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Abstract

Complex networks have received much attention in the last few years,
and reveal global properties of interacting systems in domains like biology,
social sciences and technology. One of the key feature of complex networks
is their clusterized structure. Most methods applied to study complex
networks are based on undirected graphs. However, when considering
neural networks, the directionality of links is fundamental. In this article,
a method of cluster detection is extended for directed graphs. We show
how the extended method is more efficient to detect a clusterized structure
in neural networks, without significant increase of the computational cost.

1 Introduction

Many systems of interacting entities are represented as graphs, where actors
are described by nodes, and interactions between actors can be formalized as
edges between the nodes. Studies on complex networks have shown that social,
biological and technological networks share a clusterized structure [1]. A defi-
nition of a “cluster” (also called “community”, or “module”) in a “weak sense”
[2] could be that the elements inside a cluster interact more strongly with each
others than with the other elements of the graph. Recently, Girvan & Newman
[3, 4] have proposed an algorithm (GN method) to determine clusters in a given
undirected graph, without any restriction on the size and the number of clusters.

The connectivity of neural networks is often either complete (all neurons
are connected to all the others) or random. However, it has been shown that
natural neural network topologies are neither random nor complete, but display
an intermediate clusterized structure [5, 6]. In a neural network, the edges
between nodes are directed, due to the unidirectionality property of synapses.
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We describe an extension of the GN method for directed graphs, where clusters
consist of strongly connected components of the graphs [7]. As the topology
constrains the dynamics, it is useful to determine how the nodes are linked at
the topological level for understanding how they interact at the dynamical level
[8]. We show, as illustration, a topology underlying a dynamical neural network
obtained after an evolutionary optimisation [9]. The topology has a clusterized
structure, and the extended cluster detection method is more efficient than the
GN method for discovering clusters in the network directed graph.

2 Cluster detection for undirected graph

2.1 Betweenness centrality
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Figure 1: Left: Node-betweenness and edge-betweenness centralities. Right:

Edges between nodes of two clusters have higher edge-betweenness centralities
(dashed lines) than edges between nodes of the same cluster (solid lines).

The notion of node-betweenness centrality has first appeared in the field of
social science [10] to determine the role of each actor (node) in a social network.
This measure is based on the notion of shortest path in a graph. If two nodes
are connected, there might exist several paths between them. Shortest paths
are those with the smaller number of nodes along the path. There might exist
several shortest paths between two nodes, if some paths have the same (minimal)
length. Betweenness centrality for a node k is the number of shortest paths
between two other nodes i and j that go through k (noted σij(k)), divided by
the total number of shortest paths that go from i to j (σij). On Figure 1 (left),
two shortest paths exist between i and j (dotted links), and only one crosses
node k, thus σij(k) = 1/2. The betweenness centrality of node k is given by the
sum of all different pairs of nodes i and j in the graph:

CB(k) =
∑

i6=j

σij(k)

σij

with i 6= k and j 6= k (1)

Girvan and Newman extend the definition to edges by defining the edge-

betweenness centrality. On Figure 1 again, edge-betweenness centrality of edge
{k, k′} for nodes i and j is σij({k, k′}) = 1/2. Edge-betweenness centrality for
a given edge {k, k′} is the sum on all pairs i and j (different from k and k′):
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CB({k, k′}) =
∑

i6=j

σij({k, k′})

σij

(2)

2.2 Girvan and Newman cluster detection algorithm

Consider a graph with two clusters of highly interconnected nodes and few
edges between them (Figure 1, right). For the shortest paths between nodes
that belong to different clusters (dashed lines), it can be seen that most of the
shortest paths go through the few edges that join the clusters together (solid
lines). Hence these edges have a strong edge-betweenness centrality. GN method
is based on this property. By removing iteratively the edges with highest edge-
betweenness centrality, the clusters of the graphs are disconnected. The cluster
detection method is a two-pass algorithm.

• The first pass consists in computing the edge-betweenness centrality for
all the edges in the graph, removing the edge with the highest edge-
betweenness centrality, then computing again the edge-betweenness cen-
trality for all the edges in the resulting graph, etc... until all the edges
have been removed.

• The second pass is the cluster building. At the beginning, each cluster
consists of one single node. The edges between clusters are added by
reading in reverse order the edges removed in the first pass. Whenever an
edge joins two nodes that are part of two different clusters, all the nodes
are grouped in a single cluster. Whenever an edge joins two nodes that
are part of the same cluster, the set of clusters remains unchanged.

2.3 Modularity

The iterative method corresponding to the second pass gives successively several
sets of clusters. By considering the reverse order of edge removal, the first added
edges are more likely to be inside densily connected clusters, and the last added
edges join together these densely connected clusters. However, how to determine
when the algorithm switches between these two extreme behaviours, i.e. when
to stop the cluster building algorithm for relevance? Newman & Girvan [4]
introduce a measure called modularity (see also [11]):

M(C) =

NC
∑

c=0

[

dc

L
−

(

lc
L

)2
]

(3)

where NC is the total number of clusters in a given set C, dc is the number of
edges between nodes of a given cluster c, lc is the total degree (i.e. the total
number of edges) of nodes in cluster c and L the total number of edges in the
whole network. The modularity is based on the edges in the initial network,
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without edge removal. This measure equals 1 if all the edges are inside the
clusters of C, and 0 if there is an equal proportion between edges inside and
outside the clusters of C. The optimal set of clusters is the one with the highest
modularity during the cluster building.

3 Extension to directed graphs

3.1 Algorithm

GN method has been mostly applied to undirected graphs. However, in the case
of neural networks, the directionality of the edges is a key feature. A directed
edge is classically referred as “arc”. Consider two clusters A and B. After the
addition of an arc from a node in A to a node in B, the nodes of cluster A are
able to reach the nodes of cluster B, but there is no reason that the nodes of
cluster B are able to reach the nodes of cluster A. If A and B were grouped,
the new cluster will contain nodes that cannot reach some other nodes in the
cluster via a directed path.

Node

Cluster

New cluster

a) b)

Added arc

Existing arc

c)

BA

B

A

A=B

Figure 2: Description of the construction of arc-linked clusters.

We extend the cluster formation process by introducing the notion of arc-

linked cluster. In this case, we use betweenness centrality definitions extended
to the case of directed graphs [3]. Clusters with an arc between them are not
always grouped to form a single cluster as in the GN method. When an arc is
added from a node in cluster A to a node in cluster B, we check with a depth-first
search whether there exists a directed path that goes from B to A:

• If cluster A is already the same as cluster B (case a in Figure 2), the set
of clusters is unchanged.

• If such a path does not exist (b in Figure 2), an arc from A to B is stored,
without modification of the cluster set.

• Otherwise (c in Figure 2), all the clusters along the path are grouped into
a single cluster.
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The present algorithm has the effect of building incrementally clusters that
are strongly connected components of the directed graph.

3.2 Complexity

Consider a network with n nodes and m edges. In a sparse network, n ∼ m.
Edge-betweenness centralities for all the edges are computed with the Brandes
algorithm [12], with complexity O(mn), at each edge deletion, and O(nm2) for
the complete removal phase. For the GN method, the building phase complexity
is O(m). In the extended algorithm, the complexity is O(m + n) for each edge
addition, since we compute a depth-first search at each step. Hence the overall
complexity for the cluster building phase is O(m(n + m)), higher than in GN
method, but still negligible compared to the complexity of the removal phase.

4 Application of the extended cluster detection

algorithm

For illustration, we compute the clusters in an example neural network topology
for comparing the GN method and the arc-linked cluster detection method.

The neural network is composed of dynamical objects (spiking neurons and
temporally varying synapses) and controls the behaviour of a virtual robot whose
performance in a predator-prey environment is optimized by an evolutionary
algorithm [9]. For evaluating the computational gain from one generation to
the next, we need to know the clusters of the neural network. The network
topology is described by projections, i.e. arcs between groups of neurons that
define all-to-all synaptic links between neurons of two connected groups. The
network is composed of 100 internal, 9 input and 4 output groups of neurons.
The two cluster detection algorithms are compared on the graph of a network
with 426 projections (Figure 3). The nodes of the graph correspond to the
internal groups of neurons, and the arcs correspond to projections between
groups.

Figure 3 displays the variations of the maximal edge-betweenness centrality
during the edge removal process and the modularity, for the GN cluster building
algorithm (dashed line) and for the extended algorithm (solid line). Arrows
clarify the order of edge deletion (left) and the reverse cluster building order
(right). The cluster building graph is presented in reverse order, since the
number of removed links is related to the number of added links. The vertical
bar indicate the highest maximal edge-betweenness centrality on both graphs.

The optimal set of clusters should correspond to the peak of the maximal
edge-beweenness centrality achieved during the edge removal process, because
the strong drop that follows the peak corresponds to a maximal cluster discon-
nection (see section 2.2). However, with the GN method, the peak of modularity
happens sooner (128 added links) in the cluster building process than the peak
of maximal edge-beweenness centrality. Conversely, with the extended method,
the peak of modularity happens (390 added links) close to the drop of maximal
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Figure 3: Left: Maximal edge-betweenness centrality during the edge removal
process. Right: Modularity during cluster building with the GN method and
the arc-linked cluster detection.

edge-beweenness centrality (27 = 426 − 399 deleted links). Moreover, the peak
is narrower and much higher (0.17 compared to 0.07) than with GN method.
Last, the optimal set of clusters obtained by arc-linked cluster detection is more
pertinent in the context of the neural network considered as example.

5 Conclusion

We have extended a cluster detection method to the case of directed graphs,
well suited to study neural networks since the directionality of edges is a key
feature. We have shown that the arc-linked cluster detection method achieves a
narrower and higher modularity peak than the GN method and results in a more
pertinent optimal set of clusters. The identification of clusters is particularly
suitable to show the emergence of a modular topology in neural networks and
provides a framework to study the dynamics of functional modules [8].
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