Brownian flights over a fractal nest and first-passage statistics on irregular surfaces

Abstract : The diffusive motion of Brownian particles near irregular interfaces plays a crucial role in various transport phenomena in nature and industry. Most diffusion-reaction processes in confining inter- facial systems involve a sequence of Brownian flights in the bulk, connecting successive hits with the interface (Brownian bridges). The statistics of times and displacements separating two interface encounters are then determinant in the overall transport. We present a theoretical and numerical analysis of this complex first passage problem. We show that the bridge statistics is directly related to the Minkowski content of the surface within the usual diffusion length. In the case of self-similar or self-affine interfaces, we show and we check numerically that the bridge statistics follow power laws with exponents depending directly on the surface fractal dimension.
Type de document :
Article dans une revue
Physical Review Letters, American Physical Society, 2006, vol 96, pp.180601
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00079193
Contributeur : Direction Du Laboratoire Mapmo <>
Soumis le : lundi 12 juin 2006 - 10:26:34
Dernière modification le : jeudi 7 février 2019 - 15:21:01
Document(s) archivé(s) le : lundi 5 avril 2010 - 22:36:28

Fichier

Identifiants

  • HAL Id : hal-00079193, version 1

Citation

P. Levitz, D.S. Grebenkov, Michel Zinsmeister, K.M. Kolwankar, Bernard Sapoval. Brownian flights over a fractal nest and first-passage statistics on irregular surfaces. Physical Review Letters, American Physical Society, 2006, vol 96, pp.180601. 〈hal-00079193〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

105