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Abstract

We provide an integral formula for the Poisson kernel of half-

spaces for Brownian motion in real hyperbolic space H
n. This en-

ables us to find asymptotic properties of the kernel. We also show

convergence to the Poisson kernel of the whole space H
n. For n = 3,

4 or 6 we compute explicit formulas for the Poisson kernel itself.
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1 Introduction

In recent years there is a growing interest in research of Brownian motion on
hyperbolic spaces (cf. [Y3], [BJ]). More advanced theory requires a detailed
knowledge of some basic potential-theoretic objects. The most fundamental
turns out to be the Poisson kernel for a domain. If we know the Poisson
kernel then we are able, for example, to solve the classical Dirichlet boundary
problem for a domain. Another basic object in potential theory is the Green
function of a domain. The ”sweeping out” method allows to recover the
Green function from the Poisson kernel. The Green function of a domain is
a very useful tool in solving various important problems in potential theory.
In particular, it enables to determine conditions under which a reasonable
potential theory of the Schrödinger operator is feasible for a given domain
and a particular potential ([ChZ]). In the classical situation of the Laplacian
in Rn, the exact formula for the Poisson kernel (or Green function) always
simplifies the arguments as well as indicates the future areas of investigation.
We believe that the same situation will occur in the case of hyperbolic spaces.

The aim of this paper is to give a representation formula for the Poisson
kernel of a half–space in the real hyperbolic space Hn, i.e. for the probability
distribution of the hyperbolic Brownian motion stopped when leaving a half–
space, and to use it in order to prove exact asymptotics of the kernel. Note
that the boundary of the considered half–space is a horocycle in Hn.

The Poisson kernel of a half–space is closely related to stable laws and
functionals of the Brownian motion ([BCF], [BCFY], [Y1], [Y2]). Another
motivation comes from the risk theory in financial mathematics ([D]). Our
kernel, up to a passage from the dimension 2 to the dimension n, was identi-
fied in terms of its Fourier transform in [BCF]. It turns out, however, that it
is not sufficient for most applications. In particular, a formula for the kernel
itself or its asymptotical behaviour were not identified (cf. [BCFY], p. 589).

From the technical point of view, the main difficulty is that the inverse
Fourier transform (or the Hankel transform) leads to an integral containing
Bessel functions which has oscillatory character, see (5) below. Moreover,
for integrals like (5), the Lebesgue bounded convergence theorem is often
not applicable (for example when |y| → ∞) and we are left with a nontrivial
problem of obtaining the asymptotics of the kernel.

The paper is organized as follows. In Section 2, after some preliminaries,
we provide, for convenience of the reader, proof of the formula for the Fourier
transform of the Poisson kernel of a half–space in Hn. We also state a first
integral formula (5) for the Poisson kernel of a half–space, based on the
inverse Fourier transform.

In Section 3, in Theorem 3.2 we obtain a second integral formula for the
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Poisson kernel of a half–space. This is our main representation formula. It
is much more suitable for further applications than (5). Section 3 ends with
explicit integral formulas for the Poisson kernel of a half–space, that arise
in lower dimensions.

In Section 4 we study the above mentioned asymptotics of the Poisson
kernel of a half–space in Hn. We use our main representation formula from
Theorem 3.2 as well as the semigroup and homogeneity properties of the
Poisson kernel.

2 Preliminaries

Consider the half-space model of the n-dimensional real hyperbolic space

H
n = {(x1, . . . , xn−1, xn) ∈ R

n−1 × R : xn > 0}.

The Riemannian metric, the volume element and the Laplace-Beltrami op-
erator are given by

ds2 =
dx2

1 + ... + dx2
n−1 + dx2

n

x2
n

,

dV =
dx1...dxn−1dxn

xn
n

,

∆ = x2
n(

n
∑

i=1

∂2
i ) − (n − 2)xn∂n,

respectively (here ∂i = ∂
∂xi

, i = 1, ..., n).
Let (Bi(t))i=1...n be a family of independent classical Brownian motions

on R with the generator d2

dx2 (and not 1
2

d2

dx2 ) i.e. the variance E0B2
i (t) = 2t.

Then the Brownian motion on Hn, X = (Xi)i=1...n, can be described by the
following system of stochastic differential equations















dX1(t) = Xn(t)dB1(t)
dX2(t) = Xn(t)dB2(t)

. . .
dXn(t) = Xn(t)dBn(t) − (n − 2)Xn(t)dt.

By the Itô formula one verifies that the generator of the solution of this
system is ∆. Moreover, it can be easily verified that the solution is given by















X1(t) = X1(0) +
∫ t

0
Xn(0) exp(Bn(s) − (n − 1)s)dB1(s)

X2(t) = X2(0) +
∫ t

0
Xn(0) exp(Bn(s) − (n − 1)s)dB2(s)

. . .
Xn(t) = Xn(0) exp(Bn(t) − (n − 1)t)
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Convention: by c (or C) we always denote a general constant that de-
pends on n and other constant parameters only. The value of these constants
may change in the same string of estimates.

Below we identify the Poisson kernel (the function y → Pa(x, y)) in
terms of its Fourier transform. Theorems 2.1 and 2.2 cover facts that are
essentially known. Similar results can be found in both [BCF] and [BCFY],
in a slightly different setting of more general generators on the space H2.
In order to make our paper self-contained and for the convenience of the
reader, we include these facts here, in the present setting of Hn.

Define the projection ˜ : Rn ∋ u = (u1, ..., un) → ũ = (u1, ..., un−1) ∈
Rn−1. In particular, X̃(t) = (X1(t), ..., Xn−1(t)).

Consider a half-space D = {x ∈ Hn : xn > a} for some fixed a > 0.
Define

τ = inf{t > 0 : X(t) /∈ D} = inf{t > 0 : Xn(t) = a}.
By Pa(x, dy), x = (x1, x2, ..., xn) ∈ D, y = (y1, y2, ..., yn−1, a) ∈ ∂D we
denote the Poisson kernel of D, ie. the distribution of X(τ) starting at x
(since Xn(τ) = a it is enough to consider the distribution of X̃(τ)).

Theorem 2.1.

F [Pa(x, ·)](u) = Exei〈u, X̃τ 〉

= ei〈x̃, u〉
(xn

a

)
n−1

2
Kn−1

2
(|u|xn)

Kn−1
2

(|u|a)
, x ∈ D, u ∈ R

n−1

where Kν, ν > 0, is the modified Bessel function of the third kind, called
also Macdonald function.

Proof. Since Bi(t) are independent and τ depends only on Xn (i.e. Bn) we
obtain for x = (x̃, xn) = (x1, x2, . . . , xn)

Ex exp(i〈u, X̃(τ)〉) = Exn

n−1
∏

j=1

Exj exp(iujXj(τ)). (1)

We adopt here a useful notation that ExjY for the expectation with re-
spect to j’th component Bj of our basic (n − 1)-dimensional Brownian
motion B = (B1, . . . , Bn), starting from xn. We compute the integral
∫ τ

0
Xn(s) dBj(s) by approximation of 1{s<τ}(s)Xn(s) by simple processes

of the form
∑

k fk1[tk,tk+1), where fk ∈ F(Bn(tk)). Using independence of
the increments of Bj and the fact that the function under the integral below
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is independent of Bj , we get

Exj exp(iujXj(τ)) = Exj exp

(

iuj(Xj(0) +

∫ τ

0

Xn dBj)

)

= eiujxj exp

(

−u2
j

∫ τ

0

X2
n(s) ds

)

.

This and (1) imply that

Ex exp(i〈u, X̃(τ)〉) = ei〈x̃, u〉Exne−|u|2
∫ τ
0

X2
n(s)ds = ei〈x̃, u〉Exneq(τ),

where eq(τ) = exp(
∫ τ

0
q(Xn(s)))ds with q(y) = −(|u|y)2. Observe that the

function ϕ(y) = Eyeq(τ) is by definition the gauge for the Schrödinger oper-
ator L + q based on the generator L of Xn and the potential q. By general
theory (see e.g. [ChZ], Prop. 4.13, p. 119) it is a solution for the Schrödinger
equation. Since dXn(t) = Xn(t)dBn(t) − (n − 2)Xn(t)dt, by a standard ar-
gument based on the Itô formula, we get the generator of Xn

L = x2
n

d2

dx2
n

− (n − 2)xn
d

dxn
.

Consequently, ϕ satisfies the following equation

y2ϕ′′(y) − (n − 2)yϕ′(y) − |u|2y2ϕ(y) = 0 (2)

on the positive half-line. Let ϕ(y) = y
n−1

2 g(y). Then ϕ′(y) = n−1
2

y
n−3

2 g(y) +

y
n−1

2 g′(y), ϕ′′(y) = (n−1)(n−3)
4

y
n−5

2 g(y) + (n − 1)y
n−3

2 g′(y) + y
n−1

2 g′′(y) and
consequently (2) reads as

y2g′′(y) + yg′(y) −
(

|u|2y2 + ((n − 1)/2)2) g(y) = 0.

Substituting |u|y = z and g(y) = h(z) we get

z2h′′(z) + zh′(z) −
(

z2 + ((n − 1)/2)2)h(z) = 0. (3)

This is the modified Bessel equation of order (n−1)/2. Taking into account
the form of the general solution of (3) we infer that

ϕ(y) = y
n−1

2 (c1In−1
2

(|u|y) + c2Kn−1
2

(|u|y)),

for an appropriate choice of c1 and c2, where In−1
2

(·) and Kn−1
2

(·) are the

modified Bessel function of the first and third kind, respectively. Observe
that by definition ϕ(y) is bounded in y and ϕ(a) = 1. Since In−1

2
(|u|y) is
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unbounded and Kn−1
2

(|u|y) is bounded when y → ∞, it follows that c1 = 0.

From the other condition we get the normalizing constant

c2 =
1

a
n−1

2 Kn−1
2

(|u|a)
.

This completes the proof.

Remark. As Kn−1
2

(x) ∼ √
π(2x)−1/2e−x when x → ∞, the Fourier

transform of our kernel is in L1. Thus there exists the corresponding density
which we denote by Pa(x, y).

From Theorem 2.1 it follows that nonzero x̃ gives rise just to a translation
of Pa(x, y) as a function of y. Therefore, in what follows we may and do
assume x̃ = 0. Consequently, we may simplify the notation by identifying
Pa(x, y) = Pa((0, ..., 0, x), y), x > 0.

For z > 0 we define ([GR], 8.432.8)

mn
2
−1(z) =

∫ ∞

0

e−uu
n
2
−1(u + 2z)

n
2
−1du = dne

zz
n−1

2 Kn−1
2

(z), (4)

where dn = π− 1
2 2

n+1
2 Γ

(

n
2

)

. Observe that for n ∈ 2N the function mn
2
−1 is

just a polynomial of the degree n
2
− 1. In this case we regard mn

2
−1(z) as

defined for all complex numbers. By [GR] (8.468, p. 915), for n ∈ 2N we
get

mn
2
−1(z) = dn

√

π

2

n
2
−1
∑

j=0

(n − 2 − j)!2j+ n
2
+1

j!(n
2
− 1 − j)!

zj .

In particular, m0(z) = 1, m1(z) = 2(1 + z) and m2(z) = 8(z2 + 3z + 3).

Theorem 2.2 (Poisson kernel formula). Let a > 0, x > a and y ∈ R
n−1.

If |y| > 0 then

Pa(x, y) =
( x

2πa

)
n−1

2 |y|−n−3
2

∫ ∞

0

Kn−1
2

(rx)

Kn−1
2

(ra)
Jn−3

2
(r|y|)r n−1

2 dr, (5)

and when |y| = 0 it is understood in the limiting sense, i.e.

Pa(x, 0) =
22−n

Γ
(

n−1
2

)

( x

πa

)
n−1

2

∫ ∞

0

Kn−1
2

(rx)

Kn−1
2

(ra)
rn−2dr. (6)

Equivalently, we can write

Pa(x, y) = (2π)
1−n

2 |y|−n−3
2

∫ ∞

0

e−r(x−a)
mn

2
−1(rx)

mn
2
−1(ra)

r
n−1

2 Jn−3
2

(r|y|)dr, |y| > 0.

(7)
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The special case |y| = 0 reads as

Pa(x, 0) =
22−nπ

1−n
2

Γ
(

n−1
2

)

∫ ∞

0

e−r(x−a)
mn

2
−1(rx)

mn
2
−1(ra)

rn−2dr.

Proof. Recall that if f is a radial function, f(y) = fo(|y|), then so is Ff
and the Fourier inversion formula in Rn−1 reads, up to a factor (2π)−(n−1),
as the Hankel transform of order (n − 3)/2 ([F], (7.38), p. 247):

fo(|y|) = (2π)−
n−1

2

∫ ∞

0

(Ff)o(r)(r|y|)1−n−1
2 Jn−1

2
−1(r|y|)rn−2dr.

This gives (5). Now, (7) is immediate and the special cases y = 0 follow
from the asymptotics of the Bessel function (see e.g. [GR], 8.440 or [F],
(5.10), p. 130)

Jν(z) ∼ 1

2νΓ(1 + ν)
zν , z → 0. (8)

The proof is complete.

Corollary 2.3. The Poisson kernel Pa(x, y), as a function of three variables
(a, x, y), is a homogeneous function of order −n + 1:

Pta(tx, ty) = t−n+1Pa(x, y), t > 0.

Proof. The homogeneity property can be derived easily from the scaling
properties of the process (X1(t), . . . , Xn(t)). This is also obvious by change
of variables r̃ = tr in the formula (5) written for Pta(tx, ty).

Remark. Certainly, when n ∈ 2N then also Jn−3
2

(r|y|) simplifies to an

elementary function. This fact, however, is not very useful in what follows
and we will not pursue this further.

3 Poisson kernel of half-space

In this section we give a representation formula for the Poisson kernel. For
n = 2 the resulting formula coincides with the one of R2, so that below we
shall always tacitly assume n ≥ 3 (note, however, that a great part of our
argument remains valid also for n = 2).

From now on we use the following notation, partially introduced in the
preceding section: λ = x − a.

The following technical lemma is essential in what follows.

7



Lemma 3.1. Let

Q(z) = z − n(n − 2)
λ

8ax
, z ∈ C.

Define Fλ(z) by the following formula:

λFλ(z) =
(z/a)eλz/a(x/a)

n−1
2 Kn−1

2
(xz/a) − (x/a)

n
2
−1Q(z/a)Kn−1

2
(z)

Kn−1
2

(z)
. (9)

Then
Fλ(z) = O(z−1), z → ∞. (10)

Proof. Using the asymptotic expansions for the modified Bessel function
Kn−1

2
(z) ([GR], 8.451.6, p. 910) we get

ezz
n−1

2 Kn−1
2

(z) = z
n
2
−1(c0 +

c1

2z
+ R2), (11)

where

ck = c
(n)
k =

√

π

2

Γ(n/2 + k)

k!Γ(n/2 − k)
, k = 0, 1,

R2 = O(z−2) and |z| is large enough. Hence, it is enough to show

(z/a)exz/a(xz/a)
n−1

2 Kn−1
2

(xz/a) − (x/a)
n
2
−1Q(z/a)ezz

n−1
2 Kn−1

2
(z)

= O(z
n
2
−2), z → ∞. (12)

From (11) it follows that on one hand we have

(z/a)exz/a(xz/a)
n−1

2 Kn−1
2

(xz/a)

= c0 (x/a)
n
2
−1 (z

n
2 /a) + (c1/(2x)) (x/a)

n
2
−1 z

n
2
−1 + O(z

n
2
−2).

On the other hand, using n(n−2)
4

c0 = c1, we get

(x

a

)
n
2
−1

Q
(z

a

)

ezz
n−1

2 Kn−1
2

(z)

=
(x

a

)
n
2
−1
(

z

a
− n(n − 2)

8

λ

ax

)

(c0z
n
2
−1 +

1

2
c1z

n
2
−2 + O(z

n
2
−3))

=
co

a

(x

a

)
n
2
−1

z
n
2 +

(x

a

)
n
2
−1
(

c1

2a
− n(n − 2)

4
c0

λ

2ax

)

z
n
2
−1 + O(z

n
2
−2)

=
co

a

(x

a

)
n
2
−1

z
n
2 +

(x

a

)
n
2
−1 c1

2x
z

n
2
−1 + O(z

n
2
−2).

Then (12) is obviously satisfied and the assertion follows.
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Remark. The advantage of this lemma is due to the fact that we may
and do use it for z ∈ C. This fact is exploited below.

Observe that the function Kn
2
−1(z) has no zeros in {ℜ(z) ≥ 0} (cf. [E1],

p. 62) and hence Fλ(z) is analytic in this half-plane. Moreover, by the
inverse Laplace transform theorem ([F], Theorem 8.5) together with (10) we
get that Fλ is the Laplace transform of some function wλ, i.e.

Fλ(z) =

∫ ∞

0

e−zvwλ(v)dv, ℜ(z) > 0, (13)

under the additional condition that for some b > 0 the following limit

lim
r→∞

1

2πi

∫ b+ir

b−ir

Fλ(z)evzdz (14)

exists for all v > 0 and it is a piecewise continuous function of v admitting
the Laplace transform. Then the limit is equal to wλ(v).

The existence of the above limit is shown in Theorem 3.3, together with
an explicit formula for the function wλ itself.

We are ready to state our representation formula. Recall that λ = x−a.

Theorem 3.2.

Pa(x, y) =
Γ(n

2
− 1)

2πn/2

λ

(λ2 + |y|2)n/2

∫ ∞

0

wλ(v)L(λ, y, v)

((λ + av)2 + |y|2)n
2
−1

dv, (15)

with L(λ, y, v) defined by

L(λ, y, v)

(λ2 + |y|2)((λ + av)2 + |y|2)n
2
−1

=

(

λ2 + |y|2
(λ + av)2 + |y|2

)
n
2
−1

− 1 +

(

n
2
−1
)

av(2λ + av)

λ2 + |y|2 . (16)

Proof. Recall that for ν > 0 we have ([E], vol I, (7) and (8) p. 182 or [GR],
17.13.43, 17.13.44)

∫ ∞

0

e−λrrνJν−1(r|y|)dr = 2νπ− 1
2 Γ(ν +

1

2
)|y|ν−1 λ

(λ2 + |y|2)ν+ 1
2

and
∫ ∞

0

e−λrrν−1Jν−1(r|y|)dr = 2ν−1π− 1
2 Γ(ν − 1

2
)|y|ν−1 1

(λ2 + |y|2)ν− 1
2

.
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For z = ra we have

λFλ(ra) =
rmn

2
−1(rx) − (x/a)

n
2
−1 Q(r)mn

2
−1(ra)

mn
2
−1(ra)

, (17)

so
rmn

2
−1(rx)

mn
2
−1(ra)

=
(x

a

)
n
2
−1

Q(r) + λFλ(ra)

and hence by (4)

(x

a

)
n−1

2
rKn−1

2
(rx)

Kn−1
2

(ra)
= e−λr[

(x

a

)n
2
−1

Q(r) + λFλ(ra)].

Putting this into the Hankel transform formula (5) and using (13) we get

2πn/2

Γ(n
2
− 1)

Pa(x, y) =
λ(n − 2)

2

(x

a

)
n
2
−1
[

2

(λ2 + |y|2)n
2

− 1

4xa

n

(λ2 + |y|2)n
2
−1

]

+ λ

∫ ∞

0

wλ(v)

((λ + av)2 + |y|2)n
2
−1

dv.

Putting r = 0 in (17) we get

λFλ(0) = λ

∫ ∞

0

wλ(v)dv

= − (x/a)
n
2
−1 Q(0) = n(n − 2) (x/a)

n
2
−1 λ

8xa
(18)

so that

λ(Fλ(ra) − Fλ(0))mn
2
−1(ra) = rmn

2
−1(rx) − (x/a)

n
2
−1rmn

2
−1(ra).

Dividing both sides by r and taking the limit r → 0 we obtain

λaF ′
λ(0) = −λa

∫ ∞

0

vwλ(v)dv = 1 − (x/a)
n
2
−1.

We used the fact that vwλ(v) allows the Laplace transform which is evident
from Theorem 3.3. Hence

(x/a)
n
2
−1 = 1 + λa

∫ ∞

0

vwλ(v)dv

Moreover,

λ[(Fλ(ra) − Fλ(0)) − raF ′
λ(0)]mn

2
−1(ra) = rmn

2
−1(rx) − rmn

2
−1(ra). (19)
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Again, dividing both sides by (ra)2, letting r → 0 and using mn
2
−1(0) =

m′
n
2
−1(0) we get

λF ′′
λ (0)/2 = λ/a2

so that

1 =
a2

2

∫ ∞

0

v2wλ(v)dv. (20)

The facts that F ′′
λ (0) exists and that the function v2wλ(v) admits the Laplace

transform follow from Theorem 3.3. Consequently, we have

(x

a

)
n
2
−1

= 1 + λa

∫ ∞

0

vwλ(v)dv

=
a2

2

∫ ∞

0

v2wλ(v)dv + λa

∫ ∞

0

vwλ(v)dv

=
1

2

∫ ∞

0

av(2λ + av)wλ(v)dv.

Finally, 2πn/2Γ(n
2
− 1)−1Pa(x, y) is equal to

λ(n − 2)

2

∫ ∞

0

av(2λ + av)wλ(v)

(λ2 + |y|2)n
2

dv−λ

∫ ∞

0

wλ(v)

(λ2 + |y|2)n
2
−1

dv

+λ

∫ ∞

0

wλ(v)

((λ + av)2 + |y|2)n
2
−1

dv

=
λ

(λ2 + |y|2)n
2

∫ ∞

0

wλ(v)L(λ, y, v)

((λ + av)2 + |y|2)n
2
−1

dv

and the assertion follows.

Below we give a description of the function wλ. The formula depends
on the zeros of the function Kn−1

2
(z). Even if in general the values of these

zeros are not given explicitly, we are able to prove some important properties
(as boundedeness or asymptotics) of wλ, which are essential in applications.
Moreover, in lower dimensions we provide explicit formulas as well (see Sec-
tion 3).

The function Kn−1
2

(z) extends to an entire function when n is even and

has a holomorphic extension to C \ (−∞, 0] when n is odd. Denote the set
of zeros of the function Kn−1

2
(z) by Z = {z1, ..., zkn}. We now provide some

information about these zeros, needed in the sequel (cf. [E1], p. 62). Recall
that in the case of even dimensions the functions mn

2
−1(z) are polynomials

of degree n
2
−1. They always have the same zeros as Kn−1

2
, so kn = (n/2)−1

when n ∈ 2N. For n = 2k + 1, kn is the even number closest to (n/2) − 1.

11



In particular, we have k3 = 0, and for n = 5 and 7 we have kn = 2. The
functions Kn−1

2
and Kn−3

2
have no common zeros.

In order to describe the function wλ we introduce additional notation.
Let us define

w1,λ(v) = −(x/a)
n−1

2

λa

kn
∑

i=1

zie
λzi/aKn−1

2
(xzi/a)

Kn−3
2

(zi)
eziv, (21)

and w∗
1(v) = sup0<λ6a |w1,λ(v)|.

Using the functions mn
2
−1, the formula (21) reads as follows:

w1,λ(v) =
−1

(n − 2)λa

kn
∑

i=1

mn
2
−1(xzi/a)

mn
2
−2(zi)

eziv.

We define additionally in the case of n odd

w2,λ(v) = (−1)
n+1

2
(x/a)

n−1
2

λa
(22)

×
∫ ∞

0

In−1
2

(xu/a) Kn−1
2

(u) − In−1
2

(u)Kn−1
2

(xu/a)

K2
n−1

2

(u) + π2I2
n−1

2

(u)
e−λu/ae−vuudu,

and, as before w∗
2(v) = sup0<λ6a |w2,λ(v)|.

We also need the following asymptotic formulas for the modified Bessel
functions Iν , Kν : For u > 1 we have ([F], [GR])

Iν(u) = (2πu)−
1
2 eu[1 + E1(u)], Kν(u) = π

1
2 (2u)−

1
2 e−u[1 + E2(u)], (23)

where E1(u), E2(u) = O(u−1), u → ∞.
When u → 0 we have for ν > 0:

Iν(u) ∼ cνu
ν , Kν(u) ∼ c′νu

−ν, (24)

with cν = 2−ν/Γ(ν + 1) and c′ν = 2ν−1Γ(ν). Whenever ν = 0 one has
I0(u) ∼ 1, K0(u) ∼ log(2/u). We now formulate and prove our representa-
tion theorem for the function wλ.

Theorem 3.3. In the even dimensions

wλ(v) = w1,λ(v);

while, in the odd dimensions

wλ(v) = w1,λ(v) + w2,λ(v).

12



Moreover, we have |w∗
i (v)| 6 Ci(n, a), i = 1, 2 and

w1(v) = lim
x→a+

w1,λ(v) =
1

a2

kn
∑

i=1

z2
i e

ziv;

(−1)
n+1

2 w2,λ(v) > 0, v > 0, (n odd);

w2(v) = lim
x→a+

w2,λ(v) =
(−1)

n+1
2

a2

∫ ∞

0

ue−vudu

K2
n−1

2

(u) + π2I2
n−1

2

(u)
, (n odd);

∫ ∞

0

vkw∗
1(v)dv < ∞, k = 1, 2, . . . ;

∫ ∞

0

vn−1w∗
2(v)dv < ∞;

lim
v→∞

vkw1,λ(v) = 0, k = 1, 2, . . . ;

lim
v→∞

vn+1w2,λ(v) =
(−1)

n+1
2 n!

2n−2Γ(n−1
2

)Γ(n+1
2

)

(x/a)n−1 − 1

λa
, (n odd).

Proof. We recall the basic formula (9)

λFλ(z) =
(z/a)eλz/a(x/a)

n−1
2 Kn−1

2
(xz/a) − (x/a)

n
2
−1Q(z/a)Kn−1

2
(z)

Kn−1
2

(z)
.

By standard rules for computing residues of meromorphic functions and
using the following formula for derivatives of Bessel functions (cf. [E1],
7.11(22) p. 79)

d

dz
(zνKν(z)) = −zνKν−1(z),

we obtain

Reszi
Fλ = −(x/a)

n−1
2

λa

zie
λzi/aKn−1

2
(xzi/a)

Kn−3
2

(zi)
. (25)

Using the functions mn
2
−1, we obtain

Reszi
Fλ =

−1

(n − 2)λa

mn
2
−1(xzi/a)

mn
2
−2(zi)

. (26)

As mentioned before (see (13) and (14)), by the inversion theorem for
the Laplace transform we have

wλ(v) =
1

2πi
lim
r→∞

∫ b+ir

b−ir

Fλ(z)ezvdz

13



for some b > 0. We show the existence of the above limit together with
computing formula for the function wλ.

The technique of integration is different in even and odd dimensions.
This is due to the fact that in the first case the function under the integral
extends to a meromorphic one while in the odd dimension we have to deal
with a branch cut.

For n ∈ 2N we choose any b > 0. All the zeros of mn
2
−1(z) satisfy

ℜ(zi) < b (actually, we have in general ℜ(zi) < 0, i = 1, ..., s, cf. [E1], p.
62). To calculate wλ we integrate over the rectangular contour with corners
at b − ir, b + ir, −r − ir, −r + ir. By (10) we infer that integrals over the
upper, left, and bottom side of the rectangle tend to 0 as r → ∞. Hence, by
the residue theorem, the limit in (14) exists and is equal to the sum of all
residues of the function Fλ(z)ezλ. Thus, we have wλ = w1,λ and the assertion
follows.

In the odd dimensions, however, the function under integral is no longer
meromorphic. We make the branch cut along the negative real axis (−∞, 0]
and change the contour of integration to wrap around this line (see the
picture).

-

6

�
�

b

−ir

ir

−r

6
γ1

γ2

-

�

q

q

q

q

First, we examine behaviour of our function near the negative axis (−∞, 0).
For z = −y (y > 0) we have (see [E1], (45), p. 80)

lim
ǫ→0+

Kn−1
2

(−y + iǫ) = e
iπ(1−n)

2 Kn−1
2

(y) − iπIn−1
2

(y),

14



lim
ǫ→0+

Kn−1
2

(−y − iǫ) = e
iπ(n−1)

2 Kn−1
2

(y) + iπIn−1
2

(y).

Now, observe that, similarly as before, the integrals over the left, upper
and bottom side of our rectangular contour vanish as r → ∞ by (10). The
same holds true for the half-circle with radius ǫ → 0 around the origin. Note
that the branch cut and the residues for Fλ(z) are due to the term

F̃λ(z) =
z(x/a)

n−1
2 eλz/aKn−1

2
(xz/a)

λaKn−1
2

(z)
,

the rest of the function Fλ(z) being holomorphic in C. Therefore

1

2πi

∫ b+ir

b−ir

Fλ(z)ezvdz = w1,λ(v) − 1

2πi

(∫

γ1

+

∫

γ2

)

F̃λ(z)ezvdz.

After taking the limits r → ∞ and ǫ → 0, we get

(
∫

γ1

+

∫

γ2

)

F̃λ(z)ezvdz

=
(x/a)

n−1
2

λa



−
∫ ∞

0

u(e
iπ(1−n)

2 Kn−1
2

(xu/a) − iπIn−1
2

(xu/a))

e
iπ(1−n)

2 Kn−1
2

(u) − iπIn−1
2

(u)
e−λu/ae−vudu

+

∫ ∞

0

u(e
iπ(n−1)

2 Kn−1
2

(xu/a) + iπIn−1
2

(xu/a))

e
iπ(n−1)

2 Kn−1
2

(u) + iπIn−1
2

(u)
e−λu/ae−vudu





= (−1)
n+1

2
(x/a)

n−1
2

λa
2πi

×
∫ ∞

0

u[In−1
2

(u)Kn−1
2

(xu/a) − In−1
2

(xu/a)Kn−1
2

u)]

K2
n−1

2

(u) + π2I2
n−1

2

(u)
e−λu/ae−vudu.

This ends the proof of the first part of the theorem.
All what remains is to show the corresponding properties of the functions

wi,λ, i = 1, 2. We begin with w1,λ, which is easier to analyze. First of all,
observe that ℜ(zi) < 0, so for fixed λ > 0 the function w1,λ is bounded
and limv→∞ vkw1,λ(v) = 0, for all k = 1, 2, . . .. To see what happens when
λ → 0 we use the formula for the residue of Fλ (see (25)), together with the

15



Lagrange formula. Since Kn−1
2

(zi) = 0 we get

Reszi
Fλ =

1

λ

(zi/a)eλzi/a(xzi/a)
n−1

2 Kn−1
2

(xzi/a)

−z
n−1

2
i Kn−3

2
(zi)

=
−eλzi/a

a2

zi

z
n−3

2
i Kn−3

2
(zi)

(xzi/a)
n−1

2 Kn−1
2

(xzi/a) − z
n−1

2
i Kn−1

2
(zi)

(xzi/a) − zi

=
eλzi/a

a2

zi

z
n−3

2
i Kn−3

2
(zi)

(ξzi)
n−1

2 Kn−3
2

(ξzi)

→
ziz

n−1
2

i Kn−3
2

(zi)

a2z
n−3

2
i Kn−3

2
(zi)

=
(zi

a

)2

,

because 1 < ξ < x/a and ξ → 1 as λ → 0.
Furthermore, for 0 < λ 6 a we have

|Reszi
Fλ| 6

( |zi|
a

)2

2
n−1

2 sup
16ξ62

∣

∣

∣

∣

∣

Kn−3
2

(ξzi)

Kn−3
2

(zi)

∣

∣

∣

∣

∣

.

Since ℜ(zi) < 0, we have obtained that |w∗
1(v)|is bounded by a constant

C1(n, a) and that w∗
1 integrates all powers of v.

We now prove the corresponding statements for w2,λ. Observe that the
numerator in (22) is equal to

Kn−1
2

(u)Kn−1
2

(xu/a)

(

In−1
2

(xu/a)

Kn−1
2

(xu/a)
−

In−1
2

(u)

Kn−1
2

(u)

)

and hence is positive, because the function Iν(u)/Kν(u), u > 0, is obviously
increasing.

Using the Lagrange formula once again and taking into account

(zνIν(z))′ = zνIν−1(z)

(see [E1] 7.11(19) p. 79) we obtain for 0 < λ 6 a
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1

λ

[In−1
2

(xu/a) Kn−1
2

(u) − In−1
2

(u)Kn−1
2

(xu/a)]

K2
n−1

2

(u) + π2I2
n−1

2

(u)

=
λu

a

1

λ

[(xu/a)
n−1

2 In−1
2

(xu/a) − u
n−1

2 In−1
2

(u)]

(xu/a) − u

×
Kn−1

2
(u)

(xu/a)
n−1

2 [K2
n−1

2

(u) + π2I2
n−1

2

(u)]

− λu

a

1

λ

[(xu/a)
n−1

2 Kn−1
2

(xu/a) − u
n−1

2 Kn−1
2

(u)]

(xu/a) − u

×
In−1

2
(u)

(xu/a)
n−1

2 [K2
n−1

2

(u) + π2I2
n−1

2

(u)]

=
u

a

(ξ1u)
n−1

2 In−3
2

(ξ1u) Kn−1
2

(u) + (ξ2u)
n−1

2 In−1
2

(u)Kn−3
2

(ξ2u)

(xu/a)
n−1

2 [K2
n−1

2

(u) + π2I2
n−1

2

(u)]

→ u

a

[In−3
2

(u) Kn−1
2

(u) + In−1
2

(u)Kn−3
2

(u)]

K2
n−1

2

(u) + π2I2
n−1

2

(u)

=
1

a

1

K2
n−1

2

(u) + π2I2
n−1

2

(u)
,

where for the last equality we used [E1] 7.11(39) p. 80 . Here the conver-
gence takes place when λ → 0 and 0 < ξ1, ξ2 6 x/a 6 2 and ξ1, ξ2 → 1 as
λ → 0. Thus, we have obtained

lim
λ→0

w2,λ(v) =
(−1)

n+1
2

a2

∫ ∞

0

ue−vudu

K2
n−1

2

(u) + π2I2
n−1

2

(u)
,

since the passage to the limit under the integral sign is justified by (28)
below.

Moreover, using the above equations and the asymptotic behavior (23)
of In−1

2
and Kn−1

2
, we obtain for u > 1 and 0 < λ ≤ a

1

λ

[In−1
2

(xu/a)Kn−1
2

(u) − In−1
2

(u)Kn−1
2

(xu/a)]

K2
n−1

2

(u) + π2I2
n−1

2

(u)
e−xu/aeu

17



6
u

a

2
n−1

2 [e−xu/aIn−3
2

(xu/a)euKn−1
2

(u) + e−uIn−1
2

(u)euKn−3
2

(u)]

(x/a)
n−1

2 (K2
n−1

2

(u) + π2I2
n−1

2

(u))

6 cu2 [1 + E1(xu/a)][1 + E2(u)] + [1 + E1(u)][1 + E2(u)]

a cosh(2u)

6
Cu2

cosh(2u)
. (27)

For u 6 1 we have

1

λ

[In−1
2

(xu/a)Kn−1
2

(u) − In−1
2

(u)Kn−1
2

(xu/a)]

K n−1
2

2
(u) + π2I2

n−1
2

(u)
e−xu/aeu

6 2
n−1

2
u

a

In−3
2

(2u)Kn−1
2

(u) + In−1
2

(u)Kn−3
2

(u)

K2
n−1

2

(u) + π2I2
n−1

2

(u)
eu.

Now, if n−1
2

− 1 > 0 (i.e. n > 3), using the asymptotics (24) we obtain that
the above expression is bounded from above by

Cun−1 1 + u2

1 + π2u2n−2
≤ C̃un−1, u ∈ (0, 1).

For n−1
2

= 1 (i.e. n = 3) one obtains in fact the same bound

Cu2 1 + u2 log(2/u)

1 + u4
6 Cu2, u ∈ (0, 1).

Thus, we finally get for n−1
2

> 1

w∗
2(v) = sup

0<λ6a
|w2,λ(v)| 6 C1

∫ 1

0

une−vudu + C2

∫ ∞

1

u3e−vudu

cosh(2u)
.

Now, one easily obtains

w∗
2(v) 6 C(n, a) and w∗

2(v) 6 C1/v
n+1 + C2e

−v, (28)

and the conclusions concerning the function w∗
2(v) follow.

To finish the proof we show the existence and compute the limit

lim
v→∞

vn+1w2,λ(v).

As before, we take into account the expression under the integral sign in
(22) multiplied by vn+1 and, after changing variables t = vu we obtain
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vn+1u[In−1
2

(xu/a) Kn−1
2

(u) − In−1
2

(u)Kn−1
2

(xu/a)]

K2
n−1

2

(u) + π2I2
n−1

2

(u)
e−λu/ae−vudu

=
vn−1t[In−1

2
(xt/av) Kn−1

2
(t/v) − In−1

2
(t/v)Kn−1

2
(xt/av)]

K2
n−1

2

(t/v) + π2I2
n−1

2

(t/v)
e−λt/ave−tdt.

(29)

Using the same formulas (24) as before, we obtain that for any fixed t > 0
the expression above has the following asymptotics when v → ∞

vn−1tcnc
′

n[(xt/av)
n−1

2 (t/v)−
n−1

2 − (xt/av)−
n−1

2 (t/v)
n−1

2 ]

(c′

n)2(t/v)1−n + π2c2
n(t/v)n−1

e−λt/ave−t

=
(x/a)n−1 − 1

(x/a)
n−1

2

cnc
′

nt
n

(c′

n)2 + π2c2
n(t/v)2n−2

e−λt/ave−t

→ (x/a)n−1 − 1

(x/a)
n−1

2

cn

c′

n

tne−t.

Observe that, for the sake of simplicity, we wrote here cn and c
′

n instead
of cn−1

2
and c

′

n−1
2

. Note that for any fixed t > 0 and v such that t < v we

get that (29) is bounded by c(x, a, n)tne−t.
Now, we write

vn+1w2,λ(v) = (−1)
n+1

2
(x/a)

n−1
2

λa

(
∫ v

0

. . . +

∫ ∞

v

. . .

)

.

We use (27) with t/v = u > 1 and we observe that the expression in the
second integral is bounded from above by

t2(x/a)
n−1

2 vn−2 exp(xt/av − t/v)

cosh(2t/v)
e−λt/ave−t

6 vn−2(x/a)−
n−1

2 t2e−t.

Since v → ∞, the second integral tends to 0, while the first one converges
to the following limit

lim
v→∞

vn+1w2,λ(v) = (−1)
n+1

2
(x/a)

n−1
2

λa

(x/a)n−1 − 1

(x/a)
n−1

2

cn

c′

n

∫ ∞

0

tne−tdt

= (−1)
n+1

2 n!
(x/a)n−1 − 1

λa

cn

c′

n

.

This ends the proof of the theorem.
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Examples.
We finish this section by writing down explicit integral formulas for some

special cases. Observe that in H
2 our Poisson kernel is identical with the

Euclidean one. Thus, the simplest nontrivial situation arises in H3. Recall
that λ = x − a.

Corollary 3.4. If n = 3 then

wλ(v) =
x

λa2

∫ ∞

0

I1(xu/a)K1(u) − K1(xu/a)I1(u)

K2
1(u) + π2I2

1 (u)
e−uλ/ae−vuudu,

with L(λ, y, v) defined by

L(λ, y, v)

(λ2 + |y|2)((λ + av)2 + |y|2)1/2
=

(

λ2 + |y|2
(λ + av)2 + |y|2

)1/2

−1+
1

2

av(2λ + av)

λ2 + |y|2 ,

hence

Pa(x, y) =
λ

2π(λ2 + |y|2) 3
2

∫ ∞

0

wλ(v)L(λ, y, v)

((λ + av)2 + |y|2) 1
2

dv.

If n = 4 then wλ(v) = a−2e−v and

Pa(x, y) =
λ

2π2(λ2 + |y|2)2

∫ ∞

0

(2λ + av)2v2e−v

(λ + av)2 + |y|2 dv.

If n = 6 then

wλ(v) =
3

a3
e−3v/2[(2λ + a) cos(

√
3v/2) +

√
3a sin(

√
3v/2)]

and
L(λ, y, v) = (av(2λ + av))2[2av(2λ + av) + 3(λ2 + |y|2)],

hence

Pa(x, y) =
λ

2π3(λ2 + |y|2)3

∫ ∞

0

wλ(v)L(λ, y, v)

((λ + av)2 + |y|2)2
dv.

Proof. In the case n = 3 the function Kn−1
2

= K1 has no zeros and we have

wλ(v) = w2,λ(v). We use Theorems 3.2 and 3.3.
For n = 4 we have m0(x) = 1, m1(x) = 2(1 + x). Certainly, wλ(v) =

w1,λ(v) and L(λ, y, v) = (av(2λ + av))2 so all we have to do is to find the
function wλ(v). We apply Theorem 3.3 and obtain

wλ(v) = w1,λ(v) =
−1

2λa

m1(−x/a)

m0(−1)
e−v =

(−1/a)2(1 − x/a)

2λ
e−v = a−2e−v.

20



If n = 6 then s = 2 and m2(z) = 8(z2+3z+3) = 8(z−−3+i
√

3
2

)(z−−3−i
√

3
2

).

Put z1 = −3/2 + i
√

3/2. According to formula (26) we obtain

Resz1Fλ =
−1

(6 − 2)λa

m2(xz1/a)

m1(z1)

=
−1

4λa

8((xz1/a)2 + 3(xz1/a) + 3)

2(1 + z1)

=
−1

λa
((xz1/a)2 + 3(xz1/a) + 3)(1 + z1)

=
−1

λa
((xz1/a)2 − z2

1 + 3(xz1/a) − 3z1)(1 + z1)

=
−1

a2
[(1 + x/a)z2

1(1 + z1) + 3z1(1 + z1)]

=
3

2a3
[2λ + a − i

√
3a].

Finally, we have

wλ(v) = w1,λ(v)

=
3e−3v/2

a3
ℜ
(

[2λ + a − i
√

3a]ei
√

3v/2
)

=
3e−3v/2

a3
[(2λ + a) cos(

√
3v/2) +

√
3a sin(

√
3v/2)].

This completes the case when n = 6.

4 Asymptotic behaviour

In this section we study the asymptotic behaviour of the Poisson kernel
Pa(x, y). The hardest part is to get the asymptotics for |y| → ∞ (see Theo-
rem 4.9 below). It is clear that for integrals like (5) the Lebesgue bounded
convergence theorem fails. Another natural approach by a Tauberian the-
orem (or the Karamata theory) does not lead to the solution either. The
main obstacle is that at the Laplace transform level, while taking limits, we
have to deal with fine cancellations of divergent integrals which is difficult
(if not impossible) to control. Our representation formula in the basic cases
n = 4 or n = 6 gives almost immediately the required asymptotics which
indicates the advantage of the presented approach and was an inspiration
for the remaining part of the work.
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We shall compare our results to the behaviour of the classical Poisson
kernel of the upper half-space in Rn,

PRn(x, y) =
Γ(n/2)

πn/2

x

(x2 + |y|2)n/2
, x > 0, y ∈ R

n−1,

and the Poisson kernel of the entire hyperbolic space in half-space model,

PHn(x, y) =
Γ(n − 1)

π
n−1

2 Γ
(

n−1
2

)

(

x

x2 + |y|2
)n−1

, x > 0, y ∈ R
n−1, (30)

see [GJT], [H].
The constant in the last formula is easily determined knowing that

∫

Rn−1

PHn(x, y)dy = 1

on one side and that, on the other side,

∫

Rn−1

(

1

1 + |y|2
)n−1

dy =
2π

n−1
2

Γ
(

n−1
2

)

∫ ∞

0

rn−2

(1 + r2)n−1
dr

=
π

n−1
2

Γ
(

n−1
2

)B(
n − 1

2
,
n − 1

2
)

according to [GR], 3.194.3.
In the two particular cases of Propositions 4.4 and 4.5 all the three Pois-

son kernels behave in the same way.

The main tools in our study of the asymptotics of Pa(x, y) are the rep-
resentation formula (15) from Theorem 3.2 and the semigroup properties of
the Poisson kernel.

Semigroup property of Pa(x, ·). By the strong Markov property we
obtain the following semigroup property of Pa(x, y).

Proposition 4.1. Let b be such that 0 < a < b < x . Then

Pa(x, y) =

∫

Rn−1

Pb(x, z)Pa(b, y − z)dz, y ∈ R
n−1. (31)

Denoting Pa,x(y) = Pa(x, y) we have

Pa,x = Pa,b ∗ Pb,x, 0 < a < b < x,

where ∗ is the usual convolution in Rn−1.
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Proof. Observe that τb < τa so using the strong Markov property we obtain
for an arbitrary nonnegative and bounded Borel measurable function f on
R

n−1:

Exf(Xτa) = ExEXτb [f(Xτa)]

=

∫

Rn−1

Pb(x, z){
∫

Rn−1

Pa(z, y)f(y)dy}dz

=

∫

Rn−1

f(y){
∫

Rn−1

Pb(x, z)Pa(b, y − z)dz}dy.

Thus, we obtain that almost everywhere the following holds

Pa(x, y) =

∫

Rn−1

Pb(x, z)Pa((z, b), y)dz,

where we denote Pa(x, y) = Pa((0, . . . , 0, x), y) and, according to this nota-
tion, we also have Pa((z, b), y) = Pa(b, y − z). Since both sides of the above
equation are continuous as a function of y, the formula (31) follows.

Remark. The semigroup formula (31) holds also for a = 0, with
P0,x(y) = PHn(x, y). This follows from the fact that as in [BCF], PHn is
the density of X̃∞(x), and the proof of Proposition 4.1 still works in this
case.

Moreover, when a → b, a > b or when b → a, b > a, then Pa,b ⇒ δ0.
Consequently, {Pa,b} is a 2–parameter continuous probability semigroup.
It means that Pa,b are the densities of the increments Yb − Ya of a non–
homogeneous Lévy process {Yx}0<x<∞, with the distribution of Yx equal to
X̃∞(x) in Rn−1.

Asymptotics when a → 0. When the boundary of the half-space in the
Euclidean space R

n is moving away to −∞, the Poisson kernel converges to
0. This is not the case in hyperbolic spaces. In Hn we will show the uniform
convergence of Pa(x, ·) to the Poisson kernel of Hn, given by (30).

Note that the weak convergence, equivalent to the pointwise convergence
of the Fourier transforms, is simple to see by a probabilistic argument using
Xτa ⇒ X∞. An easy analytic proof of the pointwise convergence of the
Fourier transforms is based on Theorem 2.1, on the asymptotics vνKν(v) ∼
2ν−1Γ(ν), v → 0, and on the fact that

F [PHn(x, ·)] (u) =
1

2
n−3

2 Γ(n−1
2

)
(x|u|)n−1

2 Kn−1
2

(x|u|).

The last formula follows e.g. from [GR], 6.576.7:
∫ ∞

0

rµ+ν+1Jµ(r|y|)Kν(rx)dr = 2µ+ν |y|µxν Γ(µ + ν + 1)

(x2 + |y|2)µ+ν+1
, (32)
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with µ > ν − 1, x > 0. Putting ν = n−1
2

, µ = n−3
2

+ ǫ (ǫ > 0), we have
µ + ν + 1 = n − 1 + ǫ. Taking limit ǫ → 0, by the dominated convergence
theorem we easily extend (32) to the special case µ = ν − 1.

Proposition 4.2. Let n ∈ N, n ≥ 2. Then for all y ∈ Rn−1 and x > 0 we
have

lim
a→0

Pa(x, y) = PHn(x, y)

and the convergence is uniform with respect to y ∈ Rn−1.

Proof. We have, by elementary properties of the convolution, for any 0 <
a < b < x

‖Pa,x − P0,x‖∞ = ‖Pa,b ∗ Pb,x − P0,a ∗ Pa,b ∗ Pb,x‖∞ 6 ‖P0,a ∗ Pb,x − Pb,x‖∞.

Note that P0,a ∗ Pb,x is the action of a probabilistic operator T0,a with den-
sity P0,a on the continuous function Pb,x. The function Pb,x is bounded by
Theorem 2.2.

The operators Ta,x form a continuous 2–parameter semigroup, so

lim
a→0

‖T0,ag − g‖∞ = 0

for any continuous bounded function g. Thus

‖P0,a ∗ Pb,x − Pb,x‖∞ → 0, a → 0,

and the assertion of the proposition follows.
A different proof of Proposition 4.2 is also possible, by justifying the

passage with a → 0 under the integral in (5) and by the Lebesgue bounded
convergence theorem.

Proposition 4.2 implies the following limit theorem for the hyperbolic
Brownian motion.

Corollary 4.3. Let x = (xi)i=1,...,n ∈ Hn and Xt be the hyperbolic Brownian
motion starting at x. Then Xτa , the process Xt stopped when first crossing
the hyperplane {yn = a}, converges when a → 0 to a random variable X∞,
concentrated on the border {yn = 0} of H

n and with the density

P0(x, y) =
Γ(n − 1)

π
n−1

2 Γ
(

n−1
2

)

(

xn

x2
n + |y − x̃|2

)n−1

where x̃ = (x1, . . . , xn−1). The convergence of Xτa to X∞ is in the sense of
uniform convergence of the densities of their distributions, when we project
the hyperplanes {yn = a} on the border {yn = 0}.
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Remark. By Scheffe’s theorem, the distributions of X̃τa converge to the
distribution of X∞ in the total variation norm.

Asymptotics when x → ∞. The Poisson kernel Pa(x, y) behaves in
the same way as the Euclidean Poisson kernel and the Poisson kernel of Hn:

Proposition 4.4. We have

Pa(x, y) ∼ cx−n+1, x → ∞.

Proof. Observe that for n ≥ 2

(a/x)
n−1

2 ≤ er(x−a)
Kn−1

2
(rx)

Kn−1
2

(ra)
≤ (a/x)

1
2 , r > 0. (33)

Indeed, since (cf. [GR] 8.432.8)

Kn−1
2

(z) =
Γ(1

2
)

Γ(n
2
)

(z

2

)
n−1

2
e−z

∫ ∞

0

e−zu(u + 2)
n
2
−1u

n
2
−1du,

by the change of variable ū = rxu (ū = rau, respectively) we get

er(x−a)
Kn−1

2
(rx)

Kn−1
2

(ra)
=
(a

x

)
1
2

∫∞
0

e−u(u/(rx) + 2)
n−2

2 u
n−2

2 du
∫∞

0
e−u(u/(ra) + 2)

n−2
2 u

n−2
2 du

. (34)

Since x > a the above quotient of integrals does not exceed 1 and we get
the upper bound in (33). Multiplying the left–hand side of (34) by

1 =
(a

x

)
n−2

2 (rx)
n−2

2

(ra)
n−2

2

we get

er(x−a)
Kn−1

2
(rx)

Kn−1
2

(ra)
=
(a

x

)
n−1

2

∫∞
0

e−u(u + 2rx)
n−2

2 u
n−2

2 du
∫∞
0

e−u(u + 2ra)
n−2

2 u
n−2

2 du
. (35)

Now, x > a implies that the above quotient of the integrals is greater than
1 and the lower bound in (33) is verified.

First, we deal with the special case y = 0. By a simple change of variable
rx = t in (6) and by (35) we get

Pa(x, 0) = c
(x

a

)
n−1

2 1

xn−1

∫ ∞

0

Kn−1
2

(t)

Kn−1
2

(ta/x)
tn−2dt

=
c

xn−1

∫ ∞

0

e−t(1−a/x)

∫∞
0

e−u(u + 2t)
n−2

2 u
n−2

2 du
∫∞
0

e−u(u + 2ta/x)
n−2

2 u
n−2

2 du
tn−2dt.
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For each t > 0, when x increases to infinity, the denominator decreases to
∫∞
0

e−uun−2du = Γ(n − 1). Hence, for x > 2a we have

e−t(1−a/x)

∫∞
0

e−u(u + 2ta/x)
n−2

2 u
n−2

2 du
≤ e−t/2

Γ(n − 1)
.

Therefore, by bounded convergence theorem the assertion for |y| = 0 follows.
Now, assume |y| > 0. Recall that for ν > 0

Kν(z) ∼ 2ν−1Γ(ν)z−ν , z → 0. (36)

By a simple change of variable rx = z in (5) we get

Pa(x, y) = c
|y|−n−3

2

xa
n−1

2

∫ ∞

0

Kn−1
2

(z)

Kn−1
2

(za/x)
Jn−3

2
(z|y|/x) z

n−1
2 dz

= cx−n+1

∫ ∞

0

Kn−1
2

(z)
x

n−1
2

(za)
n−1

2 Kn−1
2

(za/x)

x
n−3

2 Jn−3
2

(z|y|/x)

(z|y|)n−3
2

z
3n−5

2 dz.

By (36) and (8) the two quotients above converge to a positive constant
when x → ∞. Moreover, the second one remains uniformly bounded in
z ∈ (0,∞) and x > 0. For z < x/a by (36) we get

Kn−1
2

(z)z
3n−5

2
x

n−1
2

(za)
n−1

2 Kn−1
2

(

za
x

)
≤ cKn−1

2
(z)z

3n−5
2 . (37)

Using (23), for z > x/a and x > 2a, say, we get

Kn−1
2

(z)z
3n−5

2
x

n−1
2

(za)
n−1

2 Kn−1
2

(

za
x

)
≤ c

(x

a

)
n
2 z

3n−5
2

z
n−1

2

exp(−z(1 − a/x))

≤ cz
3n−4

2 exp(−z/2).

By this and (37) bounded convergence theorem applies. Consequently, the
whole integral above tends to a positive constant as x → ∞. The assertion
follows.

Asymptotics when x → a. The asymptotics below are easy to obtain.

Proposition 4.5.

Pa(x, 0) ∼ 22−nΓ(n − 1)π−n−1
2

Γ
(

n−1
2

) (x − a)−n+1, x → a+.

26



Proof. From (33) it follows that

Γ(n − 1) (a/x)
n−1

2 (x − a)−n+1 = (a/x)
n−1

2

∫ ∞

0

e−r(x−a)rn−2dr

≤
∫ ∞

0

Kn−1
2

(rx)

Kn−1
2

(ra)
rn−2dr

≤
(a

x

) 1
2

∫ ∞

0

e−r(x−a)rn−2dr

= Γ(n − 1) (a/x)
1
2 (x − a)−n+1.

Combining this and (6) completes the proof.

Much more is required, however, to obtain the following Euclidean-like
asymptotics

Pa(x, y) ∼ c(x − a), x → a+, |y| 6= 0.

The justification of this important result is postponed after the proof of
Theorem 4.9.

Asymptotics when |y| → ∞. The most important and difficult to
prove is what happens when |y| → ∞. By n we denote, as before, the
dimension of the considered hyperbolic space Hn. Recall that λ = x−a. We
assume throughout this section that n > 2. Let us rewrite the basic formula
for Pa(x, y), using some notation more suitable for calculations. Denote

κ = (λ + av)2 − λ2,

Φ(u) = Φn
2
−1(u) = (1 + u)1−n

2 − 1 + (n
2
− 1)u, u > 0.

We then have (λ + av)2 + |y|2 = κ + λ2 + |y|2, so the formula (16) takes the
form:

L(λ, y, v)

(λ2 + |y|2)(κ + λ2 + |y|2)n
2
−1

=
(n

2
− 1
) κ

λ2 + |y|2 − 1 +

(

λ2 + |y|2
κ + λ2 + |y|2

)
n
2
−1

=

(

1 +
κ

λ2 + |y|2
)1−n

2

− 1 +
(n

2
− 1
) κ

λ2 + |y|2

= Φ

(

κ

λ2 + |y|2
)

.
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Consequently, according to the formula for the Poisson kernel (15) we thus
obtain

Pa(x, y) =
Γ(n

2
−1)

2πn/2

λ

(λ2 + |y|2)n
2
−1

∫ ∞

0

wλ(v)Φ

(

κ

λ2 + |y|2
)

dv . (38)

Writing the last formula in the form

Pa(x, y) =
Γ(n

2
− 1)

2πn/2
|y|−n+2 λ

((λ/|y|)2 + 1)
n
2
−1

∫ ∞

0

wλ(v)Φ

(

κ

λ2 + |y|2
)

dv,

(39)
we see that in order to get the asymptotics of Pa(x, y) when |y| → ∞, it is
sufficient to obtain the asymptotics of

∫ ∞

0

wλ(v)Φ

(

κ

λ2 + |y|2
)

dv

when |y| → ∞.
In the sequel we use the following standard properties of the oscillating

binomial series

∞
∑

j=0

(−1)j (n
2
− 1)j

j!
uj,

(n

2
− 1
)

j
=
(n

2
− 1
) n

2
. . .
(n

2
+ j − 2

)

,

related to the function Φ. For all u > 0 and l > 2 we have
∣

∣

∣

∣

∣

Φ(u) −
∑

26j6l−1

(−1)j (n
2
− 1)j

j!
uj

∣

∣

∣

∣

∣

6
(n

2
− 1)l

l!
ul. (40)

Moreover, when u → 0+,

lim
u→0+

u−l

[

Φ(u) −
∑

26j6l−1

(−1)j (n
2
− 1)j

j!
uj

]

= (−1)l (
n
2
− 1)l

l!
(41)

We also have for all u > 0

(−1)l

[

Φ(u) −
∑

26j6l−1

(−1)j (n
2
− 1)j

j!
uj

]

> 0. (42)

Note that for l = 2 the formulas above involve the function Φ alone
(summation is performed over empty set of indices).

Before the formal proof of the asymptotics of the Poisson kernel as |y| →
∞ we first consider what happens on H4 and H6.
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On H4 the situation is quite clear. Taking into account the explicit
formula for the Poisson kernel computed in the end of Section 3 we see
that the asymptotics is of order |y|−6. On H

6 we encounter more delicate
situation. We have L(λ, y, v) = (av(2λ + av))2[2av(2λ + av) + 3(λ2 + |y|2)],
so, together with the formula for the Poisson kernel, one may expect that
the precise rate of convergence to 0 on H6 is of order |y|−8. However, it turns
out that the correct rate is better, namely |y|−10! To explain what is behind
this phenomenon we first show that for all λ > 0

∫ ∞

0

((λ + av)2 − λ2)2wλ(v)dv =

∫ ∞

0

κ2wλ(v)dv = 0. (43)

To prove this we recall from the proof of Theorem 3.2 the following formula:

λFλ(ra) = r
m2(rx)

m2(ra)
−
(x

a

)2
(

r − 3
λ

ax

)

,

where

Fλ(r) =

∫ ∞

0

e−rvwλ(v)dv, and m2(x) = 8(x2 + 3x + 3).

Now, by the direct differentiation of the equation defining Fλ(ra) we
obtain

F
′′

λ (0) =

∫ ∞

0

v2wλ(v)dv =
2

a2
,

F
′′′

λ (0) = −
∫ ∞

0

v3wλ(v)dv =
2(λ − a)

a3
,

F
(iv)
λ (0) =

∫ ∞

0

v4wλ(v)dv = −8
λ

a3
.

With these formulas in hand we justify our claim (43) as follows:

∫ ∞

0

κ2wλ(v)dv = a2[4λF
′′

λ (0) − 4aλF
′′′

λ (0) + a2F
(iv)
λ (0)]

= a2[4λ2 2

a2
− 4aλ

2

a3
(λ − a) − a28

λ

a3
] = 0.

Taking into account the form of the Poisson kernel and (43) we obtain

Pa(x, y)
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=
λ

2π3(λ2+|y|2)2

∫ ∞

0

[

(

1+
κ

λ2+|y|2
)−2

− 1+2
κ

λ2+|y|2

]

wλ(v)dv

=
λ

2π3(λ2+|y|2)2

×
∫ ∞

0

[

(

1 +
κ

λ2 + |y|2
)−2

− 1 +2
κ

λ2+|y|2 − 3
κ2

(λ2+|y|2)2

]

wλ(v)dv.

Taking into account the property (41), as well as integrability properties
of wλ we infer that for fixed λ > 0

lim
|y|→∞

(λ2+|y|2)5Pa(x, y) = −2λ

π3

∫ ∞

0

κ3wλ(v)dv.

If we now show that

∫ ∞

0

κ3wλ(v)dv 6= 0,

this will give us the required rate of convergence to 0. Now, let us mention
that although it is possible (with a considerable effort) to show the property
(43) directly as above for all spaces Hn, with n > 4, this property alone
does not amounts yet for the correct rate if n is large. Indeeed, to prove the
correct rate of convergence we need much more, namely the following

Claim. For all hyperbolic spaces of dimension n > 3 and all λ > 0 we
have the following

∫ ∞

0

κmwλ(v)dv = 0,

for all m such that 2 6 m < [(n + 1)/2]. Moreover, for m = [(n + 1)/2] and
n even the integral above is different from 0 while for n odd it is infinite.

Once the above claim is verified, we obtain the following representation
of the Poisson kernel, stated here for the sake of convenience:

Corollary 4.6.

Pa(x, y) =
λΓ(n

2
−1)

2πn/2(λ2+|y|2)n
2
−1

×
∫ ∞

0





(

1+
κ

λ2+|y|2
)1−n

2

−
[ n+1

2
]−1

∑

0

(−1)j (n
2
−1)j

j!

κj

(λ2+|y|2)j



wλ(v)dv.

The validity of the above corollary is a direct consequence of Lemma 4.8.
For hyperbolic spaces of even dimension this form of the Poisson kernel,
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together with the second part of the above claim, yields at once the desired
convergence rate. If the dimension is odd we additionally have to overcome
some integrability problems, stemming out of the asymptotics of the function
wλ (clarified in Theorem 3.3).

Computational proof of the above claim is beyond our reach. However,
this is the place where the semigroup property of the Poisson kernel comes
in handy.

The proof of the general case is contained in a series of lemmas. The first
one follows from the formula (41), if we take into account the integrability
properties of the function wλ(v).

Lemma 4.7. Let 2 6 l 6 [n/2]. Then

lim
|y|→∞

|y|2l

∫ ∞

0

wλ(v)

[

Φ

(

κ

λ2+|y|2
)

−
∑

26j6l−1

(−1)j (n
2
−1)j

j!

(

κ

λ2+|y|2
)j
]

dv

= (−1)l (
n
2
−1)l

l!

∫ ∞

0

κlwλ(v)dv.

When n is even, this is true for any l ∈ N, l > 2.

Proof. Denote u = κ/(λ2 + |y|2). We apply the formula (41) for the above
u = u(x, a, y, v).

We multiply and divide by ul the expression under the integral in the
last formula. When |y| → ∞ then u → 0, so the formula (41) applies to

u−l

[

Φ(u) −
∑

26j6l−1

(−1)j (n
2
−1)j

j!
uj

]

.

On the other hand, |y|2lul → κl. The passage to the limit under the integral
sign is justified by (40) and the fact that

∫ ∞

0

κ[ n
2
]|wλ(v)|dv < ∞, n odd,

∫ ∞

0

κm|wλ(v)|dv < ∞, m ∈ N, n even.

Actually, according to Theorem 3.3, when n is even, the function wλ has
finite moments of all orders and when n = 2k + 1, k = [n/2], the function
vn−1wλ(v) ∼ κkwλ(v) is integrable.
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The observation contained in the next lemma is crucial for our purposes.
It consists of comparing the rate of convergence to zero of our Poisson kernel
Pa(x, y), as |y| → ∞, with the corresponding rate of convergence of the
global kernel.

Lemma 4.8. For hyperbolic spaces of even dimension n = 2k > 4 we have
for all λ > 0

∫ ∞

0

κjwλ(v)dv = 0 (44)

when j = 2, . . . , k − 1.
For hyperbolic spaces of odd dimension n = 2k + 1 > 3 we have for all

λ > 0
∫ ∞

0

κjwλ(v)dv = 0 (45)

when j = 2, . . . , k.

Proof. Consider first the case n = 2k > 4 and suppose that the assertion is
false. Let jo 6 k−1 be the smallest power such that (44) does not hold. By
Lemma 4.7 and the formula (39), it follows that there exists

lim
|y|→∞

|y|n−2+2joPa(x, y) > 0.

We will show that this is contradictory with the existence of a finite

lim
|y|→∞

|y|2n−2P0(x, y).

By the semigroup property proved in Proposition 4.1 (see Remark below its
proof) we have

P0(x, ·) = P0(a, ·) ∗ Pa(x, ·).
It follows that for |y| > M > 0

|y|2n−2P0(x, y)

>

( |y|
|y| + 1

)2n−2 ∫

|z|61

P0(a, z)Pa(x, y − z)|y − z|2n−2dz

=

( |y|
|y| + 1

)2n−2 ∫

|z|61

P0(a, z)Pa(x, y − z)|y − z|n−2+2jo |y − z|n−2jodz

> c

( |y|
|y| + 1

)2n−2 ∫

|z|61

P0(a, z)|y − z|n−2jodz

> c1(|y| − 1)|n−2jo → ∞, |y| → ∞,
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because n − 2jo > 2.
In the case n = 2k + 1 > 3, let us remark that Lemma 4.7 applies for

l 6 k. We proceed exactly in the same way as in the proof in the case of n
even, with the only difference that now jo 6 k, so n − 2jo > 1 and the final
contradiction with lim|y|→∞ |y|2n−2P0(x, y) < ∞ also holds.

Let us point out once again that the result of Lemma 4.8 enables us to
write our Poisson kernel in the form indicated in Corollary 4.6. Corollary
4.6, together with Lemma 4.7, yields at once that the rate of convergence
in question is not worse than the required one. What remaines is to show
that the above rate is optimal. This is accomplished in the proof below.
Arguments applied in the case when the dimension of the space Hn is even
are different from those when it is odd.

Theorem 4.9. We have

Pa(x, y) ∼ c|y|−2n+2, |y| → ∞.

Proof. Case n = 2k.
We will show that the formula (44) fails for j = k, i.e. that

∫ ∞

0

κkwλ(v)dv 6= 0. (46)

The formula (46) together with Lemmas 4.7 and 4.8 imply that
∫ ∞

0

wλ(v)Φ(κ/(λ2 + |y|2))dv ∼ c|y|−2k = c|y|−n,

c 6= 0, when |y| → ∞. Taking into account the formula (39) we obtain the
desired result. Observe that when n = 4, the function wλ(v) = a−2e−v is
positive so the formula (46) is apparent. As mentioned earlier, the exact
convergence rate is easy to obtain directly from the formula (39). Thus, we
assume throughout the proof that k > 2.

Proof of the formula (46). Suppose that (46) is not true, i.e.
∫ ∞

0

κkwλ(v)dv = 0, k > 2.

Then, using Lemma 4.7 for l = k + 1, it follows that there exists the limit

lim
|y|→∞

|y|2k+2

∫ ∞

0

wλ(v)Φ

(

κ

(λ2 + |y|2)

)

dv < ∞

and, by (39),

lim
|y|→∞

|y|2nPa(x, y) =
Γ(n

2
−1)

2πn/2
< ∞. (47)
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We will show that the existence of the limit (47) leads to a contradiction
with the convergence of the Poisson kernels Pa(x, y) to P0(x, y), a → 0+,
established in Proposition 4.2.

By the homogeneity property of the kernel Pa(x, y), proved in Corollary
2.3, we have

Pa2/x(a, a|y|/x) = (a/x)−n+1Pa(x, y),

so we also have
lim

|y|→∞
|y|2nPa2/x(a, ay/x) < ∞. (48)

We will prove that

lim sup
|y|→∞

|y|2nPa2/x(x, y) < ∞. (49)

Set a1 = a2/x. As 0 < a1 < a < x, the semigroup property implies that

|y|2nPa1(x, y) =

∫

Rn−1

Pa1(a, z)|y|2nPa(x, z − y)dz.

We divide the last integral into
∫

2|z|>|y| +
∫

2|z|<|y| and estimate separately

both integrals.
By (48), we obtain that lim|y|→∞ |y|2nPa1(a, y) < ∞. This is used in the

estimate
∫

2|z|>|y|
Pa1(a, z)|y|2nPa(x, z − y)dz

6 22n

∫

2|z|>|y|
Pa1(a, z)|z|2nPa(x, z − y)dz

6 c22n

∫

2|z|>|y|
Pa(x, z − y)dz 6 c22n,

where the constant c is common for all |y| > M > 0. Next, observe that if
|y| > 2|z| then |y − z| > |y|/2, so that, using (47),

∫

2|z|<|y|
Pa1(a, z)|y|2nPa(x, z − y)dz

6 22n

∫

2|z|<|y|
Pa1(a, z)|z − y|2nPa(x, z − y)dz

6 c22n

∫

2|z|<|y|
Pa1(a, z)dz 6 c22n
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and (49) is proved. Note that in order to prove it, a weaker hypothesis

lim sup
|y|→∞

|y|2nPa(x, y) < ∞.

is sufficient. Consequently, denoting q = a/x and iterating the last argument
j times we get

lim sup
|y|→∞

|y|2nPqja(x, y) < ∞, j ∈ N. (50)

We denote aj = qja, λj = x − aj , κj = (λj + ajv)2 − λ2
j and we denote

wλj
(v) the function appearing in the representation formula (15) for the

kernel Paj
(x, y). The formula (50) implies that for all j ∈ N

∫ ∞

0

κ
n/2
j wλj

(v)dv = 0 (51)

(otherwise |y|2n−2Paj
(x, y) converges to a positive constant when |y| → ∞,

so |y|2nPaj
(x, y) diverges to +∞).

Recall that

wλj
(v) = w1,λj

(v) =

kn
∑

i=1

(Reszi
Fλj

)eziv

= −(x/aj)
n−1

2

λjaj

kn
∑

i=1

zie
xzi/ajKn−1

2
(xzi/aj)

eziKn−3
2

(zi)
eziv .

Writing

Reszi
Fλj

= − 1

a
n/2
j

z
1/2
i√
2λj

xn/2−1

eziKn−3
2

(zi)

(

2
xzi

aj

)1/2

exzi/ajKn−1
2

(xzi/aj)

and using the asymptotics Kν(u) = π
1
2 (2u)−

1
2 e−u[1 + E(u)], u > 1, E(u) =

O(u−1) when u → ∞, we get for aj → 0+

a
n/2
j Reszi

Fλj
= −

(π

2

)1/2 z
1/2
i

(x − aj)

xn/2−1

eziKn−3
2

(zi)

[

1 + E

(

xzi

aj

)]

and

w̃(v) := lim
aj→0

a
n/2
j wλ(v) = −

(π

2

)1/2

xn/2−2
kn
∑

i=1

z
1/2
i eziv

eziKn−3
2

(zi)
.

Thus we get
lim

j
κ

n/2
j wλj

(v) = (2x)n/2vn/2w̃(v). (52)
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By the Lebesgue dominated convergence theorem and by (51)

lim
j

∫ ∞

0

κ
n/2
j wλj

(v)dv = (2x)n/2

∫ ∞

0

vn/2w̃(v)dv = 0.

Now, when j → ∞ and |y| is fixed, one has κj → 0 and uj =
κj

λ2
j+|y|2 → 0.

By (41) and by (52), we get

lim
j

∫ ∞

0

wλj
(v)Φ(uj)dv

= lim
j

∫ ∞

0

wλj
(v)

[

Φ(uj) −
∑

26l6k−1

(−1)l (
n
2
−1)l

l!
ul

j

]

dv

= (−1)n/2 (n
2
−1)n/2

(n/2)!

(

2x

x2 + |y|2
)n/2 ∫ ∞

0

vn/2w̃(v)dv = 0.

This implies that limj Paj
(x, y) = 0 which is false because limj Paj

(x, y) =
P0(x, y) 6= 0. The proof in the case n = 2k is completed.

Case n = 2k +1. We denote u = u(x, a, y, v) = κ/(λ2 + |y|2). By Lemma
4.8, for n > 3

∫ ∞

0

wλ(v)Φ(u)dv =

∫ ∞

0

wλ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv.

This formula is also trivially true for n = 3 (there is no sum on the right–
hand side). We want to show that

∫∞
0

wλ(v)Φ(u)dv ∼ C|y|−n when |y| → ∞,
for a positive constant C. We divide the last integral into the sum of three
integrals

∫ ∞

0

=

∫ A

0

+

∫ ε(λ2+|y|2)
1
2

A

+

∫ ∞

ε(λ2+|y|2)
1
2

,

where A > 0 is so big that (−1)
n+1

2 w2,λ(v) > c
vn+1 for a constant c > 0; this

is possible because, by Theorem 3.3, (−1)
n+1

2 vn+1w2,λ(v) converges when
v → ∞ to a positive constant. The value of ǫ will be chosen in the sequel.
Recall that k = n−1

2
.

We estimate the integral
∫ A

0
using the bound (40) for l = k + 1 and
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|wλ(v)| 6 c/vn+1. We obtain

∫ A

0

∣

∣

∣

∣

∣

wλ(v)[Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj]

∣

∣

∣

∣

∣

dv 6
c

(λ2 + |y|2)k+1

∫ A

0

κk+1

vn+1
dv

6
c1

|y|2(k+1)

∫ A

0

v2(k+1)

vn+1
dv

=
c1A

|y|n+1
.

Next, observe that, again by (40) for l = k + 1,

∫ ∞

A

∣

∣

∣

∣

∣

w1,λ(v)[Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj]

∣

∣

∣

∣

∣

dv

6
c

(λ2 + |y|2)k+1

∫ ∞

A

|w1,λ(v)|κk+1dv

6
c

|y|n+1

∫ ∞

A

|w1,λ(v)|vn+1dv 6
c2

|y|n+1
,

since the function |w1,λ(v)| decreases exponentially when v → ∞. Thus, in
order to show that

∫∞
0

wλ(v)Φ(u)dv ∼ C|y|−n when |y| → ∞, it suffices to
prove that

∫ ∞

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv ∼ C|y|−n.

Note that by (42) with l = k + 1 and by the fact that (−1)
n+1

2 w2,λ > 0,
proved in Theorem 3.3, the integrand

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j ((n
2
−1))j

j!
uj

]

is non–negative. Moreover, by (41), for ǫ > 0 sufficiently small and v <
ǫ(λ2 + |y|2)1/2, so that v2/(λ2 + |y|2) < ǫ2, v/(λ2 + |y|2) 6 v/(λ2 + |y|2)1/2 < ǫ
and u < b(x, a)ǫ, we have

∣

∣

∣

∣

∣

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

∣

∣

∣

∣

∣

> cuk+1,
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for a positive constant c. On the other hand, by (40), we have for all u > 0
∣

∣

∣

∣

∣

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

∣

∣

∣

∣

∣

< c′uk+1.

We consider |y| so big that A < ǫ(λ2 + |y|2)1/2. The last two estimates imply

c

(λ2 + |y|2)k+1

∫ ǫ(λ2+|y|2)1/2

A

κk+1

vn+1
dv

6

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv

6
c′

(λ2 + |y|2)k+1

∫ ǫ(λ2+|y|2)1/2

0

κk+1

vn+1
dv,

which, using κ = av(2λ + av), implies

c1

(λ2 + |y|2)k+1

∫ ǫ(λ2+|y|2)1/2

A

dv

6

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv

6
c2

(λ2 + |y|2)k+1

∫ ǫ(λ2+|y|2)1/2

0

dv,

c1ǫ

(λ2 + |y|2)k+(1/2)
− c1A

(λ2 + |y|2)k+1

6

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv

6
c2ǫ

(λ2 + |y|2)k+(1/2)

and

c3

|y|n − c4

|y|n+1
6

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv

6
c5

|y|n .
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Thus

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv ∼ C|y|−n,

for C > 0, |y| → ∞.

In the last integral
∫∞

ǫ(λ2+|y|2)1/2 w2,λ(v)[Φ(u) −
∑

26j6k(−1)j (n
2
−1)j

j!
uj]dv,

the variable u is separated from 0, so the expression

|Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj|

is estimated from above, up to a positive factor, by the highest level term
uk. Consequently

0 <

∫ ∞

ǫ(λ2+|y|2)1/2

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv

6
c

(λ2 + |y|2)k

∫ ∞

ǫ(λ2+|y|2)1/2

κk

vn+1
dv

6
c′

(λ2 + |y|2)k

∫ ∞

ǫ(λ2+|y|2)1/2

vn−1

vn+1
dv =

c′′

(λ2 + |y|2)k
(λ2 + |y|2)−1/2 ∼ C1

|y|n .

Since both integrals

∫ ǫ(λ2+|y|2)1/2

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv ∼ C|y|−n

∫ ∞

ǫ(λ2+|y|2)1/2

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv 6 C1|y|−n

are positive, we conclude that

∫ ∞

A

w2,λ(v)

[

Φ(u) −
∑

26j6k

(−1)j (n
2
−1)j

j!
uj

]

dv ∼ C|y|−n

and the proof in the case n = 2k + 1 is finished.

We now deal with the remaining asymptotics of Pa(x, y) near the bound-
ary: x → a+, |y| 6= 0.

Theorem 4.10. We have

Pa(x, y) ∼ c(x − a), x → a+, |y| 6= 0.
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Proof. We recall the basic formula (38) for Pa(x, y)

Pa(x, y) =
Γ(n

2
−1)

2πn/2

λ

(λ2 + |y|2)n
2
−1

∫ ∞

0

wλ(v)Φ

(

κ

λ2 + |y|2
)

dv .

We apply here the notation and terminology introduced before the for-
mulation of Theorem 4.9. In particular, we have for 0 < λ 6 a

0 6 Φ

(

κ

λ2 + |y|2
)

6

(n

2
− 1
) κ

z
=
(n

2
− 1
) av(2λ + av)

λ2 + |y|2 6

(a

v

)2

v(2 + v).

We also have

lim
x→a+

Φ

(

κ

λ2 + |y|2
)

=

( |y|2
|y|2 + (av)2

)
n
2
−1

− 1 +
(n

2
− 1
)

(

av

|y|

)2

,

and limx→a+ wλ(v) = w(v) = w1(v) + w2(v).
Using properties of wi,λ stated in Theorem 3.3 one obtains

νa(y) = lim
x→a+

Pa(x, y)

λ
(53)

=
Γ(n

2
− 1)

2πn/2|y|n−2

∫ ∞

0

w(v)

[

( |y|2
|y|2 + (av)2

)
n
2
−1

− 1 +
(n

2
− 1
)

(

av

|y|

)2
]

dv.

Using formulas (18) and (20) from the proof of Theorem 3.2 one computes

1 =
a2

2

∫ ∞

0

v2wλ(v)dv → a2

2

∫ ∞

0

v2w(v)dv

and
∫ ∞

0

w(v)dv = lim
x→a+

∫ ∞

0

wλ(v)dv = lim
x→a+

n(n − 2)(x/a)
n
2
−1 1

8xa
=

n(n − 2)

8a2
.

We thus obtained

νa(y) = lim
x→a+

Pa(x, y)

λ

=
Γ(n

2
− 1)

2πn/2

[

n − 2

|y|n − n(n − 2)

8a2|y|n−2
+

∫ ∞

0

w(v)dv

(|y|2 + (av)2)
n
2
−1

]

.

Observe now that when we multiply the right-hand side of the above equa-
tion by |y|n−2 and let |y| → 0 then the first term tends to infinity while the
second one is constant and the third one converges to 0:

|y|n−2

∫ ∞

0

w(v)dv

(|y|2 + (av)2)
n
2
−1

=

∫ ∞

0

w(v)dv

(1 + (av/|y|)2)
n
2
−1

→ 0.
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This shows that the density νa(y) does not vanish identically. We show that
it is positive everywhere. This, however, requires some extra effort. We need
the following formulas:

∫ ∞

0

e−|y|2/4te−a2v2/4t dt

t
n
2

=
2n−2Γ(n

2
−1)

(a2v2 + |y|2)n
2
−1

,

and
∫ ∞

0

e−|y|2/4t dt

t
n
2

=
2n−2Γ(n

2
−1)

|y|n−2
,

∫ ∞

0

e−|y|2/4t dt

t1+
n
2

=
2nΓ(n

2
)

|y|n .

The above formulas as well as the form of the function νa(y) enable us
to transform (53) into the following expression:

νa(y) =
2

(4π)
n
2

∫ ∞

0

e−
|y|2

4t

∫ ∞

0

[e−a2v2/4t − 1 +
a2v2

4t
]w(v)dv

dt

tn/2

=

∫ ∞

0

1

(4πt)
n−1

2

e−
|y|2

4t

(

1√
πt

∫ ∞

0

[e−a2v2/4t − 1 +
a2v2

4t
]w(v)dv

)

dt

=

∫ ∞

0

1

(4πt)
n−1

2

e−
|y|2

4t ma(t)dt.

Here

ma(t) =
1√
πt

∫ ∞

0

[e−a2v2/4t − 1 +
a2v2

4t
]w(v)dv

is nonnegative (see Corollary 4.12 below). Observe that
√

t ma(t) has the
following holomorphic extension for the halfplane ℜ(z) > 0:

1√
π

∫ ∞

0

[e−a2v2/4z − 1 + a2v2/4z]w(v)dv.

It follows that ma(t) may only have isolated zeros, except possibly at 0. In
particular, ma(t) > 0 almost everywhere. So, νa(y) > 0 for all a > 0 and
|y| > 0, which completes the proof.

The following result, indispensable to complete the proof of Theorem
4.10, is taken from the paper [BR].

Lemma 4.11. Let

qn−1
2

(t) =
λ√
πt

∫ ∞

0

[e−κ/4t − 1 + κ/4t]wλ(v)dv. (54)

The function qn−1
2

(t) is a probabilistic density.

41



Remark. The function qn−1
2

(t) is the density of the distribution of the

functional A(τa), where

A(t) = x2

∫ t

0

exp 2(B(s) − (n − 2)s)ds,

B(t) is the standard Brownian motion (with variance 2t) and τa is the first
hitting time of the level a < x by the geometric Brownian motion X(t) =
x exp(B(t) − (n − 2)t). The formula (54) is one of the main results of the
paper [BR]. It turns out (and is well known) that the Poisson kernel is
the density of distribution of the process YA(τa), where Y is the standard
(n − 1)-dimensional Brownian motion, independent from B. The function
ma(t) is obtained from qn−1

2
(t) via limiting procedure in the same way as

the function νa(y) and we state this fact here for the sake of convenience as

Corollary 4.12. The following holds

ma(t) = lim
x→a+

qn−1
2

(t)

λ
.

The information that ma(t) > 0 is essential for completing of the proof
of the last theorem.
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