) with a turnover period tc = 2�2b2
0
=�. This

convective unit is used to non-dimensionalize time t (t� = t=tc), starting at the beginning of

the plate motion.

For Reynolds numbers lower than about 2000, the vortices remain two-dimensional and

laminar. They deform elliptically, get closer, and then merge into a single vortex in a rapid

transition, as shown by the vorticity �elds in Fig. . The distance b between the two maxima

of vorticity is plotted in Fig. . The second curve (Re = 1506) corresponds to the �elds of

Fig. . The evolution of the core size a of the two initial vortices before merging, and of the

�nal vortex after merging is shown in Fig. . These measurements reveal that the merging

process can be decomposed into several di�erent stages, discussed in the following (the initial

phase of vortex roll-up and formation for t� < 0:2 is not considered in further detail in this

paper).

In the �rst stage, the vortices rotate around each other like two point vortices. The



e�ect of each vortex on the other is weak; it leads to the slight elliptic deformation visible

in Fig. (a). The separation distance b remains approximately constant, and the period of

rotation is almost equal to the one for a point vortex pair (tc). The slight oscillation of the

separation distance around b0 is due to the con�nement of the 
ow by the vortex-generating

plates, despite the optimization of their motion pro�le to reduce this e�ect. The core size a

of an axisymmetric vortex with Gaussian vorticity distribution

!(r) =
��

�a2
e��r2=a2 (1)

where � = 1:2563, solution of the Navier-Stokes equations, grows by viscous di�usion of

vorticity according to:

a2 = 4��t+ const: (2)

The solid lines of Fig. correspond to this linear law, which matches the experimentally

measured evolution in the �rst stage of the 
ow. As the Reynolds number increases, the

vortices di�use slower and this stage lasts longer (in convective time units), as visible in

Fig. .

The second stage begins when the vortices reach a critical size, scaled on the separation

distance b. At this point, two tips of vorticity are created at the outer side of the vortices

(Fig. b), which are subsequently ejected radially to form two arms of vorticity wrapping

around the vortices (Fig. c). Meanwhile, the vortex centers get closer and rapidly merge

into a single core. The separation distance decreases to zero (see Fig. ) within approximately

a third of the initial rotation period, an interval which varies little with Reynolds number.

This indicates that this second stage, i.e. the actual merging, is mainly a convective pro-

cess, where di�usion of vorticity plays a minor role. For the highest Reynolds number in

Fig. , however, the evolution is somewhat slower, because the onset of a three-dimensional

instability slightly modi�es the merging. During the merging, it is diÆcult to calculate a

core size since the velocity �elds of the two vortices strongly interfere.

The critical ratio of core size and separation distance, at which merging begins, is found



experimentally to be (see Fig. ):
ac
b0

= 0:29� 0:01: (3)

The uncertainty takes into account the error made in the determination of the beginning of

merging, which is de�ned as the time when the separation distance b starts to decrease. This

critical ratio is close to the value of 0.32 above which merging of vortex patches is observed,

as predicted by theoretical and numerical studies [7, 10]. It is surprising to see that this

criterion is little in
uenced by the initial pro�le of vorticity, although the de�nitions of a

are necessarily di�erent.

In the third stage, the vorticity arms roll up around the central pattern (Fig. c), forming

a spiral of vorticity, which is spread out and smoothed by di�usion (Fig. d). The core size of

this �nal vortex then keeps increasing similarly to the Gaussian evolution (2), although the

vortex is not exactly Gaussian after merging. The measurements show, by extrapolation of

the viscous core evolutions, that the area of the �nal vortex is about twice the area of each

initial vortex. This increase is larger (beyond measurement uncertainties) than the increase

by a factor of
p
2 predicted theoretically by Carnevale et al. [22] on the basis of energy and

vorticity conservation. In our case with Gaussian vortices, the vorticity seems to decrease

during the merging process. This e�ect, coupled to the conservation of the circulation,

leads to an increase of the experimentally measured core size after merging, and may be the

explanation for the observed discrepancy.

When increasing the Reynolds number and/or reducing the dimensionless initial core size

a0=b0, the viscous phase before merging lasts longer, and there is time for a three-dimensional

instability to develop while the two vortices are still separated. This phenomenon is here

observed for the �rst time in the corotating vortex pair.

The sideview visualization in Fig. shows a clear observation of the three-dimensional

instability. At this particular instant, the vortices, which spin around each other, are in

a plane perpendicular to the view direction. The vortex centers are deformed sinusoidally

with a wavelength � close to one vortex separation b, and the perturbations on both vortices



are found to be in phase. This deformation is very similar to what was recently observed in

counterrotating vortex pairs [12], where it was found to be a consequence of a cooperative

elliptic instability of the vortex cores. It is interesting to see that this instability still develops

in a corotating con�guration, whereas the long-wavelength instability is suppressed by the

rotation of the vortex pair [18]. Elliptic instability occurs in 
ows with locally elliptic

streamlines [14, 16], resulting here from the interaction between the vorticity of one vortex

and the external strain induced by the opposite vortex. Theory states that the wavelength

scales on the vortex core size a. In our experiment, the most ampli�ed wavelength was

measured to be �=a = 3:1 � 0:3. It is in agreement with the value of 3:5 found for the

elliptic instability of a Gaussian vortex in a rotating external strain, which can be derived

from theory [19, 17]. This is the �rst experimental observation of an elliptic instability in

such a 
ow.

Further visualizations and measurements were carried out to determine the growth rate

of the instability. By simultaneously illuminating two cross-cut planes B-B and C-C (Fig.

), separated by half a wavelength and located at the maximum and minimum of the vortex

centerline displacement, one obtains an image as in the inset of Fig. (shown here as a

negative). First, these visualizations con�rm that the instability mode is stationary (not

rotating or propagating) in the rotating frame of reference of the vortex pair, and that the

planes of the wavy centerline deformations are aligned with the stretching direction of the

mutually induced strain (at 45Æ with respect to the line joining the vortices), as predicted

theoretically [16]. Second, from a series of such images, the amplitude A of the centerline

displacement of each vortex can be obtained as function of time. This displacement is

proportional to the amplitude of the unstable mode for small values. The result is shown

in Fig. . The growth is indeed exponential over a certain period, and an appropriate least-

squares �t allows the determination of the growth rate �. The result corresponding to the

straight line of Fig. is:

�=" = 1:6� 0:2; (4)



where " = �=2�b2 is the mutually induced external strain at the vortex centers. A theoretical

prediction can be obtained, using the results in [19] which extend Baily's theory [15] to the

case of an elliptic instability with a rotating strain s, and those in [23] which calculate the

value of the strain s at a Gaussian vortex center as a function of the strain far from the

center (equal to " in our experiment). For the present case, with the experimental values

of Re and a=b, a growth rate of �=" = 1:757 is predicted, which is reasonably close to the

measured value in (4).

All this evidence indicates that the three-dimensional instability observed in Fig. is

indeed an elliptic instability of the strained vortical 
ow in the cores.

When the perturbation amplitude gets suÆciently large, the organized spatial structure

breaks down. At the locations where the vortex centers are most deformed, layers of 
uid

initially orbiting one vortex are drawn around the respectively other vortex in a periodic

interlocking fashion. The corresponding tongues of dye are faintly visible in Fig. . These

tongues contain vorticity, which is reoriented and stretched into perpendicular secondary

vortices wrapping around the primary pair. This exchange of 
uid (and vorticity) between

the vortices has two consequences: 1) the vortices are drawn closer together, initiating a

premature merging, and 2) the interaction between primary and secondary vortices leads

to the almost explosive breakdown of the 
ow into small-scale motion during this merging.

Eventually the 
ow relaminarizes, and one �nds again a single viscous vortex at the end.

Despite the 3D perturbation and intermittent turbulence, one can still de�ne e�ective core

sizes. The resulting measurements in Fig. show that merging sets in much earlier, i.e. for

lower a=b, than in two-dimensional 
ow (although the actual merging phase may be slightly

longer, according to Fig. ), and that the �nal vortex appears to be bigger than it would have

been without the three-dimensional instability.

In summary, we have presented experimental results concerning the interaction between

two identical, parallel, initially laminar vortices. Unlike for vortices in inviscid 
ows, merging

always happens, since vorticity di�usion makes the vortex core size increase in time, eventu-

ally beyond the limit for merging. The evolution of the pair can be decomposed into three



distinct phases: 1) the viscous growth of the cores up to a critical radius of about 30% of

the separation distance, 2) the actual merging, i.e. the kinematic reorganisation of vorticity

into a single core and spiral arms, with little in
uence of viscosity, and 3) the axisymmetri-

sation and viscous di�usion of the �nal vortex, which again depends on Reynolds number.

In addition, the measurements show a larger increase in vortex core size during merging

than theoretically predicted for inviscid patches. At high Re, a three-dimensional instability

is discovered, showing the characteristic features of a cooperative elliptic instability of the

vortex cores. The existence of this instability in a situation with rotating external strain

is here demonstrated experimentally for the �rst time. The subsequent stage of small-scale

turbulent 
ow makes the vortices merge for smaller core sizes and into a larger �nal vortex

than in the absence of instability. Experiments are presently underway to quantify in more

detail the e�ect of three-dimensional instability on vortex merging.
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List of �gure captions

Figure 1: Vorticity �elds during the merging of two corotating vortices for Re = 1506

and a0=b0 = 0:18. (a) t� = 0:7, (b) t� = 1:2, (c) t� = 1:6, (d) t� = 2. Di�erence between two

vorticity contours: 0:3 s�1.

Figure 2: Evolution of the separation distance b for di�erent Reynolds numbers before

merging.

Figure 3: Evolution of the square of the core size a before and after merging. Solid

lines: evolution for Gaussian vortices. Broken line: a=bo = 0:29.

Figure 4: Side view of the elliptic instability on a corotating vortex pair. Re = 4140,

a0=b0 � 0:15.

Figure 5: Amplitude of the centerline oscillation. Inset: simultaneous view of the two

cross-cut sections B-B and C-C of Fig. (negative image). Re = 2780, �=a = 3:1.

Figure 6: Evolution of the square of the core size a with and without instability. Broken

line: a=bo = 0:2:
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Figure 1, Meunier, Phys. Fluids
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