Automatic dialog acts recognition based on sentence structure
Pavel Kral, Christophe Cerisara, Jana Kleckova

To cite this version:
Pavel Kral, Christophe Cerisara, Jana Kleckova. Automatic dialog acts recognition based on sentence structure. IEEE. 2006, IEEE, pp.61-64, 2006. <hal-00078245>

HAL Id: hal-00078245
https://hal.archives-ouvertes.fr/hal-00078245
Submitted on 5 Jun 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AUTOMATIC DIALOG ACTS RECOGNITION BASED ON SENTENCE STRUCTURE

Pavel Král, Christophe Cerisara
LORIA UMR 7503
BP 239 - 54506 Vandoeuvre
France
{kral,cerisara}@loria.fr

Jana Klečková
Dept. Informatics & Computer Science
University of West Bohemia
Plzeň, Czech Republic
kleckova@kiv.zcu.cz

ABSTRACT
This paper deals with automatic dialog acts (DAs) recognition in Czech. Our work focuses on two applications: a multimodal reservation system and an animated talking head for hearing-impaired people. In that context, we consider the following DAs: statements, orders, investigation questions and other questions. The main goal of this paper is to propose, implement and evaluate new approaches to automatic DAs recognition based on sentence structure and prosody. Our system is tested on a Czech corpus that simulates a task of train tickets reservation. With lexical-only information, the classification accuracy is 91 %. We proposed two methods to include sentence structure information, which respectively give 94 % and 95 %. When prosodic information is further considered, the recognition accuracy reaches 96 %.

1. INTRODUCTION
Dialog acts (DAs) are defined by Austin \[1\] as a meaning of an utterance at the level of illocutionary force. There are many possible different dialog acts, but for our applications, we are mainly interested in recognizing questions. Such an information can be used to help dialog systems to identify explicit user requests and implicit interactions. It may also be useful to animate a talking head \[2\] that reproduces someone’s speech. For example, a question mark near the talking head is displayed or the brows are raised when a question is asked. This improves the naturalness of the talking head, and further convey additional para-linguistic informations that are not present otherwise.

We proposed and compared in \[3\] several methods to combine prosodic and lexical classifiers for DA recognition. We now extend this preliminary work by proposing two novel approaches to further include sentence structure information in our automatic DA recognizer.

Section 2 presents a short review of dialog acts recognition approaches, with a focus on syntax and sentence structure information. Section 3 describes two new methods to take into account sentence structure. Section 4 evaluates and compares these methods. In the last section, we discuss the research results and we propose some future research directions.

2. SHORT REVIEW OF DIALOG ACTS RECOGNITION APPROACHES
To the best of our knowledge, there are very few existing work on automatic modeling and recognition of dialog acts in the Czech language. Alternatively, a number of studies have been published for other languages, and particularly for English and German.

In most of these works, the first step consists to define the set of dialog acts to recognize. In \[4, 5\], 42 dialog acts classes are defined for English, based on the Discourse Annotation and Markup System of Labeling (DAMSL) tag-set \[6\]. Jekat \[7\] defines for German and for Japanese in VERBMOBIL 42 DAs, with 18 DAs at the illocutionary level. The MALTUS (Multidimensional Abstract Layered Tagset for Utterances) \[8\] is another DAs tag set based on DAMSL.

Automatic recognition of dialog acts is usually realized using one of, or a combination of the three following models:

1. DA-specific language models
2. dialog grammar
3. DA-specific prosodic models

The first class of models infers the DA from the words sequence. Usually, probabilistic approaches are represented by language models such as n-gram \[5, 9\], or knowledge based approaches such as semantic classification trees \[9\].

The methods based on probabilistic language models exploit the fact that different DAs use distinctive words. Some cue words and phrases can serve as explicit indicators of dialogue structure. For example, 88.4 % of the trigrams ”<start> do you” occur in English in investigation questions \[10\].

Semantic classification trees are decision trees that operate on word sequence with rule-based decision. These rules are trained automatically on a corpus. Alternatively, in classical rule based systems, these rules can be coded manually.

A dialog grammar is used to predict the most probable next dialog act based on the previous ones. It can be modeled
3. DIALOG ACT RECOGNITION FROM PROSODY, LEXICON AND SENTENCE STRUCTURE

When considered, syntax information is often modeled by probabilistic n-gram models in automatic DA recognition systems. However, these n-grams usually model local structures only. Syntax parsing could be used to associate sentence structures to particular dialog acts, but conceiving general grammars is still an open issue, especially for spontaneous speech.

We propose to include in our system a simplified information related to the structure of sentences, i.e. the position of the words within the sentence. This method presents the advantage of introducing valuable information related to the global sentence structure, without increasing the complexity of the overall system.

3.1. Sentence structure model

The general problem is to compute the probability that a sentence belongs to a given dialog act class, given the lexical and syntactic information, i.e. the words sequence.

We simplify this problem by assuming that each word is independent from the other words, but is dependent from its position in the sentence, which is modeled by a random variable P.

We can model our approach by a very simple bayesian network with three variables, as shown in figure 1. On this figure, C encodes the dialog act class of the test sentence, w represents a word and P its position in the sentence.

In the left model of figure 1, $P(w|C, P)$ is assumed independent of the position: $P(w|C, P) \simeq P(w|C)$. This system only considers lexical information, and the probability over the whole sentence is given by:

$$P(w_1, \cdots, w_T|C) = \prod_{i=1}^{T} P(w_i|C)$$

(1)

This system is referred to as “unigram”.

On the right part of figure 1, information about the position of each word is included. However, this model poses two practical issues that have to be solved.

First, sentences have different length. A constant number of different positions N_P is fixed, and N_P probabilities are computed for each sentence. Let us call T the actual number of words in the sentence. The T words are aligned linearly with the N_P positions. Two cases may occur:

- When $T \leq N_P$, the same word may appear at several positions.
- When $T > N_P$, several words can be aligned with one position. These words are replaced by a single “hyperword” h whose probability is the average over the N_i words (w_i) involved:

$$P(h|C, P) = \frac{1}{N_i} \sum_{i} P(w_i|C, P)$$

(2)

Second, this new variable P greatly reduces the ratio between the size of the corpus and the number of free parameters to train. We propose two methods to solve this issue: the first one exploits a multiscale description of the sentence to smooth the probabilities across the scales, while the second one models the dependency between W and P by a non-linear function that includes P.

3.1.1. Multiscale position

In this approach, P can take a different number of values depending on the scale. All these scales can be represented on a tree, as shown in figure 2. At the root of the tree (coarse scale), P can take only one value: it is equivalent to unigrams. Then, recursively, sentences are split into two parts of equal size and the number of possible positions is doubled.

For each word w_i, a threshold is applied on its number of occurrences and $P(w_i|C, P)$ for this word is computed at the finest scale that contains a greater number of occurrences. This corresponds to the standard back-off technique [16] to solve the problem of lack of data.
3.1.2. Non-linear merging

In this approach, unigram probabilities are computed for each word and passed to a multi-layer perceptron (MLP), where the position of each word is encoded by its input index: the \(i^{th} \) word in the sentence is filled into the \(i^{th} \) input of the MLP. The output of the MLP corresponds to the \(\text{a posteriori} \) probabilities \(P(C|W) \).

3.2. Prosody

Following the conclusions of previous studies [17], only the two most important prosodic attributes are used: F0 and energy. Let us call \(F \) the set of prosodic features for one sentence. We test two classifiers: a MLP that computes \(P(C|F) \) and a Gaussian mixture model (GMM) that models \(P(F|C) \).

3.3. Combination

The outputs of the lexical, position and prosodic modules are normalized in the interval \([0; 1]\). They respectively approximate \(P(C|W) \), \(P(C|W; P) \) and \(P(C|F) \).

These probabilities are then combined with another MLP, as suggested in our previous experiments [3].

4. EXPERIMENTS

4.1. Dialog acts corpus

A subset of the Czech Railways corpus, which contains human-human dialogs, is used to validate the proposed methods. For the next experiments, it has been labelled manually with the following set of dialog acts: statements, orders, investigation questions and other questions. The corpus contains 2173 utterances (566 statements (S), 125 orders (O), 282 investigation questions (Q[y/n]) and 1200 others questions (Q)). All the following experiments are realized using a cross-validation procedure, where 10 % of the corpus is reserved for the test, and another 10 % for the development set. The resulting global accuracy has a confidence interval \(< 1\%\).

4.2. Sentence structure experiments

Figure 3 shows the recognition accuracy of the sentence structure model in function of the minimum number of word occurrences, which defines the threshold used in the multiscale tree. The depth of the tree used in this experiment is 3, which defines 8 segments. The unigram model recognition accuracy is also reported on this figure.

The second proposed model that takes into account position information uses a MLP to merge the unigram probabilities and their position. As with the tree smoothing approach, each sentence is split into 8 equal-size segments. The MLP has thus 4 (for each DA class) times 8 inputs. 12 neurons populate the intermediate layer, and 4 output neurons encode the \(\text{a posteriori} \) class probability.

The global recognition accuracy of this model is 94.7 %. This is the best result obtained by every module taken individually.

4.3. Prosody

Table 1 compares the recognition accuracy of the prosodic GMM and MLP. The best MLP topology uses three layers: 40 inputs, 18 neurons in hidden layer and 4 outputs. The best recognition accuracy is obtained with a 3-mixtures GMM.

These recognition scores are much lower than the ones obtained with sentence structure, but our objective is to show that prosody may nevertheless bring some relevant clues that are not related to words sequence.

4.4. Combination

The last part of table 1 shows the recognition results when the prosodic GMM and the MLP-position models (described in 3.1.2) are combined with another MLP.

The combination of models gives better results than any model taken individually, which confirms that different sources of information bring different important clues to classify DAs.
Table 1. Dialog acts recognition accuracy for different approaches/classifiers and their combination in %

<table>
<thead>
<tr>
<th>Approach/Classifier</th>
<th>S</th>
<th>O</th>
<th>Q[y/n]</th>
<th>Q</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lexical information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unigram</td>
<td>93.5</td>
<td>77.6</td>
<td>96.5</td>
<td>89.9</td>
<td>91.0</td>
</tr>
<tr>
<td>2. Sentence structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiscale</td>
<td>94.7</td>
<td>70.4</td>
<td>96.1</td>
<td>95.3</td>
<td>93.8</td>
</tr>
<tr>
<td>Non-linear</td>
<td>90.3</td>
<td>83.2</td>
<td>91.1</td>
<td>98.8</td>
<td>94.7</td>
</tr>
<tr>
<td>3. Prosodic information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMM</td>
<td>47.7</td>
<td>43.2</td>
<td>40.8</td>
<td>44.3</td>
<td>44.7</td>
</tr>
<tr>
<td>MLP</td>
<td>38.7</td>
<td>49.6</td>
<td>52.6</td>
<td>34.0</td>
<td>43.5</td>
</tr>
<tr>
<td>4. Combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>91.5</td>
<td>85.6</td>
<td>94.0</td>
<td>98.7</td>
<td>95.7</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

In this work, we presented two new methods for automatic DAs recognition, with the objective to integrate them into two target applications: a multimodal ticketing reservation system, and an animated talking head. We show that the DA recognition accuracy increases when sentence structure information is used, compared to lexical models. We further compare two approaches to model words position in sentences.

The first perspective of this work consists to use an automatic speech recognizer instead of the manual word transcriptions used in our experiments. The errors coming from the speech recognizer may temper the dominant position of the lexical and sentence structure classifiers. Finally, in real applications, other clues such as the current dialog state shall also be considered. However, we proposed in this work a DA recognition module that is independent from the task, and which can be easily retrained on another corpus.

6. REFERENCES

