sup + inf for Riemannian surfaces and sup × inf for bounded domains of \(\mathbb{R}^n \), \(n \geq 3 \)

Samy Skander Bahoura *

Université Paris VI, 4 place Jussieu 75005 Paris, France

Abstract
On a Riemannian surface, we give a condition to obtain a minoration of sup + inf. On an open bounded set of \(\mathbb{R}^n \) (\(n \geq 3 \)) with smooth boundary, we have a minoration of sup × inf for prescribed scalar curvature equation with Dirichlet condition.

Keywords: Riemannian Surface, sup + inf, sup × inf, Dirichlet condition.

In this paper, we study some inequalities of type sup + inf (in dimension 2) and sup × inf (in dimension \(n \geq 3 \)). We denote \(\Delta = -\nabla_i (\nabla^i) \) the geometric laplacian.

The paper is linking to the Note presented in Comptes Rendus de l’Académie des Sciences de Paris (see [B1])

In dimension 2, we work on Riemannian surface \((M, g)\) and we consider the following equation:

\[
\Delta u + f = V e^u \quad (E_1)
\]

where \(f \) and \(V \) are two functions.

We are going to prove a minoration of sup \(u \) + inf \(u \) under some conditions on \(f \) and \(V \).

Where \(f = R \), with \(R \) the scalar curvature of \(M \), we have the scalar curvature equation studied by T. Aubin, H. Brezis, YY. Li, L. Nirenberg, R. Schoen.

In the case \(f = R = 2\pi \) and \(M = S^2 \), we have a lower bound for sup + inf assuming \(V \) non negative, bounded above by a positive constant \(b \) and without condition on \(\nabla V \) (see Bahoura [B]).

The problem was studied when we suppose \(V = V_i \) uniformly lipschitzian and between two positive constants. (See Bahoura [B] and Li [L]). In fact, there exists \(c = c(a, b, A, M) \) such that for all sequences \(u_i \) and \(V_i \) satisfying:

*email: samybahoura@yahoo.fr, bahoura@ccr.jussieu.fr
\(\Delta u_i + R = V_i e^{u_i}, \) \(0 < a \leq V_i(x) \leq b \) and \(\| \nabla V \|_{\infty} \leq A, \)

we have,

\[
\sup_M u_i + \inf_M u_i \geq c \forall i.
\]

We have some results about \(L^\infty \) boundness and asymptotic behavior for the solutions of equations of this type on open set of \(\mathbb{R}^2, \) see [BM], [S], [SN 1] and [SN 2].

Here, we try to study the same problem with minimal conditions on \(f \) and \(V, \) we suppose \(0 \leq V \leq b \) and without assumption on \(\nabla V. \)

Theorem 1. Assume \((M, g)\) a Riemannian surface and \(f, V \) two functions satisfying:

\[
f(x) \geq 0, \text{ and } 0 \leq V(x) \leq b < +\infty, \forall x \in M.
\]

suppose \(u \) solution of:

\[
\Delta u + f = V e^{u}.
\]

then:

if \(0 < \int_M f \leq 8\pi, \) there exists a constant \(c = c(b, f, M) \) such that:

\[
\sup_M u + \inf_M u \geq c,
\]

if \(8\pi < \int_M f < 16\pi, \) there exists \(C = C(f, M) \in]0, 1[\) and \(c = c(b, f, M) \)

such that:

\[
\sup_M u + C \inf_M u \geq c.
\]

Remark: In fact, we can suppose \(f \equiv k \) a constant. (See [B1]).

Now, we work on a smooth bounded domain \(\Omega \subset \mathbb{R}^n (n \geq 3). \)

Let us consider the following equations:

\[
\Delta u_\epsilon = u_\epsilon^{N-1-\epsilon}, \ u_\epsilon > 0 \text{ in } \Omega \text{ and } u_\epsilon = 0 \text{ on } \partial\Omega \quad (E_2).
\]

with \(\epsilon \geq 0, \) \(N = \frac{2n}{n-2}. \)

The existence result for those equations depends on the geometry of the domain. For example, if we suppose, \(\Omega \) starshaped and \(\epsilon = 0, \) the Pohozaev identity assure a nonexistence result. If \(\epsilon = 0, \) under assumption on \(\Omega, \) we can have an existence result. When \(\epsilon > 0 \) there exists a solutions for the previous equation.
For $\epsilon > 0$, [AP], [BP] and [H], studied some properties of the previous equation.

On unit ball of \mathbb{R}^n, Atkinson-Peletier (see [AP]) have proved:

$$\lim_{\epsilon \to 0} \sup_{B_1(0)} \inf_{B_k(0)} u_{\epsilon} = \left(\frac{1}{|k|} - 1 \right),$$

with $|x| = k < 1$.

In [H], Z-C Han, has proved the same estimation on a smooth open set $\Omega \subset \mathbb{R}^n$ with the following condition:

$$\lim_{\epsilon \to 0} \int_\Omega \frac{|\nabla u_{\epsilon}|^2}{\|u_{\epsilon}\|_{L^{n-1}}} = S_n \quad (1),$$

with $S_n = \pi n(n-2) \left[\frac{\Gamma(n/2)}{\Gamma(n)} \right]^2$ the best constant in the Sobolev imbedding.

In fact, the result of Z-C Han (see [H]), is (with (1)),

$$\lim_{\epsilon \to 0} \|u_{\epsilon}\|_{L^\infty} u_{\epsilon}(x) = \sigma_n(n-2)G(x, x_0), \quad \text{with, } x \in \Omega - \{x_0\}.$$

where $x_0 \in \Omega$ and G is the Green function with Dirichlet condition.

In our work, we search to know if it is possible to have a lower bound of $\sup \times \inf$, without the assumption (1).

Theorem 2. For all compact K of Ω, there exists a positive constant $c = c(K, \Omega, n) > 0$, such that for all solution u_{ϵ} of (E_2) with $\epsilon \in [0, \frac{2}{n-2}]$, we have:

$$\sup_{\Omega} u_{\epsilon} \times \inf_{K} u_{\epsilon} \geq c.$$

Next, we are interesting by the following equation:

$$\Delta u = u^{N-1} + \epsilon u, \quad u > 0, \quad \text{in } \Omega, \quad \text{and } u = 0 \text{ on } \partial \Omega.$$

We know that in dimension 3, there is no radial solution for the previous equation if $\epsilon \leq \lambda_*$ with $\lambda_* > 0$, see [BN]. Next, we consider $n \geq 4$.

We set G the Green function of the laplacian with Dirichlet condition. For $0 < \alpha < 1$, we denote:

$$\beta = \frac{\alpha}{\sup_{\Omega} \int_\Omega \frac{G(x, y)}{dy}}.$$

Assume $n \geq 4$, we have:
Theorem 3. For all compact K of Ω and all $0 < \alpha < 1$ there is a positive constant $c = c(\alpha, K, \Omega, n)$, such that for all sequences $(\epsilon_i)_{i \in \mathbb{N}}$ with $0 < \epsilon_i \leq \beta$ and $(u_{\epsilon_i})_{i \in \mathbb{N}}$ satisfying:

$$\Delta u_{\epsilon_i} = u_{\epsilon_i}^{N-1} + \epsilon_i u_{\epsilon_i}, \quad u_{\epsilon_i} > 0 \text{ and } u_{\epsilon_i} = 0 \text{ on } \partial \Omega, \quad \forall \ i,$$

we have:

$$\forall \ i, \sup_{\Omega} u_{\epsilon_i} \times \inf_K u_{\epsilon_i} \geq c.$$
Proof of the Theorem 1:

First part \((0 < \int_M f \leq 8\pi)\):

We have:

\[
\Delta u + f = Ve^u,
\]

We multiply by \(u\) the previous equation and we integrate by part, we obtain:

\[
\int_M |\nabla u|^2 + \int_M f u = \int_M V e^u u,
\]

But \(V \geq 0\) and \(f \geq 0\), then:

\[
\int_M |\nabla u|^2 + \inf_M u \int_M f \leq \sup_M \int_M V e^u.
\]

On Riemannian surface, we have the following Sobolev inequality, (see [DJLW], \[F\]):

\[
\exists C = C(M, g) > 0, \forall v \in H^1_2(M), \log \left(\int_M e^v \right) \leq \frac{1}{16\pi} \int_M |\nabla v|^2 + \frac{1}{\text{Vol}(M)} \int_M v + \log C.
\]

Let us consider \(G\) the Green function of the laplacian such that:

\[
G(x, y) \geq 0 \quad \text{and} \quad \int_M G(x, y) dV_g(y) \equiv k = \text{constant}.
\]

Then,

\[
u(x) = \frac{1}{\text{Vol}(M)} \int_M u + \int_M G(x, y) [V(y)e^{u(y)} - f(y)] dV_g(y),
\]

and,

\[
\inf_M u = u(x_0) \geq \frac{1}{\text{Vol}(M)} \int_M u - C_1,
\]

with,

\[
\int_M [G(x_0, y)f(y)] \leq \sup_M \int_M G(x_0, y) dV_g(y) = k \sup_M f = C_1.
\]

But, \(\int_M V e^u = \int_M f > 0\), we obtain,

\[
\left(\int_M f \right) (\sup_M u + \inf_M u) \geq -2C_1 \int_M f + \frac{2}{\text{Vol}(M)} \left(\int_M u \right) \left(\int_M f \right) + \int_M |\nabla u|^2,
\]

thus,

\[
\sup_M u + \inf_M u \geq 2 \left[\frac{1}{\text{Vol}(M)} \int_M u + \frac{1}{2 \int_M f} \int_M |\nabla u|^2 \right] - 2C_1.
\]
If we suppose, \(0 < \int_M f \leq 8\pi\), we obtain \(\frac{1}{2} \int_M u \geq \frac{1}{16\pi}\) and then:

\[
\sup_M u + \inf_M u \geq 2 \left[\frac{1}{Vol(M)} \int_M u + \frac{1}{16\pi} \int_M |\nabla u|^2 \right] - 2C_1,
\]

We use the previous Sobolev inequality, we have:

\[
\sup_M u + \inf_M u \geq -2C_1 - 2 \log C + 2 \log \left(\int_M e^u \right),
\]

but,

\[
\int_M V e^u \leq b \int_M e^u,
\]

then,

\[
\int_M e^u \geq \frac{1}{b} \int_M f,
\]

and finally,

\[
\sup_M u + \inf_M u \geq -2C_1 - 2 \log C + 2 \log \left(\frac{1}{b} \int_M f \right).
\]

Second part (\(8\pi < \int_M f < 16\pi\)):

Like in the first part, we have:

a) \(\int_M |\nabla u|^2 + \inf_M u \int_M f \leq \sup u \int_M f\),

b) \(\log \left(\int_M e^u \right) \leq \frac{1}{16\pi} \int_M |\nabla u|^2 + \frac{1}{Vol(M)} \int_M u + \log C\),

c) \(\inf_M u \geq \frac{1}{Vol(M)} \int_M u - C_1\).

We set \(\lambda > 0\). We use a), b), c) and we obtain:

\[
\left(\int_M f \right) (\sup_M u + \lambda \inf_M u) \geq - (\lambda + 1)C_1 \int_M f + \frac{(1 + \lambda)}{Vol(M)} \left(\int_M u \right) \left(\int_M f \right) + \int_M |\nabla u|^2,
\]

thus,

\[
\sup_M u + \lambda \inf_M u \geq - (\lambda + 1)C_1 + (1 + \lambda) \left[\frac{1}{Vol(M)} \int_M u + \frac{1}{(1 + \lambda) \int_M f} \int_M |\nabla u|^2 \right].
\]

We choose \(\lambda > 0\), such that, \(\frac{1}{(1 + \lambda) \int_M f} \geq \frac{1}{16\pi}\).
thus, \((1 + \lambda) \int_M f \leq 16\pi, 0 < \lambda \leq \frac{16\pi - \int_M f}{\int_M f} < 1\).

Finaly, the choice of \(\lambda\), give:

\[
\sup_M u + \lambda \inf_M u \geq -(\lambda + 1)C_1 = (1 + \lambda) \log C + (1 + \lambda) \log \left(\frac{1}{b} \int_M f\right).
\]

If we take \(\lambda = \frac{16\pi - \int_M f}{\int_M f} \in [0, 1]\), we obtain:

\[
\sup_M u + \left(\frac{16\pi - \int_M f}{\int_M f}\right) \inf_M u \geq -C_1 \frac{16\pi}{\int_M f} + \frac{16\pi}{\int_M f} \log C + \frac{16\pi}{\int_M f} \log \left(\frac{1}{b} \int_M f\right).
\]

Proof of theorems 2 and 3:

Here, we give two methods to prove the theorems 2 and 3, but we do the proof only for the theorem 2. In the first proof we use the Moser iterate scheme, the second proof is direct.

Method 1: by the Moser iterate scheme.

We argue by contradiction and we suppose:

\(\exists K \subset \subset \Omega, \forall c > 0, \exists \epsilon_c \epsilon [0, \frac{2}{n-2}]\) such that:

\[
\Delta u_{\epsilon_c} = u_{\epsilon_c}^{N-1-\epsilon_c}, \ u_{\epsilon_c} > 0 \text{ in } \Omega \text{ and } u_{\epsilon_c} = 0 \text{ on } \partial \Omega,
\]

with,

\[
\sup_{\Omega} u_{\epsilon_c} \times \inf_{K} u_{\epsilon_c} \leq c
\]

We take \(c = \frac{1}{i}\), there exists a sequence \((\epsilon_i)_{i \geq 0}\), such that \(\forall i \in \mathbb{N}, \epsilon_i \in [0, \frac{n}{n-2}]\) and

\[
\Delta u_{\epsilon_i} = u_{\epsilon_i}^{N-1-\epsilon_i}, \ u_{\epsilon_i} > 0 \text{ in } \Omega \text{ and } u_{\epsilon_i} = 0 \text{ on } \partial \Omega \ (*)
\]

with,

\[
\sup_{\Omega} u_{\epsilon_i} \times \inf_{K} u_{\epsilon_i} \leq \frac{1}{i} \to 0 \ (**).
\]

Clearly the function \(u_{\epsilon_i}\) which satisfy (*), there exists \(x_{\epsilon_i} \in \Omega\) such that:

\[
\sup_{\Omega} u_{\epsilon_i} = \max_{\Omega} u_{\epsilon_i} = u_{\epsilon_i}(x_{\epsilon_i}).
\]
Lemma:
There exists $\delta = \delta(\Omega, n) > 0$ such that for all $\epsilon > 0$ and $u_\epsilon > 0$, solution of our problem with $x_\epsilon \in \Omega$, $\sup_{\Omega} u_\epsilon = u_\epsilon(x_\epsilon)$ we have:
\[
d(x_\epsilon, \partial\Omega) \geq \delta.
\]

Proof of the lemma:
We argue by contradiction. We suppose: $\forall \delta > 0, \exists x_{\epsilon_{i,\delta}}$ such that: $d(x_{\epsilon_{i,\delta}}, \partial\Omega) \leq \delta$.

We take $\delta = \frac{1}{j}, j \rightarrow +\infty$, we have a subsequence $\epsilon_{i,j}$, noted $\epsilon_{i,j}$, such that, $d(x_{\epsilon_{i,j}}, \partial\Omega) \rightarrow 0$.

Let us consider G the Green function of the laplacian with Dirichlet condition and w satisfying:
\[
\Delta w = 1 \text{ in } \Omega \text{ and } w = 0 \text{ on } \partial\Omega.
\]
Using the variational method, we can prove the existence of w and $w \in C^\infty(\overline{\Omega})$.

The Green representation formula and the fact $x_{\epsilon_{i,j}} \rightarrow y_0 \in \partial\Omega$ give:
\[
0 = w(y_0) = w(x_{\epsilon_{i,j}}) = \int_{\Omega} G(x_{\epsilon_{i,j}}, y)dy,
\]
we can write,
\[
\int_{\Omega} G(x_{\epsilon_{i,j}}, y)dy \rightarrow 0.
\]
The function $u_{\epsilon_{i,j}}$ satisfy (*) and thus:
\[
u_{\epsilon_{i,j}}(x_{\epsilon_{i,j}}) \leq (\max_{\Omega} u_{\epsilon_{i,j}})^{N-1-\epsilon_i} \int_{\Omega} G(x_{\epsilon_{i,j}}, y)dy,
\]
consequently,
\[
1 \leq [u_{\epsilon_{i,j}}(x_{\epsilon_{i,j}})]^{N-2-\epsilon_i} \int_{\Omega} G(x_{\epsilon_{i,j}}, y)dy.
\]
Then,
\[
u_{\epsilon_{i,j}}(x_{\epsilon_{i,j}}) \rightarrow +\infty \text{ and } x_{\epsilon_{i,j}} \rightarrow y_0 \in \partial\Omega \quad (**).\]
But, if we use the result of Z-C.Han (see [H] page 164) and [DLN] (pages 44-45 and 50-53) and the moving plane method (see [GNN]) we obtain:
if Ω is smooth bounded domain, f a function in C^1 and u is a solution of:
\[\Delta u = f(u), \text{ in } \Omega \text{ and } u = 0 \text{ on } \partial \Omega, \]

there exists two positive constants \(\delta \) and \(\gamma \), which depend only on the geometry of the domain \(\Omega \), such that:

\[\forall x \in \{ z, d(z, \partial \Omega) \leq \delta \}, \exists \Gamma_x \subset \{ z, d(z, \partial \Omega) \geq \frac{\delta}{2} \} \text{ with } \text{mes}(\Gamma_x) \geq \gamma \text{ et } u(x) \leq u(\xi) \text{ for all } \xi \in \Gamma_x. \]

Thus,

\[u(x) \leq \frac{1}{\text{mes}(\Gamma_x)} \int_{\Gamma_x} u \leq \frac{1}{\gamma} \int_{\Omega'} u \quad (\ast'), \]

with \(\Omega' \subset \subset \Omega \).

If we replace \(x \) by \(x_{\varepsilon_i} \), \(u \) by \(u_{\varepsilon_i} \) and we take \(\Omega' = \{ z \in \Omega, d(z, \partial \Omega) \geq \frac{\delta}{2} \} \), we obtain (after using the argument of the first eigenvalue like in [H]):

\[+\infty \leftarrow u_{\varepsilon_i}(x_{\varepsilon_i}) \leq \frac{1}{\gamma} \int_{\Omega'} u_{\varepsilon_i} \leq c_2(\Omega', n) < \infty, \]

it is contradiction. The lemma is proved.

We continue the proof of the Theorem.

Without loss of generality, we can assume \(x_{\varepsilon_i} \rightarrow y_0 \). We consider \((x_{\varepsilon_i})_{i \geq 0} \) and \(\mu > 0 \), such that \(x_{\varepsilon_i} \in B(y_0, \mu) \subset \subset \Omega \). (we take \(\mu = \frac{\delta}{2} \) for example).

We have:

\[u_{\varepsilon_i}(x) = \int_{\Omega} G(x, y) u_{\varepsilon_i}^{N-1-\varepsilon_i}(y) dy \]

According to the properties of the Green functions and maximum principle, on the compact \(K \) of \(\Omega \):

\[G(x, y) \geq c_3 = c(K, \Omega, n) > 0, \forall x \in K, y \in B(y_0, \mu). \]

Thus,

\[\inf_K u_{\varepsilon_i} = u_{\varepsilon_i}(y_{\varepsilon_i}) \geq c_3 \int_{B(y_0, \mu)} u_{\varepsilon_i}^{N-1-\varepsilon_i}, \]

and then,

\[\int_{B(y_0, \mu)} u_{\varepsilon_i}^{N-\varepsilon_i} \leq (\sup_{\Omega} u_{\varepsilon_i}) \times \int_{B(y_0, \mu)} u_{\varepsilon_i}^{N-1-\varepsilon_i} \leq \frac{(\sup_{\Omega} u_{\varepsilon_i} \times \inf_K u_{\varepsilon_i})}{c_3} \rightarrow 0. \]
Finally,

$$0 < \int_{B(y_0, 2\mu/3)} u_{\epsilon_i}^{N-\epsilon} \to 0 \quad (***) .$$

Let \(\eta \) be a smooth function such that:

$$0 \leq \eta \leq 1, \ \eta \equiv 1, \ \text{on } B(y_0, \mu/2), \ \eta \equiv 0, \ \text{on } \Omega - B(y_0, 2\mu/3).$$

Set \(k > 1 \). We multiply the equation of \(u_{\epsilon_i} \) by \(u_{\epsilon_i}^{2k-1} \eta^2 \) and we integrate by part the first member,

$$(2k-1) \int_{B(y_0, 2\mu/3)} |\nabla u_{\epsilon_i}|^2 u_{\epsilon_i}^{2k-2} \eta^2 + 2 \int_{B(y_0, 2\mu/3)} < \nabla u_{\epsilon_i} | \nabla \eta > \eta u_{\epsilon_i}^{2k-1} = \int_{B(y_0, 2\mu/3)} u_{\epsilon_i}^{N-2k-2-\epsilon} \eta^2 .$$

We compute \(|\nabla(u_{\epsilon_i}^k \eta)|^2 \) and we deduce:

$$\frac{2k - 1}{k^2} \int_{B(y_0, 2\mu/3)} |\nabla(u_{\epsilon_i}^k \eta)|^2 + \frac{2 - 2k}{k} \int_{B(y_0, 2\mu/3)} < \nabla u_{\epsilon_i} | \nabla \eta > u_{\epsilon_i}^{2k-1} - \frac{2k - 1}{k^2} \int_{B(y_0, 2\mu/3)} |\nabla \eta|^2 u_{\epsilon_i}^{2k} = \int_{B(y_0, 2\mu/3)} \eta^2 u_{\epsilon_i}^{N+2k-2-\epsilon} .$$

And,

$$\int_{B(y_0, 2\mu/3)} < \nabla u_{\epsilon_i} | \nabla \eta > u_{\epsilon_i}^{2k-1} = \frac{1}{4k} \int_{B(y_0, 2\mu/3)} < \nabla(u_{\epsilon_i}^2 \eta) | \nabla(\eta^2) > - \frac{1}{4k} \int_{B(y_0, 2\mu/3)} \Delta(\eta^2) u_{\epsilon_i}^{2k} .$$

Then,

$$\frac{2k - 1}{k^2} \int_{B(y_0, 2\mu/3)} |\nabla(u_{\epsilon_i}^k \eta)|^2 + \frac{2 - 2k}{4k^2} \int_{B(y_0, 2\mu/3)} \Delta(\eta^2) u_{\epsilon_i}^{2k} + \frac{2k - 1}{k^2} \int_{B(y_0, 2\mu/3)} |\nabla \eta|^2 u_{\epsilon_i}^{2k} + \int_{B(y_0, 2\mu/3)} u_{\epsilon_i}^{N+2k-2-\epsilon} .$$

But,

$$\int_{B(y_0, 2\mu/3)} u_{\epsilon_i}^{N+2k-2-\epsilon} = \int_{B(y_0, 2\mu/3)} (u_{\epsilon_i}^{2k} \eta^2)(u_{\epsilon_i}^{N-2-\epsilon}).$$

Using Hölder inequality with \(p = (N-\epsilon)/2 \) and \(p' = (N-\epsilon)/(N-\epsilon-2) \), we obtain:

$$\frac{2k - 1}{k^2} [||\nabla(\eta u_{\epsilon_i})||^2_{L^2(B_0)}]^2 \leq ||u_{\epsilon_i}||_{L^{N-\epsilon}(B_0)}^{N-\epsilon-2} \times ||\eta u_{\epsilon_i}^k||_{L^{N-\epsilon}(B_0)}^{N-\epsilon-2} + C [||u_{\epsilon_i}||_{L^2(B_0)}^{2k}] .$$
with $B_0 = B(y_0, 2\mu/3)$ and $C = C(k, \eta) = 2 - 2k + \frac{2k - 1}{k^2} \|\Delta \eta\|_\infty + \frac{2k - 1}{k^2} \|\nabla \eta\|_\infty$.

Hölder and Sobolev inequalities give,

$$\|\eta u_{\epsilon_i}^k\|_{L^{N-\epsilon_i}(B_0)}^2 \leq \|B_0\|^{2\epsilon_i/[N(N-\epsilon_i)]}K\|\nabla (\eta u_{\epsilon_i}^k)\|_{L^2(B_0)}^2.$$

We obtain:

$$\frac{2k - 1}{k^2\|B_0\|^{2\epsilon_i/[N(N-\epsilon_i)]}K} \|\eta u_{\epsilon_i}^k\|_{L^{N-\epsilon_i}(B_0)}^2 \leq \|u_{\epsilon_i}\|_{L^{N-\epsilon_i}(B_0)}^{N-2-\epsilon_i} \times \|\eta u_{\epsilon_i}^k\|_{L^{N-\epsilon_i}(B_0)}^2 +$$

$$+ C(k, \eta)\|u_{\epsilon_i}\|_{L^{2k}(B_0)}^{2k},$$

with $|B_0| = \text{mes}[B(0, 2\mu/3)]$.

We choose $k = \frac{N - \epsilon_i}{2}$ and we denote $\alpha_i = \|\eta u_{\epsilon_i}^{(N-\epsilon)/2}\|_{L^{N-\epsilon_i}(B_0)}^2 > 0$.

We have:

$$c_1 \alpha_i \leq \beta_i \alpha_i + c_2 \gamma_i,$$

with $c_1 = c_1(N, \mu) > 0$, $c_2 = c_2(N, \mu) > 0$, $\beta_i = \|u_{\epsilon_i}\|_{L^{N-\epsilon_i}}^{N-2-\epsilon_i}$ and $\gamma_i = \|u_{\epsilon_i}\|_{L^{N-\epsilon_i}}^{N-\epsilon_i}$.

with $\epsilon_i \in [0, \frac{2}{n-2})$. According to (** **), we have, $\beta_i \to 0$ and $\gamma_i \to 0$.

Thus,

$$(c_1/2) \alpha_i \leq (c_1 - \beta_i) \alpha_i \leq \gamma_i \to 0.$$

Finally,

$$0 < \int_{B(y_0, \mu/2)} u_{\epsilon_i}^{(N-\epsilon)/2} \leq \int_{B(y_0, 2\mu/3)} \eta u_{\epsilon_i}^{(N-\epsilon)/2} \to 0.$$

We iterate this process with $k = \frac{(N - \epsilon)^2}{4}$ after with $k = \frac{(N - \epsilon)^r}{2^r}$, $r \in \mathbb{N}^*$, we obtain, for all $q \geq 1$, there exists $l > 0$, such that:

$$\int_{B(y_0, l)} (u_{\epsilon_i})^q \to 0.$$

Using the Green representation formula, we obtain:

$$\forall \ x \in B(x, l'), \ u_{\epsilon_i}(x) = \int_{B(y_0, l)} G(x, y)u_{\epsilon_i}^{N-1-\epsilon}(y)dy + \int_{\partial B(y_0, l)} \partial_r G(x, \sigma)u_{\epsilon_i}(\sigma) \sigma_t (****).$$
where $0 < l' \leq l$.

We have,

$$\int_{B(y_0, l)} u_{\xi_i}^q = \int_0^l \int_{\partial B(y_0, r)} u_{\xi_i}^q(r \sigma_r) d\sigma_r dr \to 0,$$

We set, $s_{i, q}(r) = \int_{\partial B(y_0, r)} u_{\xi_i}^q(r \sigma_r)$. Then,

$$\int_0^l s_{i, q}(r) dr \to 0.$$

We can extract of, $s_{i, q}$, a subsequence which noted $s_{i, q}$ and which tends to 0 almost everywhere on $[0, l]$.

First, we choose, $q_1 = \frac{q(n + 2)}{n - 2}$ with $q > \frac{n}{2}$, after we choose $l_2 > 0$, such that, $\int_{B(y_0, l_2)} u_{\xi_i}^{q_1} \to 0$. Finally, we take $l_1 \in [0, l_2]$, such that, $s_{i, q_1}(l_1) \to 0$. We take $l_0 = \frac{l_1}{2} = l'$ in (***) and $l = l_1$ in (***) we obtain if we use Hölder inequality for the two integrals of (***)

$$\exists \ l_0 > 0, \ \sup_{B(y_0, l_0)} u_{\xi_i} \to 0.$$

But, $x_{\xi_i} \to y_0$, for i large, $x_{\xi_i} \in B(y_0, l_0)$, which imply,

$$u_{\xi_i}(x_{\xi_i}) = \max_{\Omega} u_{\xi_i} \to 0.$$

But if we write,

$$u_{\xi_i}(x_{\xi_i}) = \int_{\Omega} G(x_{\xi_i}, y) u_{\xi_i}^{N-1-\epsilon_i}(y) dy,$$

we obtain,

$$\max_{\Omega} u_{\xi_i} = u_{\xi_i}(x_{\xi_i}) \leq \left(\sup_{\Omega} u_{\xi_i} \right)^{N-1-\epsilon_i} \int_{\Omega} G(x_{\xi_i}, y) dy = [u_{\xi_i}(x_{\xi_i})]^{N-1-\epsilon_i} w(x_{\xi_i}),$$

and finally,

$$1 \leq u_{\xi_i}(x_{\xi_i})^{N-2-\epsilon_i} w(x_{\xi_i}).$$

But, $w > 0$ on Ω, $\|w\|_\infty > 0$ and $N - 2 - \epsilon_i > \frac{2}{n - 2}$, we have,

$$u_{\xi_i}(x_{\xi_i}) \geq \frac{1}{\|w\|_\infty^{1/(N-2-\epsilon_i)}} \geq c_4(n, \Omega) > 0.$$

It is a contradiction.

For the Theorem 3, we obtain a contradiction if we write:
\[
\max_{\Omega} u_{\epsilon} \leq (\max_{\Omega} u_{\epsilon})^{N-1} \|w\|_\infty + \max_{\Omega} u_{\epsilon} \epsilon \int_{\Omega} G(x,y)dy
\leq (\max_{\Omega} u_{\epsilon})^{N-1} \|w\|_\infty + \alpha \max_{\Omega} u_{\epsilon},
\]

and finally,

\[
\max_{\Omega} u_{\epsilon} \geq \left(\frac{1-\alpha}{\|w\|_\infty} \right)^{1/(N-2)}.
\]

Method 2: proof of theorem 2 directly.

Suppose that:

\[
\sup_{\Omega} \times \inf_K u_i \to 0,
\]
then, for \(\delta > 0\) small enough, we have:

\[
\sup_{\Omega} \times \inf_{\{x,d(x,\partial\Omega) \geq \delta\}} u_i \to 0.
\]

Like in the first method (see [H]), for \(\delta > 0\) small,

\[
\sup_{\{x,d(x,\partial\Omega) \geq \delta\}} u_i \leq M = M(n,\Omega).
\]

We have,

\[
u_i(x) = \int_{\Omega} G(x,y)u_i^{N-1-\epsilon_i}dy.
\]

Let us consider \(K'\) another compact of \(\Omega\), using maximum principle, we obtain:

\[\exists c_1 = c_1(K,K',n,\Omega) > 0, \text{ such that } G(x,y) \geq c_1 \forall x \in K, y \in K,\]

thus,

\[\inf_K u_i = u_i(x_i) \geq c_1 \int_{K'} u_i^{N-1-\epsilon_i}dy.\]

We take, \(K' = K_\delta = \{x, d(x,\partial\Omega) \geq \delta\}\), there exists \(c_2 = c_2(\delta, n, K, \Omega) > 0\) such that:

\[\sup_{\Omega} \times \inf_K u_i \geq c_2 \int_{K_\delta} u_i^{N-\epsilon_i}dy,\]

we deduce,

\[\|u_i\|_{N-\epsilon_i}^{N-\epsilon_i} \geq c'_2 \sup_{\Omega} \times \inf_{\{x,d(x,\partial\Omega) \geq \delta\}} u_i + \max(\{x,d(x,\partial\Omega) \leq \delta\})M^{N-\epsilon_i}.\]
If we take \(\delta \) small and for \(i \) large, we have:

\[
||u_i||_{N-\epsilon_i} \rightarrow 0.
\]

Now, we use the Sobolev imbedding, \(H^1_0 \) in \(L^N \), we multiply the equation of \(u_i \) by \(u_i \), we integrate by part and finally, by Hölder inequality, we obtain:

\[
\bar{K}_1 ||u_i||_{8N-\epsilon_i}^2 \leq \bar{K}_2 ||u_i||_{N}^2 \leq \int_{\Omega} |\nabla u_i|^2 = \int_{\Omega} u_i^{N-\epsilon_i} = ||u_i||_{N-\epsilon_i}^{N-\epsilon_i},
\]

we know that, \(0 < \epsilon_i \leq \frac{2}{n-2} \), the previous inequality:

\[
||u_i||_{N-\epsilon_i} \geq \bar{K}_3 > 0, \ \forall \ i,
\]

it is a contradiction.
References:

