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GEOMETRY OF HYPERBOLIC JULIA-LAVAURS SETS
MARIUSZ URBANSKI AND MICHEL ZINSMEISTER

ABSTRACT. Let J, be the Julia-Lavaurs set of a hyperbolic Lavaurs map g, and let h,
be its Hausdorff dimension. We show that the upper ball-(box) counting dimension and
the Hausdorff dimension of J, are equal, that the h,-dimensional Hausdorff measure of J,
vanishes and that the h,-dimensional packing measure of J,; is positive and finite. If g, is
derived from the parabolic quadratic polynomial f(z) = 22+ i, then the Hausdorff dimension
h, is a real-analytic function of o. As our tool we study analytic dependence of the Perron-
Frobenius operator on the symbolic space with infinite alphabet.

1. Introduction

In Section 1 we study analytic dependence of the Perron-Frobenius operator on the symbolic
space with infinite alphabet. In Section 2 we collect preliminaries on conformal iterated
function systems. The third section is devoted to introduce and explore pi-like conformal
iterated function systems. Section 4 introduces Lavaurs maps and sets and provides some
tolls needed in Section 5. In Section 5, the last section of our paper, we combine the results
from previous sections to complete the proofs of our two main results Theorem 6.1 and

Theorem 6.3.

2. Analyticity of the Perron-Frobenius operator on the symbolic space with
infinite alphabet

Let I be a countable set, either finite or infinite. Let
Ho={g:1* — ' g is bounded and continuous}

and for every f € H, let

1 fllo = sup{|f(w)] : w € I*}.
Given 3 > 0 let

Vs(f) = sup{Vsa(f)} < o0,

where
Van(f) =sup{|f(w) — f()]e PNy 7€ E*® and |w A 7| > n}.
Set
Hp = {9 € Ho: Vs(g) < oo}

The research of the first author was supported in part by the NSF Grant DMS 9801583. He whishes to
thank the Univerisy of Orleans where a part of the research was done for warm hospitality and excellent
working conditions.
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2 MARIUSZ URBANSKI AND MICHEL ZINSMEISTER

The elements of this set will be called Holder continuous functions of order 3. The set Hp
becomes a Banach space when endowed with the norm

lglls = llgllo + Va(g)-
For every ¢ € I we put
[i] ={w € I* :w; =i}.
We define the class Hj C Hg as follows

Hy={f€Hs: Zexp(sup(Re(fhi]))) < 0o}
iel
and call its elements Holder summable functions. L(#g) denotes the space of all bounded
(continuous) operators on Hg. Finally given f € Hj; we define the Perron-Frobenius operator
Ly Hy — Hy, acting on the space of bounded continuous functions Hy, as follows

Li(9)(w) =D_exp(f(iw))g(iw).
iel
Then |[Lyllo < Yierexp(sup(flp)) < co. In fact (see [MU2] and [MU3|) the operator Ly
preseserves the Banach space Hg, is bounded on it, and even more, satisfies the so called

Ionescu-Tulcea and Marinescu inequality. We start the results and proofs in this section with
the following.

Lemma 2.1. If for every w € I®, the function t — fi(w) € @ is holomorphic on a domain
G C @ and the map t — Ly, € L(Hpg) is continuous on G, then the map t — Ly, € L(Hg) is
holomorphic on G.

Proof. Let v C G be a simple closed rectifiable curve. Fix g € Hgandw € I*°. Let W C G
be a bounded open set such that v C W C W C G. Since for each e € I such that A, =1,

the function ¢ — g(ew) exp( ft(w)) € @, t € G, is holomorphic and since for every t € W

13 9(iw) exp(£i(w)) 1o < 11D g(iw) exp(fi(w)) ls

i€l i€l
< llgllgsup{||£r.llg - z € W} < o0

by compactness of W and continuity of ¢ — Ly,, we conclude that the function

tos L1(9)(@) = X gliw) exp(fiw) € €, tEW,
i€l

is holomorphic. Hence by Cauchy’s theorem [, L g(w)dt = 0. Since the function ¢ — Ly, g €
Hp is continuous, the integral [ Ly gdt exists and for every w € I°°, we have [, Ly, gdt(w) =
J,Ls9(w)dt = 0. Hence [, Lygdt = 0. Now, since t — Ly;, € L(Hp) is continuous, the
integral [, Ly dt exists and for every g € Hg, [, Ly, dt(g) = [, Lsgdt = 0. Thus [, L;dt =0
and in view of Morera’s theorem the map t — Ly, € L(Hp) is holomorphic on G. The proof
is complete. &
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In order to prove the main result of this section we need several elementary lemmas. In order
to formulate them we need to define some class of mappings. Namely, given 7 € I, we define
the mapping

1:1%° — [
by setting
i(w) = iw.
Lemma 2.2. Ifi € I and and p € Hp then the operator A; , given by the formula
Aiy(9)(@) = poi(w) - goi(w)

acts on the space Hg, is continuous and ||A;,||g < 3||poil|s.
Proof. Fix g € Hp, w € I*°. Then
[Aip(9)(w)] = |p(iw)]lg(iw)] < [|p o illsolgllec < [Ip o illgllglls- (2.1)

Fix now in addition 7 € I \ {w} such that |w A 7| > 1. Then
Aip(9)(w) = Aip(9)(T)] = |p(iw)g(iw) — p(iT)g(iT)]
= [p(iw)(g(iw) — g(i7)) + g(i7) (p(iw) — p(iT))|
< [[poilleolg(iw) = g(i7)| + [I]loc| p(iw) = p(iT)]
< llpoillsllgllse™“"" + l|gllsllp o il| e,

Hence V5(A; ,(g9)) < 2||poi||s||g||g and combining this with (2.1), we conclude that ||A4; ,(g)|| <
3||poi||||gl|s. consequently A; , acts on the space Hg, is continuous and ||4;,||z < 3|[poil|s.
The proof is complete. B

Similariliy (only easier) one proves the following.
Lemma 2.3. If p,g € Hy, then pg € Hy and |pglls < 3lpllsllg]]s-

Lemma 2.4. If f € Hp, then e/ € H® and if p: Y — Hg is a continuous mapping defined
on a compact set Y, then ¢’ 1 Y — Hg is also continuous.

Proof. By Lemma 2.6.3, || f"||s < 3"||f||3. Hence, the series e/ =322 % converges in Hg
and the first part of our lemma is proven. The second part follows now from the remark that
for every y € Y, ||p(y)|lg < sup{||p(z)||g : © € Y} < oo and the series Y% 0" converges

n!
uniformly on Y. The proof is complete. B

Lemma 2.5. For every R > 0 there exists M = Mg > 1 such that if |z — | < R, then
|8 — e < MeRe?|z — ¢

Proof. Looking at the Taylor’s series expansion of the exponential function about 0, we
see that there exists a constant M > 1 such |e¥ — 1| < M|w|, if jw| < R. Hence |e¢ — e?| =
le?||e*~¢ = 1] < eRe2 M|z — £|. The proof is complete. B
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Lemma 2.6. If f € Hg, then for every ¢ € I

1€/l < 2My5, exp(sup Re(f]2) )11l
Proof. Fix w € I such that A;,, = 1. Then |e/(®)| = eRef(w) < exp(sup Re(f|[i])),
whence
e/ |5 < exp(sup Re(f\[i])). (2.2)
Fix now in addition 7 € I* \ {w} with |7 Aw| > 1. Using the Lemma 2.5, we get
/@) — T | < Mgy ,e™ D f(iw) — f(i7)| < Mgy, exp(sup Re(flq) )] £l 5e™ ™.

Thus, Va(e/*!) < exp(sup Re (f\[i]))Hng. Combining this and (2.2) completes the proof. B

Lemma 2.7. If p: Y — Hp is a continuous mapping defined on a metric space Y, then for
every i € I, the function y — A; ) € L(Hp), y €Y, is continuous.

Proof. Fix yy € Y and take § > 0 so small that for every y € B(yo, 6), ||p(y)—p(¥0)||g < €/3.
Then for y € B(yy, ), we have in view of Lemma 2.2 the following.

1A pt) = Aipwol I8 = 1147, p(y) = p(yo)lls < 3l[p(y) = p(yo)lls < 3.
The proof is complete. B

Our main theorem in this section is the following.

Theorem 2.8. If G is an open connected subset of @, the function t — f, € Hj, t € G, s
continuous and the function t — fi(w) € @, t € G, is holomorphic for every w € I, then the
function t — Ly, € L(Hg), t € G, is holomorphic.

Proof. In view of Lemma 2.2 it suffices to demonstrate that the function t — Ly, € L(Hz),
t € G, is continuous. So, fix t; € G and § > 0 so small that B(ty,20) C G and ||fi — fi,||ec <
| ft = fiollpg < 1 for all t € B(tp,26). By Lemmas 2.7 and 2.4, for all i € I, the function
t > A; o € L(Hp), t € B(ty,0), is continuous. Since
Ly, =3 Aier,

i€l

it therefore suffices to demonstrate that the series }>;c; A; .7, converges uniformly on B(to, d).

And indeed, in view of Lemma 2.2 and Lemma 2.6, for every i € I and every ¢t € B(ty, ) we
have

| Asesi |5 < 3|| exp(fi 0 4)||s < 6M exp(sup Re(fil) ) M,
where M; = sup{||fi||s : t € B(to,d)} is finite due to continuity of the function ¢ — f; € H3

on the compact set B(ty,d), and M = My, in the sense of Lemma 2.6.5. Now, in view of our
choice of §, we can continue the above stimates as follows.

Ageslls < 6MM; exp(sup Re(fioli) + 1 — fiollo)
< 6M M, exp(sup Re(fto\[i]) + 1) < 6M M, exp(sup Re(ft0|[i])).
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Since by summability of the function f;,, the series > ;.; exp (sup Re ( ft0|[,~])) converges, the
proof is complete. H

3. Peliminaries on conformal iterated function systems

In [MU1] we have provided the framework to study infinite conformal iterated function
systems. We shall recall first this notion and some of its basic properties. Let I be a countable
index set with at least two elements and let S = {¢; : X — X : 4 € I} be a collection of
injective contractions from a compact metric space X into X for which there exists 0 < s < 1
such that p(¢;(x), ¢i(y)) < sp(x,y) for every i € I and for every pair of points z,y € X.
Thus, the system S is uniformly contractive. Any such collection S of contractions is called
an iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We can define this set as the image of the coding space under a
coding map as follows. Let I denote the space of words of length n, I°® the space of infinite
sequences of symbolsin I, I* = J,>, [" and forw € [, n > 1, let ¢, = P, 0Py, 00y, . If
w € I*UI*® and n > 1 does not exceed the length of w, we denote by w|, the word wyws . . . wy.
Since given w € I, the diameters of the compact sets ¢, (X), n > 1, converge to zero and
since they form a decreasing family, the set

Fj) ¢w|n (X)

is a singleton and therefore, denoting its only element by 7 (w), defines the coding map 7 :
I*° — X. The main object of our interest will be the limit set

o
weI® n=1
Observe that J satisfies the natural invariance equality, J = U;c; ¢:(J). Notice that if I is
finite, then J is compact and this property fails for infinite systems.

An iterated function system S is said to be conformal if X is a compact connected subset of
a Euclidean spacelR? for some d > 1 and the following conditions are satisfied.
(a): Open Set Condition (OSC) ¢;(Intxa(X)) N ¢;(Int (X)) =0 for all ¢,j € I, i # j.
(b): There exists an open connected set V such that X C V C IR? and all maps ¢;,
i € I, extend to C! conformal diffeomorphisms of V into V. (Note that for d = 1 this
just means that all the maps ¢;, ¢ € I, are C' diffeomorphisms, for d > 2 the word
conformal mean either holomorphic or antiholomoerphic and for d > 3 the maps ¢;,
i € I are Mobius transformations. The proof of the last statement can be found in [BP]
for example, where it is called Liouville’s theorem)
(c): There exist v,! > 0 such that for every z € X C IR? there exists an open cone
Con(z,7,l) C Int(X) with vertex z, central angle of Lebesgue measure v, and altitude
l.
(d): Bounded Distortion Property(BDP). There exists K > 1 such that

16,y < K4, ()|
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for every w € I* and every pair of points z,y € V, where |¢/ ()| means the norm of the
derivative.

In fact throughout the whole paper we will need one more condition which (comp. [MU1])
can be considered as a strengthening of (BDP).

(e): There are two constants L > 1 and « > 0 such that

15| — 16}()]| < Lllgillly — =]
for every ¢ € I and every pair of points z,y € V.

Remark 3.1. Note that for d = 2, decreasing V ifnecessary, conditions (e) and (d) are
satisfied due to Koebe’s distortion theorem. In case d > 3 these were proved in [Ur].

Let us now collect some geometric consequences of (BDP). We have for all words w € I* and
all convex subsets C of V
diam(¢,,(C)) < ||¢},||diam(C)
and, for an appropriate V,
diam(¢,(V)) < Dl|¢, I,

where the norm || - || is the supremum norm taken over V and D > 1 is a constant depending
only on V. Moreover,
diam(¢, (X)) > D[4 ||

and
¢ (B(z,7)) D B(du(x), K~||¢l,|Ir),
for every x € X, every 0 < r < dist(X,0V), and every word w € I*.

Frequently, refering to (BDP) we will mean either (BDP) itself or one of the above properties.
Notice that for simplicity and clarity of our exposition we assumed the open set U appearing
in the open set condition to be Int(X).

As was demonstrated in [MU1], conformal iterated function systems naturally break into
two main classes, irregular and regular. This dichotomy can be determined from either the
existence of a zero of a natural pressure function or, equivalently, the existence of a conformal
measure. The topological pressure function, P is defined as follows. For every integer n > 1

define
Ua(t) = D [I6ull"

weln
and

.1
P(t) = lim —logn(?).
For a conformal system S, we sometimes set {)s = ¥; = . The finiteness parameter, = g,
of the system S is defined by
Os = inf{t : ¥(t) < o0}.
In [MU1], it was shown that the topological pressure function P (%) is non-increasing on [0, o),
strictly decreasing, continuous and convex on [, o0) and P(d) < 0. Of course, P(0) = oo if and
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only if I is infinite. In [MU1] (see Theorem 3.15) we have proved the following characterization
of the Hausdorff dimension of the limit set .J, which will be denoted by HD(J) = hg.

Theorem 3.2. HD(J) = sup{HD(Jp) : F C I is finite} = inf{t : P(t) < 0}. If P(¢) = 0,
then t = HD(J).

In [MU4] the following formula for the upper ball (box)-counting dimension of the limie set
of a conformal TF'S was provided.

Theorem 3.3. For every x € X the following holds.
BD(J) = max{HD(J), BD({¢(x) : i € I})}.

We call the system S regular if there is ¢ such that P(¢) = 0. It follows from [MU1] that ¢ is
unique. Also, the system is regular if and only if there is a t-conformal measure. Recall that
a Borel probability measure m is said to be t-conformal provided m(J) = 1 and for every
Borel set A C X and every i € |

m(gi(4)) = [ |6}/ dm
and
m(g:(X) N 9;(X)) = 0,

for every pair 4,7 € I, i # j. We call the system S hereditarily regular if each cofinite
subsystem of S is regular. According to [MU1]| hereditarily equivalently means that P(6) =

$(6) = oo.
4. Pi-like iterated function systems

We call a conformal IFS S = {@;}ic; in the complex plane € weakly pi-like if I = IN x Z and
there exist an integer ¢ > 1, a finite set F' C I and b > 1 such that the following conditions
are satisfied.

(A):

b m + ni| < dist(dmni(X) 79, 0) < blm + nil.
for all (m,n) € N x Z \ F.

(B): |¢i(2)| < |¢i(2)|" T foralli € T\ F.

(C): diam(¢;(X)~7) <bforallie I\F.

(D): For all (m,n),(k.l) € N x Z\ F,

dist (Gmn(X) 77, 12 (X) 1) < bl(m + nd) — (k + 1i)).

Increasing b if necessary, it follows from (A) and (C) that

(A’): Dist(¢,nj(X)79,0) < blm + ni.

A weakly pi-like IFS is called pi-like if in addition there exists 7 : €'\ (—00,0] — €, a
holomorphic univalent branch of z=1/¢ such that

T((¢z’(X))_q) = ¢i(X)
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forallie I\ F.

We shall prove the following.

Theorem 4.1. If S = {¢;}icr is a weak pi-like system, then s = q%r—ql, S is hereditarily
reqular and

(a): BD(J) = HD(J).
(b): HA(J) = 0.

If S is pi-like, then in addition
(d): 0 < P*(J) < o0.

Proof. Let us first determine the # number of the system S. Using (B), (A) and (A’) we
get for every ¢t > 0 and every z € X

L —patl
nM) = > gl X e = 3 fm T

(mn)eEINX Z\F (m,n)€EIN X Z\F (m,n)€IN X Z\F
and this series converges if and only if t% > 2 or equivalently ¢ > qz+_q1' Hence 65 = q2+—q1 and
since 7 (q2+_q1) = o0, the system S is hereditarily regular.

In order to prove (a) fix z € X, r > 0 and consider n > 0 such that 2"r < Dist(0, X ).
Rescaling the system appropriately we may assume without loosing generality that Dist(0, X)?
1. Let

Ia(r)y={iel:2""r <|¢i(2)?] < 2"r}.

Notice that if i,j € I,,(r) and |¢;(x)™? — ¢i(z)~?Y < r(2"r)~2, then |¢;(z)? — ¢;(x)?] <
|p;i(x)? - |¢i ()| < r(2"r) 2 < r which means that ¢;(z)? € B(¢;(z)?,r). Hence denoting by
Nyn(r) the minimal number of balls needed to cover the set Y, ,(r) = {¢;()?: j € I, n(r)},
we get

(2717.)—2 _ 2n
oy =G (4.1)

for some universal constant C; > 0. Also, using (A) and (A’) we get
Non(r) < #{i(w) " s i € Ln(r)} < #{(k, 1) : 077 (2"r) " < [k +1i[B(2" 'r) '} < Co(2"r)

for some universal constant C, > 0. We will use this estimate and (4.1) in the following form.

220 if 2%y <1
N cc < 4.2
an(r) < Cs {2—2”r—2 if 22°r >1 and 2"r <1, 2

Nq,n (’f‘) S 01

where C3 = max{C;,Cy}. Given 0 < r; < roG let A(ry,m3) = {z € C:r; < |z| <ry}. Given
aset A C @by A% we denote the full inverse-image of A under the map z — 29. Fix j > 1.

. N . .
Since A((?J*IT)‘I, (2Jr)q) fn_ A(277'r, 277), since BY/7 is contained in a union of at most g
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11 .
balls of radii 27(¢~1ra. ((27 r)a ) = %2(‘1*1)7‘ if B is a ball of radius 2/¢“~Yr4 contained
in A((Qf_lr)q, (297')‘1), and since =27 = 27 we obtain

2i(a—1)pq

201
Nj< > < gN,; (270 pa),
qr

where Nj(s) is the minimal number of balls with radii s needed to cover the set {¢;(x) :
2k=1s < |@s(z)| < 2*s}. Therefore, applying (4.2), denoting by N(s) the minimal number of
balls with radii s needed to cover the set {¢;(z) : i € I'} and [; = min{j : 292901y > 1}
ly = min{j : 2720@=Y7? > 1} we obtain

29-1 b2 94-1
N(—r)ﬁl—l—ZNj (—r><1+qz (29(@ 1)y
q j=1 q j=1

l1 ) o )
<1+4¢> 2%+ 3 27%r72 < const (2% + r7%27%1)
j=1 j=li—1

29 9 9 2(1—1 7+1
< const(r~ @+ +r~r?) < const r )
q

Hence BD({¢;(z) : i € I}) < 2 . Applying therefore Theorem tbd along with the fact that
HD(J) > 6 and the proven above equality 0 = q+1’ we conclude that BD(J) = HD(J).
We shall now prove part (b) saying that H?(.J) = 0. So, fix r > 0 and consider the set

I(r)={(m,n) € N x Z\ F : b~ \m + ni| > r~9}.

It follows from (A) that if (m,n) € I(r), then Dist(¢p,j(X),0) < bY4|m + ni|~*/7 < r which
means that ¢, ,j(X) C B(0,7). Hence, using (B) and (A), we get

m(B0,r) > D> m(¢mai(X) = Y K g .l"

(m;n)el(r) (m,n)€l(r)
=Y dist(qu nJ (X )’O)h(q+1) < 3 |m+ m-|—hﬂ
(m,n)el(r (m,n)el(r) (43)

2\ —h%tl
Mo
z2+y2>(br- ‘1)2
2m g+1 g+1
= / / u " P dudf < (rm9)* T = phlar) =2
br—q

Hence

lim 7m(B(hO, ) > lim M) =2 = o
r—0 r r—0

since h < 2. The proof of part (b) is finished.
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The fact that P"(J) > 0 follows immediately from Lemma 4.3 in [MU1]. Assuming that
the system S is pi-like we shall now prove that P"(J) < co. Notice that if 0 < r < |z|, then

(B(x,r»l:B( L )

z2 =72 2’ |z]2 =2

If in addition

1
< —|zl. 4.4
r< 5ol (1.4)
then
|w|22—irz _2r 1

E P

|z|2—12 =z

and therefore the map z — 27 is univalent on the ball

B |z |? 1 r
|z|? — 72 iz lz|2 —7r2 )"

Thus the map z — 2z~ 7 is univalent on the ball B(z,r) and applying Koebe’s distortion
theorem we get

B(z,7/2)) > B(z %, (2K) ‘q|z| @Vr), (4.5)

where K is the Koebe constant corresponding to the ration of radii equal to 1/2. Now note
that due to (B) and (A) there exists a constant C, > 0 such that for all ; € I \ F, and all

T € ¢Z(X),

diam(¢;(X)) > Cylz|?H. (4.6)

Fixi e I\F, z € ¢;(X), and 1 > r > Csdiam(¢;(X)) for some large positive constant Cj
which will be determined later in the course of the proof.
Assume first that (4.4) is satisfied. Then

= q(2K) 'r|z| @t > ¢(2K) " Csdiam(¢; (X)) Cadiam(¢;(X)) ' = q(2K) ' C5C4.
Therefore, if C5 > 0 is sufficiently large, then it follows from (D), (C) and (4.5) that

#Q(r) < B(rla| V)2 (4.7)

for some universal constant 3 > 0, where
Qr)={jeI\F:¢;(X)"CB(z,r/2)"}.
Applying (4.4) we deduce that for every j € Q(r)

. 1 1
dist(¢;(X),0) > |z| — 7 > (1 — %) |z| > §|m\ (4.8)
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Since our system is pi-like and since T'(B(x,r/2)"?) = B(z,7/2), we deduce that Q(r) =
{j e I\F : ¢;(X) C B(z,r/2)}. Using therefore (B), (4.8), (4.7), (4.6) and since r >
Csdiam(¢;(X)), we get

m(B(z,r) = 3 m(¢;(X) = > KMgjll" = 3 dist(g;(X), 0"
jeQ(r) JeQ(r) J€Q(r)
-y ||PaHD) | O+ (| | =0+ D) =2 o 2| (e 1)(A=2)
JEQ(r) (4.9)

- r2diam(¢i(X))(h*2) - r2ph=2) — ph

Suppose now that z € ¢;(X) and 1 > r > 4¢Csdiam(¢;(X)). If r < im, then (4.9) remains
true and we get

m(B(z,r)) = r" (4.10)

If 2. 17| < r < 2[zf, then 1 > & > Csdiam(¢;(X)) and . < %q\x| So, (4.9) is true with r
replaced by + and we get

m(B(z,7)) > m <B (m Z-q)) - (%q)h _— (4.11)

Flnally, if 7 > 2|z|, then B(z,r) D B(0,7/2) and using (4.3), we get m(B(z,r)) = rh+tah=2) >
k. Combining this, (4.10), (4.11) and applying Lemma 4.10 from [MU1] complete the proof.
|

5. Preliminaries on Julia-Lavaurs sets

We start this section by recalling some facts about Leau-Fatou flowers. We consider a holo-
morphic function of the form f(z) = z4+az9™ +0(2972), a # 0, i.e. a germ of an holomorphic
function tangent to the identity at 0. Performing a preliminary linear conjugation one may
as well assume that a = 1, so that we can write

f(2) = 2(1+ 29 + O (7).
The dynamics of f near 0 is described by the Leau-Fatou flower, whose construction we briefly
recall. We have ¢ repelling half-lines given by
2k
27> 0 Arg(z) = —7T, k=0,..g—1
q
and ¢ attracting ones given by

m  2km
21 <0< Arg(z )——+— k=0,..g—1.
q
There are g sectors S;-t enumerated in the trlgonometrlc order, S, being the sector between IR

and the next repelling half-line and S;” being the sector between two consecutive attracting
half-lines whose bissector is IR,. Each such sector has a bisector which is a repelling or
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attracting half-line; in the first case the sector is called repelling and labeled with 4+ and in
the second it is called attracting and labeled with -.

1
Z=71(2)=——.
gz
It transforms each attracting sector bijectively into €'\ IR_ and S} into €'\ IR,. Moreover,
in this variable (if z and f(z) belong to the same sector) the mapping f takes on the form

F(Z)=Z+1+0(Z7'9)
which is close to the translation by 1 denoted by 7} for |Z| appropriately large
Proposition 5.1. There is a ”parabola-shaped” curve included in €'\ IR_ whose exterior is
forward invariant under F. More precisely one can take as such a domain the exterior of the

curve y = +vVR2 — 122, x € [-R/V2,R], y = £(R/V2 + C|z + R/V2|*"Y1 for R,C large

enough.

For the proof one may consult the Exposé 9, paragraphe 3 in [DH]. This region corresponds in
the z-variable to a "petal” P;” C S; . and we denote by P;” the petal in the Z-variable. One
can of course build similar petals for f~!; this gives backwards invariant petals in repelling
sectors.

We now introduce Fatou coordinates: we have so far a coordinate Z = 7(z) (we call it
approximate Fatou coordinate) conjugating f into F which is ”almost” a translation; we now
construct a change of variable transforming f exactly in 7.

To do this we consider in a sector (attracting or repelling) S a subdomain U as follows. S
and U have the same bissector and the angle made by U is 3/4 of the S-angle. The small real
€ is chosen so that U C P (the petal) and the constant 3/4 is chosen so that U N U; # 0.

Theorem 5.2. There exists (pji : U]-jE — @ holomorphic and injective such that, whenever z
and f(z) belong to U7,

05 (f(2)) = Tu(#5 (2))
and these mappings are unique up to additive constants. Similarly

7o F =T, 0®7,
£ _ 1. 7%
where &7 = p; o1 " Ui — .
For the proof, see [Zi]. From now on we focus on the mappings
h(z) = ¥z + 22

The new feature here is that h is entire, inducing a global dynamical system. In particular
each attracting petal of the flower is contained in a component of the Fatou set that we will
call a Fatou petal.

Moreover the mapping h induces a permutation between the Fatou petals and classical
results of Fatou and Julia imply that each orbit of Fatou petals under A must contain a
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critical point (of h). Since there is only one we must have v = 1 and f = h? has ¢ petals.
Moreover f is a branched covering of degree two of each petal onto itself.

Proposition 5.3. FEach attracting Fatou coordinate ¢; has an extension to the corresponding
Fatou petal as a holomorphic mapping satisfying @jo f =Ty o ¢; .

Proof. Let P; be the Fatou petal containing U; . If z € P, then there exists n > 1 such
that f"(z) € U; and we simply define

¢j (2) = T_n o pj of"(2)
which does not depend on n.

Remark 5.4. The extended ¢; is holomorphic but not bijective: any precritical point for f
is a critical point of ;.

The situation for repelling Fatou petals is different. We set v; = go;“’l which is defined in
some left half-plane {ReZ < —C'}.

Proposition 5.5. The function 1; extends holomorphically to the entire plane (.
Proof. For Z € @ there exists n € IN such that Re(Z — n) < —C and we may define
$i(2) = [" o o T-n(Z)

which is again independent of n. B

The critical points of v; are the images under gp}L We recall that f induces in each (Fatou)
petal a self-covering of degree 2. Moreover in each of these there exists a non-tangential access
to the parabolic point. It follows that if we conjugate this mapping with the Riemann map
of the petal onto the unit disk sending the critical point to 0 and the parabolic fixed point to
1 (this makes sense since the parabolic point is accessible) we obtain a Blaschke product of

the form
o ZTa z2+b

1+az1l+bz
and moreover the local dynamics of f at the parabolic point shows that the point 1 must be
a parabolic point for b.

Theorem 5.6. b(z) = 3;;;?.

b(z) =e

The proof is given in [Zi] As a corollary all the actions of all f’s (meaning whatever p/q is)
are conjugated, meaning in particular that the dynamics of f in each petal is conjugated to
the dynamics of z — 2% + 1/4 in its filled-in Julia set.

We now pass to deal with Lavaurs maps we continue the study of the quadratic maps h defined

Definition 5.7. If o € @, then the corresponding Lavaurs maps are defined in the petal P;
as
9 =VinoT, 005, g =9;0T,00;;
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The ”raison d’etre” of this definition is the following theorem, for

Theorem 5.8. If [Arga| < T (resp |Arga — 7| < %) and o — 0 in such a way that there
exists No € IN (resp N, € —IN) with

1
N,—— —ocel
aq
then
hNe? —s gt (resp — g;)

uniformly on compact subsets of Pj, where ho(z) = e2imPte)/ay 4 42

In order to understand this situation more geometrically, let us consider quadratic polyno-
mials P.(z) = 22 + ¢, ¢ is a parabolic parameter in the main cardioid of the Mandelbrot set,
ie ¢ = %™ /2 — %™ /4 with § = p/q so that P, is affinely conjugated to z — €™z + 22. If
we take ¢ near ¢ then z — 22 + ¢ is affinely conjugated to z — (14 +/1 — 4¢')z + 22 where
the square root is the one that gives 1 + /1 — 4c = e*. Assume now that

¢ = c+ eime?™ (1 — ).

An easy computation shows that

pta
7, a=¢€q+o(e).

d = 62'571'9’ — eQiW
Let us denote by t the unit tangent at the cardioid at ¢. Then ¢’ = ¢+ 2em sin(276). Putting
together all the results, we get [Zi] the

Theorem 5.9. If P.(z) = 2> + ¢+ €t and if ¢ — 0 in such a way that there exists N, € IN

such that
27sin(272)
—fq + N, — o0 €,
q’e
then PINe converges on every compact subset of every petal of P. to the Lavaurs map g,.

The introduction of the Lavaurs maps allows us to define a new dynamics, the dynamics of
(h,g,): we say that a point z escapes by (h, g,) if there exists k£ > 0 such that ¢’ (z) is well
defined for 0 < | < k but ¢g*(z) ¢ K(h). The filled-in Julia-Lavaurs set K (h,g,) is then
defined as the set of points which do not escape by (h, g,). It is a non-empty compact set
whose boundary is by definition the Julia-Lavaurs set J(h, g,). Douady has shown in [Do]
that K(h,g,) = J(h,g,) if the critical point w escapes by (h, g,). We focus on the set ¥ of
phases o such that w escapes at once, i.e. such that g,(w) ¢ K(h, g,). We call such a phase
and the corresponding Lavaurs map hyperbolic. This set is the union of two strips (depending
whether we use ¢gF) each of them containing the real axis (this corresponds to € € IR in the
last theorem). Douady has shown in [Do] that if 0 € ¥ then with the hypothesis of the last
theorem, J(P,.) converges in the Hausdorff topology towards J(h, g,). If 0 € ¥ then J(h, g,)
consists of the union of J(h) and "butterflies” attached at each preparabolic point; they all
reproduce the butterflies attached at the parabolic point, 2¢ of them, 2 per Fatou petal.
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As in [DSZ], one can define a Markov partition describing the dynamics of (h,g,). First
of all since the dynamics of f = h? in each petal is the same as the dynamics of 2? + 1/4
in the ”cauliflower” (its filled-in Julia set), we have in each petal a decomposition in pieces
Ay, analogous to [DSZ]; moreover the different ”layers” of the butterflies attached to the
parabolic point are sent by some iterates of g, to the boundary of some petal; this allows
us to transfer the decomposition in pieces (Ao ,) inside these butterflies. The proof that this
decomposition gives a Markov partition for the dynamics of (h, g,) follows the same lines as
[DSZ]. The family of its (holomorphic) branches forms a conformal iterated function system
refered to as the DSZ iterated function system.

Theorem 5.10. The DSZ iterated function system associated with each hyperbolic Lavaurs
map is a pi-like conformal iterated function systems.

Proof. **

Let us now restrict ourselves to the Lavaurs maps generated by the parabolic map f(z) =
2>+ 1. Let
W ={o€l:g,(0) ¢ K/}
Let
p:I® = I%
be the shift map, i.e.
p{wntnzy) = {wn}nle-
For all 0,00 € W and all w € I let

(o) = (92,)' (7o (p(w)))

(62)" (7o (p(w)))

Proposition 5.11. For every oy € W there exists a radius r > 0 such that B(og,2r) C W
and for every w € I

My = sup  sup {|¢;,(0)[} < oo,
w€I® geB(ap,2r)

In particular each function 1, : B(og,2r) — € is a Bloch function and its Bloch’s norm
||%ulls < M.

6. Measures and dimension for Julia-Lavaurs sets

As an immediate consequence of Theorem 5.10 and Therem 4.1 we get the following first main
theorem of this section.

Theorem 6.1. If g, is a hyperbolic Lavaurs map corresponding to the polynomial of the form
;D
h(z) = €*™az + 22, then

BD(J,) = HD(J,), H*(J,) =0, 0 < P*(J) < cc.
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Let us now restrict ourselves to the Lavaurs maps generated by the parabolic map f(z) =
22 + i. We will need the following

Lemma 6.2. For every w € I the function o — 7,(w), o € W, is holomorphic.

Proof. Fix x € J(f). Since each function (o, 2) — ¢J(2), ¢ € I, is holomorphic in both
variables o and z, the function

0 (i (0) == @7, 0 ¢, 0...0 ¢ (x)
is holomorphic for every integer n > 1. Since the functions (¢ are uniformly bounded, one
can choose from them a subsequence uniformly convergent on compact subsets of W. Since
for every o the sequence (¥(o) converges to m,(w), we conclude that the function o — 7, (w)
is holomorphic. ®

The second main theorem of this section is the following.
Theorem 6.3. The function o — HD(J,), o € W, is real-analytic.

Proof. Consider the function
o (o) I® =T, oW,
given by the formula
((o)(w) =log|(¢7, ) (s (p(w)))]
Fix now w € I*®, og € W and similarly as in the previous section, consider the function
(o) = (¢5,) (Mo (p(w)))
(622)" (70 (p(w)))

In view of Proposition 5.11 there exists a radius r > 0 such that B(oy,2r) C W,

My = sup sup {[¢h,(0)[} < oo,
w€I® geB(op,2r)

the function v, : B(0g,2r) — € is a Bloch function and its Bloch’s norm ||¢,||sg < M;.
Combining formula (4) and Proposition 4.1 on p.73 in [Po| we therefore conclude that there
exists a universal constant M, > 0 such that

| log ¢hu,(0))| < M;

for all 0 € B(oy,r), where the branch log,(0)) is determined by the condition log ¥, (0y)) =
0. In view of Lemma refljlhopr the function log, (o)) is holomorphic and let

o0

log ¥, (0)) = 3 an(w)(0 = 00)"

n=0
be its Taylor series expansion on B(og, 2r). By Cauchy’s inequalities

an(w)] < 22 (6.1)

;rTL
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for all n > 0. For every z = = + iy € B(op,r) C W C €, we have

Relog s, =T ( 3° au(u)((0 ~ Recu) + (s~ Tmeo)i)')
_ 5::0 Re (a,,+q (p : q) z'q) (2 — Reao)?(y — Tmap)i)?

= Z ¢p.q(x — Reoy)?(y — Imoy)i)?,

where, due to (6.1), |cpq < [ap442PH < Mor=(P+02P+4. Hence Relog1), extends by the same
power series expansion Y- ¢, ,(x — Reoy)?(y — Imoy)i)? to a complex-valued analytic function,
denoted by the same symbol Relog1),, on the polydisk D¢ (0,7/4), and in addition

Relogv,| <4My on Dg2(0,7/4).
So,
((0)(w) = Relog 1, (0) +log |(63:)' (s, (p(w)))|
extends ((o)(w) on the polydisk IDgz(0,7/4) and for every ¢ € € we have
|exp(#((0)(w))| = exp(Re(tRelog 11,(0) + tog (422 (7o (0())) )
= exp(Re(tRelog 1, (0))) - [(#22)' (s, (p(w))) ™"
< exp([t{Relog v, (0)) (632 (o (p(w))) [
< exp(4Mat])] (672) (oo (p(w)))[*"-
Therefore

> exp(tf(a))H < o0 (6.2)
icl
for every o € IDg2(0,7/4). Since all the maps ¢?7, o0 € Bg(op, ) are uniform contractions with
some uniform contraction factor 0 < s < 1, we get

1Ty (w) — 7, (7)| < diam(X)sl"!,

and using then Koebe’s distortion theorem for the modulus and the argument we conclude
that if [w A 7| > 1, then

|log 1, (o)) — [log¥-(0))| = [log ¢7,)' (74 (p(w))) — log &7, )' (4 (p(T)))]
< Kilmo (p(w)) = |mo(p(7))| < Kis®MT7

for all 0 € BE(0y,r) and some universal constant K;. Hence, using Cauchy’s inequalities
again, we conclude that |a,(w) — a,(7)| < r~"EL5“ ! for every n > 0. Thus

K
|Cpg(W) = Cpg(T)| < 27797 (p+q) 21 JwAT|
s
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and therefore
|Relog,(0) — Relogv,(0)] <
for all 0 € D¢z (09, 7/4). Consequently

E(0)(w) - {(0)(r)| = [Relog s (0) — Relog s (o) < “1 gl

S

for all 0 € D¢ (0g,r/4). Combining this and (6.2) we conclude that t((o) € H;18* for
all (0,t) € Dgz(00,7/4) x {t € T: Ret > 20} Thus the operator L.¢(r is well-defined

and acts on M, for these (0,t). Since for every w € I, the function (o,t) — tC(o),
((f’ t) € D¢ (0g,r/4) x {t € T : Ret > (ﬁL—ql} is continuous and since the function (o,t) —
t¢(0)(w), (0,t) € Dg(0g,7/4) x {t € € : Ret > qi—ql} is analytic for every w € I°°, in view
of Theorem 2.8, the function (0,t) — L), (0,t) € De2(00,7/4) X {t € C: Ret > qi—ql
is also analytic. Since, in view of Theorem 2.3.3 and Theorem 2.4.6 from [MU2| for every
(o,t) € W x (qi—ql,oo) has a simple isolated eigenvalue A(o,t), applying the perturbation
theory for linear operators (see [Ka|) , we conclude that there exists an open set B(op, 7/4) X

(q%fl, o) C U,y C Dg2(0g,7/4) x @ and an analytic function X : U — (€ giving simple isolated
eigenvalues for operators Lg, . Since by Theorem 2.3.3 from [MU2], for every (o,t) €

W x (qifl,oo), P(o,t) :== P(((o, )) =Mo" we deduce that the function (0,t) — P(o,t)

defined on the set B(og,4/4) x (2% 5, 00), is real-analytic. By Theorem 3.2 and regularity of
our system Sy (see Theorem 5.10 and Theorem 4.1) for every o € W there exists exactly one
hs € (q+1, oo) such that P(o,h,) = 0 and h, = HD(J,). Since by Proposition 2.6.13 from
[MU2] %(0,t) = [ ((0)dfisy < 0, where fi,; is the Gibbs state (see [MU2]) for the potential
t¢(o), it therefore follows from the implicit function theorem that o — h,, o € B(0y,4/4)
is real-analytic. Since og was an arbitrary point of W, we finally conclude that the function
o — h,, 0 €, is real-analytic. &

4K, S\w/\T\
S
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