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[11 Whereas in an isotropic temperature atmosphere both the hydrostatic equation and the
momentum equation give the same conditions for hydrostatic equilibrium, in the
anisotropic case the situation is ambiguous. It is found that for an anisotropic temperature
the hydrostatic equilibrium conditions have to be deduced from the momentum equation.
The condition for hydrostatic equilibrium is that both the parallel and the perpendicular
temperatures, to the radial direction, decrease more rapidly than 1/r in the general case
and that the perpendicular temperature decreases more rapidly than 1/r when the parallel
temperature is constant. The momentum equation displays a transonic solution when at
least one of the temperatures, parallel or perpendicular to the radial direction, decreases
less rapidly than 1/r in the general case and when the perpendicular temperature decreases
less rapidly than 1/r when the parallel temperature is constant. In an anisotropic
atmosphere the parallel thermal velocity is the critical velocity. The properties of the
transonic expansion in an isothermal and anisotropic atmosphere are studied. The initial
velocity, the critical distance position, the terminal velocity, and the density profile are
significantly different from the isotropic case. These properties are opposite with respect
to the value of the anisotropy T /T > 1.0 and T, /T < 1.0. In particular, for a
perpendicular temperature larger than the parallel temperature the acceleration starts really
at a significant distance from the base of the atmosphere, whereas the critical point is
closer to the base of the atmosphere compared to the isotropic case. For an opposite
anisotropy the transonic point moves far away from the base of the atmosphere, and the
terminal velocity is significantly decreased for small temperature anisotropy. The mass
loss rate is drastically affected for an anisotropy T,/T > 2.0. The extension of this study
to multimoment anisotropic models can be useful for the interpretation of particle

simulation of rarefied stellar atmosphere expansion.

Citation:
Res., 110, A12104, doi:10.1029/2005JA011190.

1. Introduction

[2] One of the salient features of the macroscopic state of
the solar wind plasma is the temperature anisotropy of the
particle populations. Recent observations on SOHO space-
craft indicate that in coronal holes the proton and the O°*
ion velocity distributions are anisotropic. Indeed it is
deduced from self-consistent model that the temperature
perpendicular to the interplanetary/solar magnetic field
(IMF), T, is larger than the temperature parallel to that
field, T\ [Cranmer, 1998; Kohl et al., 1998; Li et al., 1998].
In situ observations in the solar wind have shown that from
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0.3 to 1 AU the proton temperature parallel and perpendi-
cular to the IMF evolve as power laws [Schwenn and
Marsch, 1990]. In the fast solar wind, the proton
temperature anisotropy, T /T, evolves from about 2.0 at
0.3 AU to about 0.8 at 1 AU (astronomical unit) in the
ecliptic plane [Schwenn and Marsch, 1990]. A proton
temperature anisotropy lower than 1.0 is also observed on
Ulysses at high latitude and distances larger than 1 AU
during solar minimum activity [Feldman, 1996]. In the slow
solar wind, during minimum solar activity, the temperature
anisotropy of the protons, T, /T), is lower than 1.0 between
Mercury’s orbit and the Earth’s orbit as measured by Helios
spacecraft [Schwenn and Marsch, 1990]. The electron
temperature of the solar wind displays also power law
evolution with the radial distance [Pilipp et al., 1990]. The
electron distribution functions are anisotropic at 1 AU, with
the temperature perpendicular to the IMF lower than the
parallel temperature [Pilipp et al., 1990; Salem et al., 2003].

1 of9



A12104

[3] The observations of proton temperature anisotropy in
the lower corona and in interplanetary space with T l/Tﬂ
larger than 1.0, as well as the observation of O’
temperature anisotropy in coronal holes, provide evidence
that wave-particle interactions control the distribution
functions of these particles in the expansion process. If
Coulomb collisions dominated, the temperature should be
isotropic or such that T, < T in the corona. However, the
anisotropic structure of the core of the proton distribution
functions observed in situ in the fast wind is a signature of
perpendicular heating [Schwenn and Marsch, 1990],
regulated by wave [Marsch et al., 2004]. In the slow solar
wind, observations indicate a regulation of the proton
temperature anisotropy T > T, through the fire hose
instability [Kasper et al., 2002]. The electron distribution
functions observed from Helios [Pilipp et al., 1987] and
from WIND (C. Salem, private communication, 2003)
display a typical structure with three components: the core,
the halo and the strahl. The halo population is isotropic with
respect to the solar wind velocity and has about 5 to 7 times
the energy of the core distribution. The origin of this
suprathermal halo distribution is not yet known, but is likely
the result of wave-electron interaction [Vocks et al., 2005].
As the halo is isotropic with respect to the solar wind
velocity, the electron temperature would be more aniso-
tropic without the halo.

[4] Without any wave-particle interaction, the tempera-
ture anisotropy of stellar atmospheres is controlled by heat
conductivity and Coulomb collisions. The parallel heat
conductivity, which is more important than the perpendic-
ular heat conductivity, prevents the parallel temperature
from decreasing more rapidly than the perpendicular tem-
perature with respect to the heliocentric distance. This result
has been shown for the protons for the first time by Leer
and Axford [1972]. Recent particle simulations have shown
the variation of the radial electron temperature anisotropy,
T,/T) < 1.0, with the plasma density at the base of the
atmosphere in supersonic and subsonic regimes [Landi and
Pantellini, 2003]. Coulomb collisions isotropize the particle
distributions efficiently when the relaxation frequency of
the anisotropy in energy V' is greater than the expansion rate
vx [Demars and Schunk, 1979]. For a plasma composed of
electrons and protons, the relaxation frequency of the
energy anisotropy of the electrons is about 2.66 v, With Ve
the electron-electron collision frequency [Demars and
Schunk, 1979]. The expansion rate of electrons is v, =
—(ve/ne)(dne/dr) in which v, is the mean velocity of the
electron population and n. the electron density at a radial
distance r. It is clear that when the density decreases the
electron-electron collision frequency also decreases whereas
the expansion rate increases. In such a situation Coulomb
collisions become less and less efficient to maintain
isotropic the electron population. For example in coronal
hole at 5 Ry (solar radius), with typical electron density as
well as electron temperature [Habbal et al., 1995] and
a velocity of 400 km s™', the anisotropic relaxation
frequency is about 6.10 7> s~ while the expansion rate is
about 2.10~* s~'. However, with similar temperature and
dynamical property in the lower corona, the anisotropic
relaxation rate could be lower than the expansion rate with
lower density. Regarding the protons, the relaxation
frequency of the anisotropy energy is of the order (m,s/mp)/2
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times the relaxation frequency for the electrons, with m, and
m,, being respectively the electron and the proton mass.
Therefore Coulomb collisions are less efficient to induce
protons isotropy than electrons isotropy.

[s] The purpose of this paper is to study the basic
properties of stellar wind atmospheres in the presence of
temperature/pressure anisotropy. It is generally believed that
thermal anisotropy has little effect on the dynamical prop-
erties of the solar wind but does represent an important
constraint on the wave-particle interaction process [Hu et
al., 1997]. Nevertheless, knowledge of the processes which
characterize the physical parameters of the coronal source
region is important for the study of coronal heating and
stellar wind formation [Withbroe, 1988; Kohl et al., 1998,
Cranmer et al., 1999]. In this paper we address an aniso-
tropic atmosphere and the conditions that are required for
hydrostatic equilibrium. Then we study the nature and
properties of the critical expansion solution, the profile of
the expansion velocity and the mass loss rate in an aniso-
tropic isothermal atmosphere compared to an isotropic
isothermal atmosphere. We consider two kinds of anisotropy,
namely T /T > 1.0 typical of an atmosphere controlled by
wave-particle interactions and T /T < 1.0 typical of a
stellar atmosphere free of wave-particle interactions and in
which the Coulomb collisions do not maintain the
populations in an isotropic state. In order to study the basic
properties of an anisotropic expansion, we consider a one
fluid approach. For the model we assume a completely
ionized atmosphere composed of electrons and protons of
local equal density. We consider the averaged parallel
temperature to the radial direction of electrons and protons
as well as the averaged perpendicular temperature. In
section 2 the conditions for hydrostatic equilibrium of an
anisotropic atmosphere are investigated. Section 3 addresses
the expansion properties of an anisotropic isothermal
atmosphere. In section 4 the results are discussed and an
extension to a multimoment approach is considered. The
conclusion is presented in section 5.

2. Anisotropic Stellar Atmosphere and
Hydrostatic Equilibrium

[6] For the model we assume a completely ionized
atmosphere with m denoting the mass of the hydrogen
atom, n(r) the atomic density with respect to the radial
distance r, T (r) and T(r) respectively the temperatures
perpendicular and parallel to the radial interplanetary
magnetic field, G the gravitational constant, My the stellar
mass and S = r the cross section of the expansion tube with
« > 0. The stellar atmosphere is governed by two basic
equations: the mass conservation equation [Parker, 1963]:

d nvdS

;nv + E E =0 (1)
where v is the fluid velocity, and the momentum equation
for an anisotropic pressure fluid [Blelly and Schunk, 1993]:

d 2d 2%k 1d_ GM,

L = Lty + Y
Vdrv+mndr(n ”)+m S dr * r?

(1) — 1) 0

Comparing with the momentum equation of an isotropic
fluid, we note that in the second term of equation (2) the
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parallel pressure nkT) has been substituted for the total
pressure nkT, and that the third term in equation (2) contains
the direct contribution of the pressure anisotropy. This
contribution is proportional to the difference of the tempera-
tures, T — T, and to the index o of the cross section of the
expansion tube. The larger T — T, and care, the stronger the
anisotropy pressure effect is on the expansion process. We
also note that for T; > T, the anisotropy pressure effect is
usually opposite to the gradient force of the parallel pressure
d(nkT))/dr, while for T, > T both contributions add together
to expel the plasma from the stellar gravitational attraction.
[7] Hydrostatic equilibrium requires that [Parker, 1963]:

i ( GM;mn
dr 22

nkT))) +@(TH —-T)+ 3)

If, at the base of the atmosphere, r,,, the density and the parallel
temperature are n, and T, respectively, the integration of
equation (3) from r, to r with A = GMym/2k yields:

n(FRT} () = nokT, exp (—(x / % (1 _ %) dr— 4 / %)
(4)

[8] With an evolution law of the temperatures such that
Ty = Tyo(r/ro) ™ Mand T, =T Lo(t/ro) "t the integrals in the
exponential of equation (4) are solved. Different cases are
generated by the set of constant parameters 3 and 3, and of
the anisotropy at the base r, of the atmosphere. Indeed:

[o] 1. IfBH # (3, with B” #1

n(r)kT|(r) = nokTjo (%) - exp { (BOLTBM)T“) {(};) ;3“,3i 1}
— B

Gl
[10] 2. If B # B, with 3 =1

n(F)KT) () = nokT o (%) - <+7)

[B)

:BLWith B||§£1

(5)

OLTJ_()

"”‘p{a ~B)Tjo

n(r)kT)(r) = nokTjo (%) ﬂ(lj"_‘))
.exp{w |:(;;))ﬁl 1} } o

[12] 4. 1If BH

n(r)kT)(r) = nokTj <£) (-

:BLWithB”:l

Tio)__4
Tio ) 770

(®)
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[13] The total pressure n(r)kT(r) is obtained from the
parallel pressure n(r)kT(r) by using the relation for the
average temperature T(r) in terms of the parallel and
the perpendicular temperatures that is T(r) = (T(r) +
2T (r))/3. It is easy to check that as r increases to infinity
the total pressure decreases to zero or remains finite,
similarly to the parallel pressure for the above 4 cases. The
pressure decreases to zero as r increases to infinity for
various values of the parameters 3 and (3,. Indeed this
property is verified for: 1) B <3, 2) 8 > 8, with 3 > 1
and 3, > 1 or with 3, = 1.0 and oT , < A/r,, 3) B =
B, with 3 > 1.0 or with 8 <1.0 and T /T, < 1.0 or with
B” =1.0 and (T, — T”O) < Alr,.

[14] Letus consider the case with 3 <3, and ) < 1.0 for
which n(r)kT(r) goes to zero as r goes to infinity, as
obtained from equation (5). Using the mass conservation
equation (1), the momentum equation (2) becomes:

az
= (e i)

where a3 = 2kT, /m, a” 2kT)/m. As T (r) decreases less
rapldly than 1/r and as long as at the base of the atmosphere
ol + B”a” <GMyr,, a crltlcal pomt r. > 1, ex1sts with r, =
GMy/(ca% . + BHa”c) where a3, = a% (r.) and ch a”(rc) A
transcritical solution exists with v(r;) = a)(r) if at r, the
velocity is v(r,) < a,)(r,) and at large distance r > r,
v(r) > a)|(r.), and if the slope of the velocity in r. is positive.
The slope of the velocity at the critical point r, is:

v\ 1 Biaje\* a,
(@), < * Kz—m) el =B,
12
+2BH( BH) } )

From the derivatives of the curves GMy/r and aa? + B”aﬁ at
the intersection point r, one obtains:

d (GM,\ _d/ , )
% < r )r(‘< % <OLaL + BHaH)r(

and then o1 — By)atc + By(1 — Byafe > 0. With this
relation included in equation (10), it is shown that (dv/dr),.
has a positive and a negative value. Therefore the analysis
based on the momentum equation predicts a transcritical
solution, while the analysis of the hydrostatic equation for
the same temperature law predicts the decreasing of the
pressure to zero at large distance.

[15] Another case is considered with 3 =(3, and 3 < 1.0
with a constant temperature anisotropy determined at the
base of the atmosphere by T, ,/T|,. From equation (7) it is
clear that for T,,/T|, > 1.0 the parallel pressure and
therefore the total pressure is finite or increases to infinity as
r — oo. However, for T /T), < 1.0 the pressure decreases
to zero for r — oo as already indicated. We note that the
momentum equation (9) does not contain any condition on
the temperature anisotropy T /Tjo. As 10ng as at the base
of the atmosphere the relation ca? + BHa | < GM JTo 18
verified, a critical point is determined because ca?l + B”aH

©)

Byaje
2r,

(10)

(11)
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decreases less rapidly than 1/r. From equation (10), with
B =B < 1.0, it is directly obtained that the slope of the
velocity at the critical point has a positive and a negative
value. Therefore all the conditions are verified for the
existence of a transcritical solution with v(r.) = aj(r.). The
isothermal case with 3y =3, = 0 and T /T, < 1.0 is a
particular case which will be extensively discussed in
section 3.

[16] We conclude that when the parallel temperature
decreases smoothly with 3, > B and 8 < 1.0 or with
0<B;=BL<1.0and T /T, < 1.0, the atmosphere cannot
be longer bounded by the gravitational field. This result is
coherent with the substitution of the gradient of the parallel
pressure to the gradient of the total pressure in the
momentum equation (2). The gradient of the parallel
pressure appears to be the leading force, while the gradient
of the perpendicular pressure is a complementary force.
The anisotropic isothermal case, with 3 = 3, = 0.0 and
T.o/T)p < 1.0, corresponds to an atmosphere heated on a
large extend whatever the anisotropy. In this situation, the
atmosphere is no more bounded by the gravitational field.
We note that for the above values of the parameters 3
and 3, the pressure decreases as a power law rather than
as an exponential law, implying a very low-pressure
decay at large distances.

[17] From these case studies we conclude that the con-
ditions for a static atmosphere derived from the hydrostatic
equilibrium requirement is not valid for anisotropic atmo-
spheres. The momentum equation (9) sheds some new
aspects on the transonic solution. In the general case of an
anisotropic atmosphere the condition for a static atmosphere
is that the quantity oT, (r) + BT (r) decreases more
rapidly than 1/r. This condition implies that both T (r) and
T (r) have to decrease more rapidly than 1/r, except in the
particular case of a constant parallel temperature, where
T, (r) has to decrease more rapidly than 1/r for a static
atmosphere. The conditions for a transonic expansion are
directly obtained in the general case, when T (r) or T)(r)
decreases less rapidly than 1/r and in the particular case of a
constant parallel temperature when the perpendicular
temperature decreases less rapidly than 1/r. In the
transonic solution we note that the critical velocity is
the parallel thermal velocity, v, = a|, while the critical point,
1. = GMy/(ca? + Buaﬁ), is determined from contributions of
the parallel and the perpendicular thermal velocities in the
general case. In the particular case of a constant parallel
temperature, the critical point is determined from the
perpendicular thermal velocity only, that is, r, = GM/aa? .
These conditions generalize the condition derived for an
isotropic atmosphere expansion [Parker, 1963].

3. Expansion of an Anisotropic Isothermal
Atmosphere

[18] In this section we study the expansion of an isother-
mal atmosphere with a constant temperature anisotropy that
is with 3 = 8, = 0. The momentum equation (9) is
therefore:

1d aat  GM, > o
var' T (T* i )/(V ~ai)

(12)
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We have already considered the conditions at the base, r,,
and at large radial distance for the transcritical solution. The
critical point and the critical velocity which are respectively
r. = GMyJ/aa’? and v, = a| are dependent on the
anisotropic temperature. From the relations between the
parallel temperature, the perpendicular temperature and
the average temperature of the atmosphere, T = (T} +
2T, )/3, we deduce new expression of the critical distance:

_Ta T
=2 (2+7) (13)
and of the critical velocity:
_al)2 -1/2
ve =3"%a;(1+2T./T)) (14)

in which r; and a; are respectively the critical distance
and the critical velocity of an isotropic and isothermal
wind at the average temperature T. At the critical point,
the slope of the velocity is:

32 3
@ :ﬂa_l (15)
ar), 2172 GM;

or

(16)

3
dv 32 T\ 7 (av
) = 24 L i
(dr) - 3 + T, dr e

where the velocity slope is expressed in terms of the
temperature anisotropy and the slope of the velocity at the
critical point (dv/dr)r,; of an equivalent isotropic atmo-
sphere at temperature T.

[19] For an anisotropy such that T, > T, the above
expressions show that the critical distance and the critical
velocity are smaller than in the equivalent isotropic
atmosphere at average temperature T, while the slope of
the velocity at the critical point is larger than in the
equivalent isotropic atmosphere. In the limit of very high
temperature anisotropy, T, > T, the critical distance
reaches the limit r, = 2r./3, while the critical velocity
decreases to zero. In the same limit of large temperature
anisotropy, the slope of the velocity at the critical point also
reaches a limit which is (3/2)*? larger than the velocity
slope at the critical point of an equivalent isotropic
atmosphere at temperature T.

[20] For the opposite temperature anisotropy, T, < T, the
critical point is at a larger distance and the critical velocity is
larger than in the isotropic case as deduced respectively
from equation (13) and equation (14). From equation (16),
we note that the slope of the velocity at the critical point
decreases with respect to the isotropic case. In the limit of
T, < Ty, the critical point is rejected to infinity, while the
critical velocity reaches the value v, = 324, In the same
limit, as T, — 0, then T ~ 3T, and from equation (16) one
derives that the slope of the velocity at the critical point
tends to zero.
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Figure 1. Velocity profiles in the range of 1 to 30 R; for 3
temperature anisotropies T /T) > 1.0. The circle, the square,
and the triangle indicate the position and the velocity of the
critical point for temperature anisotropy equal to 1.0, 2.0,
and 20.0, respectively.

3.1. Velocity Profiles of the Critical Solution

[21] The analytical expression for the velocity is obtained
from equation (12) with use of the condition v, = a at the
critical point r.. The solution is:

vexp (;;) =q (%)T_‘ P {0‘% (1 J?) *ﬂ (17)

The initial velocity at the base of the atmosphere is obtained
by applying equation (17) at r,. With v, < a one obtains:

Te “%\ T, Ve 1
Vo R q (;}) exp{o«TH (1 77()) 75} (18)

[22] Equation (17) is solved numerically. In Figures 1
and 2 velocity profiles are presented for a spherical expan-
sion of an atmosphere with anisotropies T /T > 1.
Typically, we consider a stellar mass and a stellar radius
equal respectively to the mass and to the radius of the Sun.
These profiles have been obtained from equation (17) with
an isothermal temperature of 10° K, and 3 values of the
temperature anisotropy T,/T}, equal to 1.0, 2.0 and 20.
Figure 1 displays the velocity profiles from the base of the
atmosphere at r, = 1.0 R to 30 Ry in which Ry is the Sun
radius. In this figure we note that as the temperature
anisotropy increases, the velocity v, at the base r, of the
atmosphere decreases toward zero. It is also observed that
for large temperature anisotropy the expansion velocity has
very small values between r, and the critical point r.. The
critical velocity and the critical distance both decrease with
respect to the values of the isotropic case which are
respectively 128 km/s and 6.9 R,. For T /T = 2.0 the
critical velocity is 100 km/s and the critical point is at about
5 Rg while for T /T = 20, the critical velocity is some
30 km/s and the critical point is less than 4 Rg. In the lower
corona for distances lower than some 9 Ry, the expansion
velocity is lower than the velocity in the isotropic case but
for distances larger than some 10 Ry the expansion velocity
increases with increasing anisotropy.
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600 :
500 |
400}
3001 7 -
200} ——T,/T,=1 .
-E-T,/T,=2
100, —A-T/T,=20 -
ok ‘ ‘ ‘ .
1 30 70 100 170 250
r(Rs)

Figure 2. Velocity profiles at large distances in the range
of 1 to 250 Ry for three temperature anisotropies T,/T)
equal to 1.0, 2.0, and 20.0.

[23] Figure 2 displays the velocity profiles at large dis-
tances from the base of the atmosphere. It is noted that at a
given distance from the base of the atmosphere, the effect of
the anisotropy on the expansion velocity is not very impor-
tant and saturates rapidly when the anisotropy increases to
large values. For example, for a very high anisotropy
T, /T = 20, the expansion velocity at 1 AU is only 60 km/s
larger than in the isotropic case. As the distance from the
base of the atmosphere increases, the expansion velocity
increases to infinity, as shown from the formula:

T 1/2
v(r — 00) 2 q (20(TL logi)

I Te

(19)

This is derived from the velocity formula equation (17) in
the limit of large distance from the base r,.

[24] Let us consider now the case of a small temperature
anisotropy, T /T < 1.0. In Figure 3 and 4 the velocity
profiles have been calculated for an isothermal temperature
of 10° K, and 3 values of the temperature anisotropy T Ty
equal to 1.0, 0.5, and 0.05. In this case of anisotropy with

350 T . .
300

1 3 5 10 15 20 30
r (Rs)

Figure 3. Velocity profiles in the range of 1 to 30 Ry for
three temperature anisotropies T /T|| < 1.0. The circle and
the square indicate the position and the velocity of the
critical point for temperature anisotropy equal to 1.0 and
0.5, respectively. For a temperature anisotropy equal to 0.05
the critical point is father than 30 Ry from the base of the
atmosphere.
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0 ‘ .
1 30 70

100

r(Re)
Figure 4. Velocity profiles at large distances in the range
of 1 to 250 Ry for three temperature anisotropies T, /T)

equal to 1.0, 0.5, and 0.05. The critical point for the
anisotropy equal to 0.05 is at 50 R;.

T, /T < 1.0 the expansion process shows characteristics
that are different than in the case of anisotropy with T ,/T} >
1.0. Indeed, in the case of small anisotropy it is observed in
Figure 3, that the velocity at the base r,, the critical velocity
and the critical distance are larger than the respective values
in the case of high anisotropy. For a very low anisotropy
equal to 0.05 the critical point is at some 50 Ry and the
critical velocity is 215 km/s as seen in Figure 4. In the limit
of T,/Ty — 0 the initial velocity v, tends to 3124,
exp(—arg/3r, — 1/2).

[25] At large distances it is shown that the expansion
velocity is very sensitive to the anisotropy T, /T < 1.0. For
example, at 1 AU for an anisotropy of 0.05 the velocity is
about half of the value obtained in the isotropic case at the
same average temperature. The numerical results illustrated
in Figure 4 are consistent with the theoretical results derived
from the formulas which show that the critical point is
displaced to infinity, the slope of the velocity at the critical
point tends to zero while the critical velocity approaches
ve = 3'2a; for a temperature anisotropy decreasing to zero.
In the same limit of decreasing temperature anisotropy, one
derives from equation (17), that at large distance r > r, the
tell;rzninal velocity v(r — oo) approaches the critical velocity
3 a;.

3.2. Density Profile and the Mass Loss Rate

[26] The density profile is obtained from the mass con-
servation equation (1) which after direct calculations yields

oG e ol )

(20)
In a static isothermal atmosphere with constant temperature
anisotropy, the density derived from the hydrostatic
equation (3) is
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Figure 5. Density profiles for temperature anisotropy
equal to 2.0 (solid line) and 20.0 (dashed line) compared to
the density profile for the isotropic case.

We note that the two profiles of the density equations (20)
and (21) are similar. They are very close at the bottom of the
atmosphere for distances lower than the critical distance r..

[27] The ratio of the density in an anisotropic isothermal
stellar wind, n,, to the density in an isotropic isothermal
wind, n;, is given by

na_ r u(%—]) o 2 Vﬁ
n \ro P 2al2 Zaﬁ
1 1 1 1
e Y/ R Y
’ (af ) G rﬂ

Figures 5 and 6 show the evolution of the density ratios n,/
n; of a spherical expansion from the base of the atmosphere
to 30 Ry for different values of the temperature anisotropy
and an average temperature of 10° K. For temperature
anisotropy T /T equal to 2.0 and 20 the density ratios in
Figure 5 are seen to be lower than 1.0. The larger T, /T is,
the lower is n,/n;. In particular, the ratio decreases strongly
until a few stellar radii and for a large anisotropy the ratio is
very small. For an opposite temperature anisotropy with T/
T < 1.0 the ratio n,/n; is larger than 1 as seen in Figure 6.
This ratio increases smoothly until a few stellar radii.

- exp (22)

102 T ; .

&
T 10"} -
& ;

100

10 15 20 30
r(Rs)

Figure 6. Density profiles for temperature anisotropy
equal to 0.5 (solid line) and 0.05 (dashed line) compared to
the density profile for the isotropic case.
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[28] The mass loss rate can be estimated from the density
and the velocity at the critical point. For a spherical
expansion one gets the expression, M, = 4mnn(r.)a), that is
more explicitly

exp

n)“(?—“)

2
M, = 4znear, (—
rD

GM, [ 1 1 1
- — ] == 2
aﬁ (ro rc) 2} ( 3)

For a spherical expansion, the ratio of the mass loss rate of
an anisotropic atmosphere to the mass loss rate of an
isotropic atmosphere at the same temperature is:

2 2( L1
%:ﬂ 2+ﬂ rﬂ <T‘ )
M; 9a; T, Yo
GM; (1 1 T
- |5 - 2(——-1
(af ) (7 >]

[29] Figure 7 displays the ratio of the mass loss rate of an
isothermal anisotropic atmosphere in a spherical expansion
to an isotropic spherical expansion at the same temperature,
for anisotropies T /T, equal to 0.05 to 20. For the low
temperature anisotropy, the mass loss rate is about 10 times
higher than in the isotropic case and not sensitive to the
anisotropy. However, for anisotropy larger than 2, the mass
loss rate decreases significantly and is very sensitive to the
anisotropy value.

“exp (24)

4. Discussion

[30] The study of the expansion of an anisotropic stellar
atmosphere displays properties which are different from the
isotropic case. We have shown that the hydrostatic equation
of an anisotropic atmosphere does not provide the condi-
tions for the atmosphere to be maintained in a static
equilibrium. Indeed, we have found sets of the parallel
and perpendicular temperature laws, with 3, > (3 and §3) <
1.0 or B = 3, with 3 < 1.0 and the anisotropy T /T, <
1.0 at the base of the atmosphere, for which the pressure
decreases to zero at large radial distance, but for which a
transcritical solution of the momentum equation is obtained.
This result shows that the condition that the pressure
decreases to zero at large distance is not a sufficient
condition for an anisotropic atmosphere to be in hydrostatic
equilibrium. Therefore as stressed by Velli [2001], the
condition for a supersonic flow on the basis of pressure
argument only does not appear to be as definitive. This
discrepancy is related to the mirror force resulting from the
anisotropic pressure and which is proportional to T, — Tj.
For temperature anisotropy such that T, /T < 1.0 the mirror
force drives the pressure to zero at large distances but is not
efficient enough to prevent the atmosphere from expanding
for the above specific conditions. It is interesting to note that
the set of parameters, 3, > (3 with 8] < 1.0, corresponds to
realistic stellar atmosphere.

[31] The conditions for an anisotropic atmosphere to be in
hydrostatic equilibrium are that both the parallel and the
perpendicular temperature decrease more rapidly than 1/r in
the general case. In the case of a constant parallel temper-
ature the condition is that the perpendicular temperature
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Figure 7. Mass loss rate for temperature anisotropy in the
range 0.05 to 20.0 compared to the mass loss rate in the
temperature isotropic case.

decrease more rapidly than 1/r. The condition for a super-
critical expansion is therefore that, either the parallel or the
perpendicular temperature, decreases less rapidly than 1/r in
the general case. In the case of a constant parallel temper-
ature, the condition is that the perpendicular temperature
decreases less rapidly than 1/r. These conditions generalize
the one obtained in the case of an isotropic atmosphere
[Parker, 1963].

[32] The effects of the temperature anisotropy on the
expansion properties of an isothermal atmosphere are sig-
nificant. For a constant anisotropy with T /T > 1.0, the
distance to the critical point and the critical velocity are
smaller than for an isotropic atmosphere at the same
temperature, while for an anisotropy with T, /T < 1.0, the
distance to the critical point and the critical velocity are
larger than in an isotropic atmosphere. In the limit of very
high and very low temperature anisotropy, asymptotic limits
to the critical point position and to the critical velocity are
obtained. In particular in the limit of very high anisotropy,
the critical point is at 2/3 of the critical distance of the
equivalent isotropic case at the same temperature, and the
critical velocity decreases to zero. The velocity at the base
of the atmosphere of the critical solution decreases to zero
with an increasing anisotropy, and so does the velocity
between the base of the atmosphere and the position of the
critical point. This result shows that for an isothermal
atmosphere with high temperature anisotropy, the expansion
does not really start at the base of the atmosphere, but at a
significant distance from the base. In this case the
acceleration is violent. In the limit of the anisotropy going
to zero the critical point is displaced to an infinite distance
and the critical velocity approaches (3/2)"? a; with a; being
the thermal velocity at temperature T. Similar effects of
the temperature anisotropy of an isothermal atmosphere
on the position of the critical point can be easily extended
to the case of an atmosphere with 3 = 3, < 1.0. These
results show that the effects of additional momentum or
energy in a lower stellar corona will depend on the
anisotropic state of the atmosphere through the position of
the critical point [Lamers and Cassinelli, 1999].

[33] The numerical solution of the isothermal model with
a constant anisotropy along the radial distance, shows that
the velocity profiles with anisotropies larger and smaller
than one are quite different. For an anisotropy T, /T > 1.0,
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the velocity in the lower atmosphere until about 9 Ry is
smaller than in the isotropic case for the same average
temperature. At large distances the velocity profiles saturate
rapidly with increasing anisotropy. At a given distance, the
anisotropy effect on the expansion velocity is not important
even for very high anisotropy as already stressed by Hu et
al. [1997]. For anisotropy with T /T > 1.0 the velocity
increases infinitely with increasing radial distance. For
anisotropy T, /T < 1.0 the profile of the velocity is very
sensitive to the anisotropy. At large distance, the velocity is
much smaller than in the isotropic case. For T /T
decreasing to zero, the velocity at large distance approaches
the critical velocity which is (3/2)"? larger than the thermal
velocity a; of the atmosphere. This shows that for decreasing
anisotropy to zero, the velocity does not increase infinitely
at large distance.

[34] The density profile of an isothermal atmosphere is
drastically affected by the anisotropy of the temperature. For
T /T > 1.0 the density n, is lower than the density n; in the
isotropic case. The ratio n,/n; decreases drastically for
increasing anisotropy in the lower atmosphere and become
rather constant at distances larger than about 3 Ry. For T,/
T < 1.0 the ratio n,/n; is moderately higher than in the
isotropic case and is not greatly affected by the decreasing
anisotropy. The mass loss rate in an isothermal atmosphere
is drastically reduced with respect to the isotropic case for
increasing anisotropy T /T larger than 2.0, but is a little
larger for anisotropy T /T < 1.0 whatever the value of the
anisotropy.

[35] A two fluid theory [Leer and Axford, 1972] or
a multimoment approach, which accounts for a non-
Maxwellian state of the particles [Blelly and Schunk,
1993; Leblanc et al., 2000; Li, 1999], can be used to
describe a stellar atmosphere with different temperature
laws for electrons and protons. In a multimoment ap-
proach, the electrostatic field that regulates the quasi-
neutrality and the zero electric current, is the ambipolar
electric field [Blelly and Schunk, 1993]. The electrostatic
field is derived from the electron momentum equation for
a nonequilibrium stationary state. Through the polynomial
development of the distribution function, at 8 or 13
moment order for example, nonequilibrium contributions
are included in the electrostatic field definition, such as
the thermal diffusion effect [St-Maurice and Schunk,
1976]. These contributions result from the electron-proton
momentum collisional transfer. The proton momentum
equation is then considered within the electrostatic field.
As the total momentum collisional transfer between elec-
trons and protons is conserved, the proton momentum
equation does not contain collisional contributions con-
trary to the relevant equations in the work of Blelly and
Schunk [1993]. Under the assumption that the flow
velocity of the protons is the flow velocity of the stellar
wind, the momentum equation for the protons takes a
similar form as the momentum equation in the one fluid
approach, that is:

1 d O A T R .1 GM,
v (; [“m + “u] + ;[Bpu%u * Beuaeu] 2

r2
/<V2 - % [“;H + “ﬁuD

(25)
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V\;ith a%L = ZkTpL{mp, aél = ZkTe.l/mp, af,H = 2kTy)/m;, and
ag| = 2kT,/m, in which m, is the proton mass. The
necessary and sufficient condition for a transcritical solution
is that at least one of the anisotropic temperatures of the
protons or the electrons, decreases less rapidly than 1/r in
the case where the two parallel temperatures are not
constant. In the case where the two parallel temperatures
are constant, one of the perpendicular temperatures has to
decrease less rapidly than 1/r to obtain a transcritical
solution. The critical velocity is therefore v, = ([al%” + agu]/
2)"2 and the critical point r, = ZGMS/(u[ag Lt oagy] +
By + Bejazy).

[36] Recent particle simulations of a rarefied stellar at-
mosphere have shown that the proton parallel thermal
velocity plays a particular role in the interpretation of the
results [Landi and Pantellini, 2003]. It was also concluded,
that with decreasing collisions, the acceleration efficiency
decreases because the electron heat flux needs sufficient
collisions to be converted efficiently into bulk atmospheric
velocity. Unfortunately, these simulations limited to 50 Ry
do not show the proton temperature evolution. Our results
shed light on these simulations. They show first, that the
parallel thermal velocity of the particles appears to be
directly related to the critical velocity in the transcritical
solution. Second, the parallel heat conductivity, which is
more important than the perpendicular heat conductivity,
prevents the parallel temperature from decreasing more
rapidly than the perpendicular temperature with the radial
distance [Leer and Axford, 1972]. For atmospheres, with a
lower collision frequency, the heat conductivity decreases
[Bell et al., 1981] while the perpendicular temperature is
more decoupled from the parallel temperature and decreases
more rapidly with radial distance [Phillips and Gosling,
1990]. In such a case, the critical point moves away from
the base of the atmosphere because the temperature anisot-
ropy of the two populations of the atmosphere continuously
decreases.

5. Conclusion

[37] In conclusion, this study shows that the basic prop-
erties of an anisotropic stellar atmosphere are specific. It has
been shown that the decrease of the pressure toward zero at
large distance does not provide the condition for an aniso-
tropic atmosphere to be in hydrostatic equilibrium. The
momentum equation has to be considered in order to define
the conditions for a hydrostatic equilibrium as well as to
define the conditions for a transcritical expansion.

[38] The solution of the anisotropic isothermal one fluid
model displays new properties of the initial velocity, the
critical velocity and the critical point as well as of the
terminal velocity and the mass loss rate. The momentum
equation for an atmosphere composed of electrons and
protons with different temperature anisotropies is the same
in the two fluid and multimoment approach. This equation
plays a central role in understanding the expansion of a
stellar atmosphere with different temperature components as
well as in the illustration of particle simulations of rarefied
stellar atmospheres.

[39] Acknowledgments. D. Hubert is grateful for the hospitality
extended to him at the Department of Chemistry of the British Columbia

8 of 9



A12104

University. This author thanks warmly B. Shizgal for deep discussions on
fundamental issues in kinetic theory, as well as G. Atkinson for pertinent
questions.

[40] Shadia Rifai Habbal thanks Simone Landi and another referee for
their assistance in evaluating this paper.

References

Bell, A. R., R. G. Evans, and D. J. Nicholas (1981), Electron energy
transport in steep temperature gradient in laser-produced plasmas, Phys.
Rev. Lett., 46, 243.

Blelly, P. L., and R. W. Schunk (1993), A comparative study of the time-
dependent standard 8-, 13- and 16-moment transport formulations of the
polar wind, Ann. Geophys., 11, 443.

Cranmer, S. R. (1998), Non-Maxwellian redistribution in solar coronal Ly«
emission, Astrophys. J., 508, 925.

Cranmer, S. R., et al. (1999), An empirical model of a polar coronal hole at
solar minimum, Astrophys. J., 511, 481.

Demars, H. G., and R. W. Schunk (1979), Transport equations for multi-
species plasmas based on individual bi-Maxwellian distributions, J. Phys.
D Appl. Phys., 12, 1051.

Feldman, W. C. (1996), Constraint on high-speed solar wind structure near
its coronal base: A Ulysses perspective, Astron. Astrophys., 316, 355.
Habbal, S. R., R. Esser, M. Guhathakurta, and R. Fisher (1995), Flow
properties of the solar wind derived from a two-fluid model with con-
straints from light and in situ interplanetary observations, Geophys. Res.

Lett., 22, 1465.

Hu, Y. Q., R. Esser, and S. Habbal (1997), A fast solar wind model with
anisotropic proton, J. Geophys. Res., 102, 14,661.

Kasper, J. C., A. J. Lazarus, and S. P. Gary (2002), Wind/SWE observations
of firehose constraint on solar wind proton temperature anisotropy, Geo-
phys. Res. Lett., 29(17), 1839, doi:10.1029/2002GL015128.

Kohl, J. L., et al. (1998), UVCS/SOHO empirical determinations of aniso-
tropic velocity distributions in the solar corona, Astrophys. J., 501, L127.

Lamers, H. J. G. L., and J. P. Cassinelli (1999), Introduction to Stellar
Winds, Cambridge Univ. Press, New York.

Landi, S., and F. Pantellini (2003), Kinetic simulations of the solar wind
from the subsonic to the supersonic regime, Astron. Astrophys., 400, 769.

Leblanc, F., D. Hubert, and P. L. Blelly (2000), Comparison of generalized
and bi-Maxwellian multimoment multispecies approaches of the terres-
trial polar wind, J. Geophys. Res., 105, 2551.

Leer, E., and W. 1. Axford (1972), A two-fluid solar wind model with
anisotropic proton temperature, Sol. Phys., 23, 238.

HUBERT AND LEBLANC: ANISOTROPIC STELLAR WIND EXPANSION

A12104

Li, X. (1999), Proton temperature anisotropy in the fast solar wind: A 16
moment bi-Maxwellian model, J. Geophys. Res., 104, 19,773.

Li, X., S. R. Habbal, J. Kohl, and G. Noci (1998), The effect of temperature
anisotropy on observations of Doppler Dimming and pumping in the
inner corona, Astrophys. J., 501, L133.

Marsch, E., X.-Z. Ao, and C.-Y. Tu (2004), On the temperature anisotropy
of the core part of the proton velocity distribution function in the solar
wind, J. Geophys. Res., 109, A04102, doi:10.1029/2003JA010330.

Parker, E. N. (1963), Interplanetary Dynamical Processes, Wiley-Inter-
science, Hoboken, N. J.

Phillips, J. L., and J. T. Gosling (1990), Radial evolution of solar wind
thermal electron distribution functions due to expansion and collisions,
J. Geophys. Res., 95, 4217.

Pilipp, W. G., H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser,
H. Rosenbauer, and R. Schwenn (1987), Characteristics of electron
velocity distribution functions in the solar wind derived from the Helios
plasma experiment, J. Geophys. Res., 92, 1075.

Pilipp, W. G., H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser,
H. Rosenbauer, and R. Schwenn (1990), Large scale variations of
thermal electron parameters in the solar wind between 0.3 and 1 AU,
J. Geophys. Res., 95, 6305.

Salem, C., D. Hubert, C. Lacombe, S. D. Bale, A. Mangeney, D. E. Larson,
and R. P. Lin (2003), Electron properties and Coulomb collisions in the
solar wind at 1 AU: WIND observations, Astrophys. J., 585, 1147.

Schwenn, R., and E. Marsch (1990), Physics of the Inner Heliosphere I and
11, Springer, New York.

St-Maurice, J. P, and R. W. Schunk (1976), Diffusion and heat flow equa-
tions for the mid-latitude topside ionosphere, Planet. Space Sci., 25, 907.

Velli, M. (2001), Hydrodynamics of the solar wind expansion, Astrophys.
Space Sci., 277, 157.

Vocks, C., C. Salem, R. P. Lin, and G. Mann (2005), Electron halo and
strahl formation in the solar wind by resonant interaction with whistler
waves, Astrophys. J., 627, 540.

Withbroe, G. L. (1988), The temperature structure, mass, and energy flow
in the corona and inner solar wind, 4strophys. J., 325, 442.

D. Hubert, Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1.
(hubert@chem.ubc.ca)

F. Leblanc, Service d’Aéronomie du CNRS/IPSL, F-91371, Verriéres le
Buisson, France.

9 of 9



