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diruscio@di.univaq.it, frederic.jouault@univ-nantes.fr,ivan.kurtev@univ-
nantes.fr,jean.bezivin@univ-nantes.fr

Abstract

Over the last years, Model Driven Engineering platforms evolved from fixed metamodel tools to systems with
variable metamodels. This enables dealing with a variety ofDomain Specific Languages (DSLs). These generic
platforms are increasingly adopted to solve problems like code generation. However, these environments are often
limited to syntax definitions. The AMMA platform conceives DSLs as collections of coordinated models defined
using a set of core DSLs. For broadening the approach to semantics definition, AMMA should thus be extended.
The paper presents an extension of the core DSLs of AMMA to specify the dynamic semantics of a range of DSLs
by means of Abstract State Machines. Thus, DSLs can be definednot only according to their abstract and concrete
syntaxes but also to their semantics in a uniform and systematic way. The approach is validated by means of the
semantic bootstrap of the ATL transformation language.





1 Introduction

Over the last years, Model Driven Engineering (MDE) platforms evolved from tools based on fixed metamodels
(e.g. a UML CASE tool with ad-hoc Java code generation facilities) to complex systems with variable metamod-
els. In MDE, metamodels are used to specify the conceptual structure of modeling languages. The flexibility in
coping with an open set of metamodels enables the handling a variety of Domain Specific Languages (DSLs), i.e.
languages which are close to a given problem domain and distant from the underlying technological assets.

The current MDE platforms are increasingly adopted to solvesuch problems as code generation [25], semantic
tool interoperability [5], checking models [6], and data integration [16]. However, these platforms are often limited
to specifying the syntactical aspects of modeling languages such as abstract and concrete syntax. Defining of
precise models and performing various tasks on these modelssuch as reasoning, simulation, validation, verification,
and others require that precise semantics of models and modeling languages are available. To achieve this, existing
MDE platforms have to be extended with capabilities for defining language semantics.

In this paper we use the ATLAS Model Management Architecture(AMMA) as a framework for defining DSLs
following MDE principles. AMMA treats a DSL as a collection of coordinated models, which are defined using
a limited set of core DSLs. The current set of core DSLs allowsto cope with most syntactic and transformation
definition issues in language definition. In order to broadenthe approach to semantics definition, AMMA should
be extended with additional generic facilities.

The paper presents an extension of AMMA to specify the dynamic semantics of a wide range of DSLs by
means of Abstract State Machines [10] (ASMs), which are introduced in the framework as a further core DSL.
Thus, DSLs can be defined not only by their abstract and concrete syntax but also by their semantics in a uniform
and systematic way. The approach is validated by means of thesemantic bootstrap of the ATL transformation
language.

The structure of the paper is as follows. Section2 provides the basic definitions and describes the interpretation
of DSLs in a MDE setting. Section3 briefly reviews the ASMs formalism. Section4 describes the current state
of the AMMA framework. Section5 presents the extension of AMMA with ASMs. In Section6 a case study is
proposed where the dynamic semantics of ATL is proposed. After relating the approach with other works, some
conclusions are given in Section8.

2 Domain-Specific Languages and Models

DSLs are languages able to raise the level of abstraction beyond coding by specifying programs using domain
concepts [27]. In particular, by means of DSLs, the development of systems can be realized by considering only
abstractions and knowledge from the domain of interest. This contrasts with General Purpose Languages (GPLs),
like C++ or Java, that are supposed to be applied for much moregeneric tasks in multiple application domains.
By using a DSL the designer does not have to be aware of implementation intricacies, which are distant from
the concepts of the system being implemented and the domain the system acts in. Furthermore, operations like
debugging or verification can be entirely performed within the domain boundaries.

Over the years, many DSLs have been introduced in different application domains (telecommunications, multi-
media, databases, software architectures, Web management, etc.), each proposing constructs and concepts familiar
to experts and professionals working in those domains. However, the development of a DSL is often a complex
and onerous task. A deep understanding of the domain is required to perform the necessary analysis and to elicitate
the requirements the language has to meet.

As any other computer language (including GPLs), a DSL consists of concrete and abstract syntax definition
and possibly a semantics definition, which may be formulatedat various degrees of preciseness and formality. In
the context of MDE we perceive a DSL as a collection of coordinated models. We are in this way, leveraging the
unification power of models [4]. Each of the models composing a DSL specifies one of the following language
aspects:

• Domain definition metamodel.As we discussed before, the basic distinction between DSLs and GPLs is
based on the relation to a given domain. DSLs have a clearly identified, concrete problem domain. Programs
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(sentences) in a DSL represent concrete states of affairs inthis domain. A conceptualization of the domain is
an abstract entity that captures the commonalities among the possible state of affairs. It introduces the basic
abstractions of the domain and their mutual relations. Oncesuch an abstract entity is explicitly represented
as a model it becomes a metamodel for the models expressed in the DSL. We refer to this metamodel as a
Domain Definition MetaModel (DDMM). It plays a central role in the definition of the DSL. For example,
a DSL for directed graph manipulation will contain the concepts of nodes and edges, and will state that an
edge may connect a source node to a target node. Similarly, a DSL for Petri nets will contain the concepts
of places, transitions and arcs. Furthermore, the metamodel should state that arcs are only between places
and transitions;

• Concrete syntaxes.A DSL may have different concrete syntaxes, which are definedby transformation
models that maps the DDMM onto display surface metamodels. Examples of display surface metamodels
are SVG or DOT [18], but also XML. A possible concrete syntax of a Petri net DSL may be defined by
mapping from places to circles, from transitions to rectangles, and from arcs to arrows. The display surface
metamodel in this case has the concepts of Circle, Rectangle, and Arrow;

• Dynamic semantics.Generally, DLSs have different types of semantics. For example, OWL [28] is a DSL
for defining ontologies. The semantics of OWL is defined in model theoretic terms. The semantics is static,
that is, the notion of changes in ontologies happening over time is not captured. Many DSLs have a dynamic
semantics based on the notion of transitions from state to state that happen in time. Dynamic semantics may
be given in multiple ways, for example, by mapping to anotherDSL having itself a dynamic semantics or
even by means of a GPL. In this paper we focus on DSLs with dynamic semantics;

• Additional operations over DSLs.In addition to canonical execution governed by the dynamic semantics,
there are plenty of other possible operations manipulatingprograms written in a given DSL. Each may be
defined by a mapping represented by a model transformation. For example, if one wishes to query DSL
programs, a standard mapping of the DDMM onto Prolog may be useful. The study of these operations over
DSLs presents many challenges and is currently an open research subject.

3 Abstract State Machines

3.1 Overview

ASMs [10] bridge the gap between specification and computation by providing more versatile Turing-complete
machines. The ability to simulate arbitrary algorithms on their natural levels of abstraction, without implementing
them, makes ASMs appropriate for high-level system design and analysis. ASMs specifications represents a formal
basis to reason about the properties of systems which are described into unambiguous way. ASMs form a variant of
first-order logic with equality, where the fundamental concept is that functions are defined over a setU and can be
changed point-wise by means of transition rules. The setU , referred to as thesuperuniversein ASM terminology,
always contains the distinct elementstrue, false, andundef. Apart from these,U can contain numbers, strings, and
possibly anything, depending on the application domain.

By means of ASMs, systems can be modeled as sequences of statetransitions. The state transitions are captured
by means of ASMs rules that are executed if corresponding predicates are verified. Being slightly more formal, we
define thestateλ of a system as a mapping from a signatureΣ (which is a collection of function symbols) to actual
functions. We writefλ for denoting the function which interprets the symbolf in the stateλ. Subsets ofU , called
universes, are modeled by unary functions fromU to {true, false}. Such a function returnstrue for all elements
belonging to the universe, andfalseotherwise. A functionf from a universeU to a universeV is a unary operation
on the superuniverse such that for alla ∈ U , f(a) ∈ V or f(a) = undef . The universeBooleanconsists oftrue
andfalse. A basic ASMtransition ruleis of the form

f(t1, . . . , tn) := t0

wheref(t1, . . . , tn) and t0 are closed terms (i.e. terms containing no free variables) in the signatureΣ. The
semantics of such a rule is : evaluate all the terms in the given state, and update the function corresponding tof at
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Figure 1: General Structure of the abstract machine specifying the dynamic semantics of a DSL

the value of the tuple resulting of evaluating(t1, . . . , tn) to the value obtained by evaluatingt0. Rules are composed
in a parallel fashion, so the corresponding updates are all executed at once. Apart from the basic transition rule
shown above, there also existconditionalrules where the firing depends on the evaluated boolean condition-term,
do-for-all rules which allow the firing of the same rule for all the elements of a universe, and lastlyextendrules
which are used for introducing new elements into a universe.Transition rules are recursively built up from these
rules.

3.2 DSL Dynamic Semantics Specification with ASMs

In general, giving dynamic semantics to a DSL with ASMs consists of the specification of an abstract machine
able to interpret programs defined by means of the given DSL. The machine has to be generic enough to express
the behavior of all correct programs. As depicted in Fig.1 the ASMs specification of such a machine is composed
of the following parts:

• Abstract Data Model (ADM).It consists of universes and functions corresponding to theconstructs of the
language and to all the additional elements, language dependent, that are necessary for modeling dynamics
(like environments, states, configurations, etc.);

• Initialization Rules.They encode the source program that has been defined with the given DSL. The encod-
ing is based on the abstract data model. It gives the initial state of the abstract machine;

• Operational Rules.The meaning of the program is defined by means of operational rules expressed in form
of transition rules. They are conditionally fired starting from the given instance of the ADM, modifying the
dynamic elements like environment, state etc. The evolution of such elements gives the dynamic semantics
of the program and simulates its behavior.

ASMs have been used with success in numerous applications and also for specifying the semantics of different
languages (like C, Java, SDL, VHDL) [20]. Additionally, ASMs are executable and several compilersand tools
are available both from academy and industry supporting thecompilation and simulation of ASMs specification.
In the rest of the paper the XASM [2] dialect will be used for the description of the ASMs specifications. They can
be compiled with the available compiler.

4 The AMMA Framework

AMMA (A TLAS Model Management Architecture) is an MDE framework for building DSLs. It provides tools to
specify different aspects of a DSL (see section2). These tools are based on specific languages. The domain of
each of this tool corresponds to one of the aspects of a DSL. AMMA is currently organized around a set of three
core DSLs:

• KM3. The Domain Definition MetaModel (DDMM) of a DSL is captured asa KM3 [21] metamodel. KM3
is based on the same core concepts used in OMG/MOF [26] and EMF/Ecore [11]: classes, attributes and
references. Compared to MOF and Ecore, KM3 is focused on metamodeling concepts only. For instance,

figures/absMachine.eps
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Figure 2: Present State of AMMA

the Java code generation facilities offered by Ecore are notsupported by KM3. The default concrete syntax
of KM3 is a simple text-based notation.

• ATL. Transformations between DSLs are represented as ATL [23] [22] (A TLAS Transformation Language)
model transformations. Such transformations can be used toimplement the semantics of a source DSL in
terms of the semantics of a target DSL. Other potential uses of ATL are: checking models [6], computing
metrics on models, etc.

• TCS.Textual concrete syntaxes of DSLs are specified in TCS (Textual Concrete Syntax). This DSL captures
typical syntactical concepts like keywords, symbols, and sequencing (i.e. the order in which elements appear
in the text). With this information, models can be serialized as text and text can be parsed into models. Text
to model translation is, for instance, achieved by combining the KM3 metamodel and TCS model of a DSL
and generating a context-free grammar.

Figure2 gives an overview of AMMA as a set of core DSLs. Two other DSLs are shown: SPL [12] (Session
Processing Language), which is a language for the domain of internet telephony, and DSLx, which stands for any
DSL. The DDMM of each DSL is specified in KM3. TCS is used to specify concrete syntaxes. ATL transforma-
tionsKM32Ecore, ATL2VM, andTCS2EBNFare used to respecively map the semantics of KM3 to EMF/Ecore, of
ATL to the ATL Virtual Machine [22], and of TCS to EBNF (Extended Backus-Naur Form).

Using AMMA does not necessarily means using only these threecore DSLs. For instance, MOF or Ecore
metamodels can also be used and transformed from and to KM3. Moreover, UML class diagrams specifying
metamodels can be used too (i.e. with the UML2MOF.atl transformation). Other AMMA DSLs are also currently
the subject of active research, for example AMW [16] (A TLAS Model Weaver) and AM3 [8] (A TLAS MegaModel
Management). An overview of AMMA including AMW and AM3 can also be found in [7].

5 Extending AMMA with ASMs

There is currently no tool in AMMA to formally capture thedynamic semanticsof DSLs. Only informal semantic
mappings between DSLs can be specified in the form of ATL transformations. The main principle on which
AMMA is built is to consider everything as a model [4]. Following this unification idea, thedynamic semanticsof
a DSL should also be specified as a model. What is required is a DSL in which to specify this semantic model.

figures/AMMA.eps
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Figure 3: Extending AMMA with ASMs

We decided to integrate ASMs in AMMA instead of designing a new DSL from scratch. For this purpose, we
need to specify a KM3 metamodel and a TCS model for ASMs. Figure 3 shows how the ASMs DSL is defined
on top of AMMA: its DDMM is specified in KM3 whereas its concrete syntax is specified in TCS. The KM3
metamodel for ASMs is available on the Eclipse GMT website [3]. ASMs may now be considered as an AMMA
DSL. Note that there is no semantics specification for ASMs. The reason is that we get this semantics by extracting
ASMs models into programs that we can compile with an ASMs compiler.

The next step is to use our newly created ASMs DSL. We experimented by specifying the dynamic semantics
of the SPL telephony language and reported our results in [15]. Fig. 3 shows this as thedefinedInrelation between
SPL.xasmand the ASMs DSL. In this work, we show how thedynamic semanticsof ATL can also be specified
with ASMs. Section6 gives details on how this is done. Figure3 represents this as adefinedInarrow going from
ATL.xasmto the ASMs DSL.

6 Case Study: Giving Dynamic Semantics to ATL

6.1 ATL Syntax in a Nutshell

ATL is a hybrid model transformation DSL containing a mixture of declarative and imperative constructs. Its
declarative part enables simple specification of many problems, while its imperative part helps in coping with
problems of higher complexity. ATL transformations are unidirectional, operating on read-only source models and
producing write-only target models. During the execution of a transformation source models may be navigated but
changes are not allowed. Target models cannot be navigated.

Before describing the specification of the dynamic semantics of ATL, its syntax is presented by means of
examples that will be considered in the overall section. Transformation definitions in ATL formmodules. A
module contains a mandatoryheadersection,import section, and a number ofhelpersandtransformation rules.
Header section gives the name of a transformation module anddeclares the source and target models (lines1-2,
Fig. 4). The source and target models are typed by their metamodels. The keywordcreateindicates the target
model, whereas the keywordfrom indicates the source model. In the example of Fig.4 the target model bound to
the variableOUT is created from the source modelIN. The source and target metamodels, to which the source and
target model conform, arePetriNet andPNML [9] respectively.

Helpers and transformation rules are the constructs used tospecify the transformation functionality. In this
paper we consider only transformation rules as basic constructs for expressing the transformation logic.

figures/AMMA+ASM.eps
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1 module PetriNet2PNML;
2 create OUT : PNML from IN : PetriNet;
3 ...
4 rule Place {
5 from
6 e : PetriNet!Place
7 --(guard)
8 to
9 n : PNML!Place
10 (
11 name <- name,
12 id <- e.name,
13 location <- e.location
14 ),
15 name : PNML!Name
16 (
17 labels <- label
18 ),
19 label : PNML!Label
20 (
21 text <- e.name
22 )
23 }

Figure 4: Fragment of a declarative ATL transformation

Declarative ATL rules are calledmatched rules. They specify relations betweensource patternsand target
patterns. The name of a rule is given after the keywordrule. The source pattern of a rule (lines5-7, Fig. 4)
specifies a set ofsource typesand an optionalguard given as a Boolean expression in OCL. A source pattern
is evaluated to a set of matches in source models. The target pattern (lines8-22, Fig. 4) is composed of a set
of elements. Each of these elements (e.g. the one at lines9-14, Fig. 4) specifies atarget typefrom the target
metamodel (e.g. the typePlace from thePNML metamodel) and a set ofbindings. A binding refers to a feature
of the type (i.e. an attribute, a reference or an associationend) and specifies an expression whose value is used to
initialize the feature. In some cases complex transformation algorithms may be required and it may be difficult to
specify them in a declarative way. For this issue ATL provides two imperative constructs:called rules, andaction
blocks. A called rule is a rule called by other ones like a procedure.An action block is a sequence of imperative
statements and can be used instead of or in combination with atarget pattern in matched or called rules. The
imperative statements in ATL are the well-known constructsfor specifying control flow such as conditions, loops,
assignments, etc.

In the rest of the paper, only the dynamic semantics of ATL declarative rules will be presented. We believe
that this does not compromise the validity of the approach since ASMs have already been used for specifying the
semantics of several imperative languages.

6.2 Dynamic Semantics of ATL

The operational context of ATL is shown in the left hand side of Fig. 5. An ATL transformation is a model (MATL)
conforming to the ATL metamodel (MMATL) and it is applied to a source model (Ma) in order to generate a
target one (Mb). The source and the target models conform to the source (MMa) and target (MMb) metamodels
respectively. Parts of the Abstract State Machines (in the right side of Fig.5) able to interpret ATL transformations
are automatically derived from the components in the left hand side of the figure.

TheAbstract Data Model (ADM) consists of universe and function declarations needed for the formal encod-
ing of the given ATL transformation and the source and targetmodels. These declarations can be automatically
obtained via model transformations from metamodels described in KM3. For example, we transform the KM3
fragment of thePetriNet metamodel (Fig.6) to the corresponding ASMs code in Fig.7. The KM32ASMATL
transformation performs this canonical translation. For each class in the metamodel, a corresponding universe is
specified. If the class is an extension of other classes in themetamodel, the sub-setting facility of ASMs is used.
For example, the classTransition (Fig. 6) is transformed into the universePetriNet Transition declared as a subset
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Figure 5: Structure of the dynamic semantics specification of ATL

of the universePetriNet Element. The references of the classes are encoded as boolean functions. For example,
the incoming arcs of a transition will be encoded with the function incomingArc whose value will be true for all the
transitions and arcs (in this case place to transition arcs)that are connected and false otherwise.

The ADM also includes the declaration of universes and functions used for the specification of the dynamic part
that evolves during the execution of an ATL transformation.This declaration cannot be automatically generated
as it depends on the operational rules that specify the dynamic semantics of ATL. In particular, as explained in the
following, the dynamic semantics of ATL is based on the execution of transformation rules. Executing a rule on
a match (i.e. elements of the source model) creates a trace link that relates three components: the rule, the match
and the newly created elements in the target model. The universeTraceLink (see Fig.8) contains the trace links
that are generated during the execution of the transformations. The source and target elements of the trace link
are maintained in the universesSourceElement andTargetElement respectively. For each of them the functions
element andpatternElement are provided. The functionelement returns the element of the source model that has
matched with the given rule. When applied to an element inTargetElement universe, it returns the new element
that has been created in the target model.

The patternElement function, when applied to a source element, returns the source pattern definition of the
corresponding ATL rule. The source pattern is a member of universeATL SimpleInPatternElement. This universe
is derived from the ATL metamodel. In a similar way, when the function is applied to a target element, it returns
the target pattern member of the universeATL SimpleOutPatternElement (line 12).

TheInitialization Rules of the machine depicted in Fig.5 encode in a formal way the source model and the ATL
transformation that has to be interpreted. The encoding is based on the ADM previously described and it gives
the initial state of the abstract machine. This encoding canbe automatically obtained by transforming the source

1 class Transition extends Element {
2 reference incomingArc[1-*] : PlaceToTransition oppositeOf to;
3 reference outgoingArc[1-*] : TransitionToPlace oppositeOf from
4 }
5 ...

Figure 6: Part of the PetriNet metamodel expressed in KM3

figures/ATLSemantics.eps
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1 universe PetriNet_Transition < PetriNet_Element
2 function incomingArc(a:PetriNet_Transition, b:PetriNet_PlaceToTransition)->Bool
3 function outgoingArc(a:PetriNet_Transition, b:PetriNet_TransitionToPlace)->Bool
4 ...

Figure 7: Part of the PetriNet metamodel specification

model and the ATL program (see theModel2ASMtransformation in Fig.5).
TheOperational Rules of the machine in Fig.5 play a key role in the specification of the dynamic semantics of

ATL. In particular, theSemantic rulespart describes the dynamics related to the execution of ATL transformation
rules. These rules interpret the given ATL transformation applied to the provided source model (Ma) and generate
a formal representation of the target model (Mb).

The execution of ATL transformation rules can be described by means of an algorithm [23] consisting of two
steps. In the first step all the source patterns of the rules are matched and the target elements and trace links are
created. In the second step the feature initializations of the newly created elements are performed on the base of
the previously created trace links and following the bindings specified in the rule target patterns. In the following
the ASMs specification encoding these steps are explained with details.

6.2.1 Matching Rules

The formal specification of the first step of the algorithm is based on the sub-machineMatchRule shown in Fig.9.
This machine is invoked for each matched rule contained in the given ATL module. For example, for the module
in Fig. 4, the machine is invoked just once for the interpretation of thePlace rule.

Given a matched rule, the machine searches in the source model the elements that match the type of the source
pattern. In the lines5-8 the machine selects the elements that defines the source pattern of the matched rule in
the universes induced by the ATL metamodel. Such elements are used in the lines10-11 for the determination
of the universe identifier (of the source metamodel) containing the elements that match the source pattern of the
considered rule. For example, for the source pattern of the rule in Fig. 4, the lines10-11 return the universe
identifier PetriNet Place of the sourcePetriNet metamodel. To obtain this the external functionsgetValue and
sValue are used to handle primitive values.

For each element of the source model contained in the obtained universe, the universesTraceLink andSourceEle-
ment have to be extended and the corresponding functions have to be updated (lines12-16). Furthermore, the
universeTargetElement has to be extended for each new element that will be created according to the target pattern
of the matched rule (lines18-32). The identifier of the universes belonging to the target metamodel that have to be
extended are determined by means of the code in the lines23-24. For example, for the transformation of Fig.4, the
universes that will be extended by theMatchedRule machine will bePNML Place, PNML Name andPNML Label
belonging to the encoding of thePNML metamodel.

1 universe TraceLink
2 function rule(t:TraceLink, r: ATL_MatchedRule)->Bool
3 function sourcePattern(t:TraceLink, x:SourceElement)->Bool
4 function targetPattern(t:TraceLink, x:TargetElement)->Bool
5

6 universe SourceElement
7 function element(t:SourceElement)->_
8 function patternElement(t:SourceElement)->ATL_SimpleInPatternElement
9

10 universe TargetElement
11 function element(t:TargetElement)->_
12 function patternElement(t:TargetElement)->ATL_SimpleOutPatternElement

Figure 8: ASM specification for the trace links management
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1 asm MatchRule(e:ATL_MatchedRule)
2 ...
3 is
4

5 choose ip in ATL_InPattern, ipe in ATL_SimpleInPatternElement,
6 ipet in ATL_OclModelElement, op in ATL_OutPattern
7 : inPattern(e,ip) and elements(ip, ipe)
8 and type(ipe,ipet) and outPattern(e,op)
9 do forall c in

10 $sValue(getValue("name",(getValue("model",ipet))))+"_"
11 +sValue(getValue("name",ipet))$
12 extend TraceLink with tl and SourceElement with se
13 sourcePattern(tl,se) := true
14 patternElement(se) := ipe
15 element(se) := c
16 rule(tl,e) := true
17 do forall ope in ATL_SimpleOutPatternElement
18 if (elements(op, ope)) then
19 extend TargetElement with te
20 do forall opet in ATL_OclModelElement
21 if (type(ope,opet) ) then
22 extend
23 $sValue(getValue("name",getValue("model",opet)))+"_"
24 +sValue(getValue("name",opet)))$ with t
25 targetPattern(tl, te) := true
26 element(te) := t
27 patternElement(te) := ope
28 endextend
29 endif
30 enddo
31 endextend
32 endif
33 enddo
34 endextend
35 enddo
36 ...
37 endchoose
38

39 endasm

Figure 9: MatchRule sub-machine specification

6.2.2 Applying Rules

After the creation of the trace links induced by the matched rules, the feature initializations of the newly created
elements have to be performed. For example, during the execution of theMatchedRule machine on the rulePlace
in Fig. 4, thePNML Place universe is extended with new elements for which the functionsname, id andlocation
have to be initialized. The ASMs rules in Fig.10set these functions.

For all the trace links, all the bindings of each target pattern have to be evaluated. The bindings are contained
in theATL Binding universe corresponding to theBinding concept of the ATL metamodel. The propertiesvalue and
propertyName are also part of the binding specification in the metamodel. For example in the bindinglocation
<- e.location (line 13, Fig. 4), propertyName corresponds to the attributelocation whereasvalue is the
OCL expressione.location. The lines6-10 play a key role for the feature initializations of the new elements
added during the first step of the algorithm. The external function oclEval is called for the evaluation of the
OCL expression of the binding. The value obtained by this evaluation (see line7), will be then used for the
initialization of the target element feature named with thevalue ofpropertyName (see line8). The availableoclEval
implementation is able to evaluate basic OCL expressions. The improvement of this function for supporting the
evaluation of complex OCL expressions could be done by usingan available work that describes the dynamic
semantics of OCL 2.0 by using ASMs [17]. Due to space limitation, the ASMs code of theoclEval function is
not provided here. After the expression of a binding has beenevaluated, the resulting value is first resolved before
being assigned to the corresponding target element. For this resolution (line8, Fig.10) the external functionresolve
(Fig. 11) is used. The resolution depends on the type of the value. If the type is primitive then the value is simply
returned (line4, Fig. 11). If the type is a metamodel type there are two possibilities: when the value is a target
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1 do forall tl in TraceLink
2 do forall te : (targetPattern(tl,te))
3 choose pe : patternElement(te)=pe
4 do forall b in ATL_Binding
5 if(bindings(pe,b)) then
6 let vExp = getValue("value", b) in
7 let v = oclEval(tl, vExp) in
8 setValue(sValue(getValue("propertyName",b)), element(te), resolve(v))
9 endlet
10 endlet
11 endif
12 enddo
13 endchoose
14 enddo
15 enddo

Figure 10: Apply rule specification

1 asm resolve(el:_)->_
2 ...
3 is
4 if (isString(el) or isBoolean(el) or
5 (exists te in TargetElement: element(te)=el)) then
6

7 return el
8 else
9 choose tl in TraceLink, se in SourceElement,
10 te in TargetElement, op in ATL_OutPattern
11 : element(se)=el) and sourcePattern(tl,se) and
12 targetPattern(tl,te) and elements(op,patternElement(te))and
13 order(op,patternElement(te))=1
14

15 return element(te)
16 endchoose
17 endif
18 endasm

Figure 11: Resolve function specification

element (like line11 in Fig. 4), it is simply returned (line5, Fig. 11); when the value is a source element (line12,
Fig. 4), it is first resolved into a target element using trace links(line 9-13, Fig. 11). The resolution results in an
element from the target model which is then returned (line15).

6.2.3 Serializing Target Model

Once the semantic rules have been executed, it is necessary to see the results of their execution. For this purpose,
the ModelSerializersub-machine in Fig.5 is called to obtain a textual representation of the generated algebra
encoding the target model. This serializer depends on the target metamodel (MMb). TheKM32ASMSerializerATL
transformation automatically generates the ASMs code thatprints the contents and the values of the universes and
functions encoding the obtained target model (Mb).

All the ASMs specifications and the ATL transformations described in this paper are available for download
from [3]. Furthermore, the given semantics specification has been validated by formally interpreting the already
availablePetriNet2PNLM[3] ATL transformation.

7 Related Work

The work described here is an extension of an experiment we performed previously, which is reported in [15]. In
this experiment we used ASMs to provide dynamic semantics ofthe SPL language. In this paper we integrate the
ASMs mechanism in the AMMA platform and provide another experiment by giving the dynamic semantics of
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ATL itself. In [13] ASMs are used as a semantic framework to define the semanticsof domain-specific modeling
languages. The approach is based on basic behavioral abstractions, called semantic units, that are tailored for
the studied problem domain. Semantic units are specified as ASMs. Such semantic units are then anchored to
the abstract syntax of the modeling language being specifiedby means of model transformations. The major
difference with the work described here is that, in our approach, the ASMs mechanism is integrated in the AMMA
platform. In that way the semantic specifications are modelsand may be manipulated by operations over models
(e.g. model transformations). In the semantic anchoring approach the semantics specification is given outside the
model engineering platform, in this case the Generic Modeling Environment (GME).

In the context of MDE some other approaches for semantics specification have been proposed. The approach
of Xactium [14, 1] follows the canonical scheme for the specification of semantics of programming languages. In
this scheme the semantics is defined by specifying mappings (known as semantic mappings) from abstract syntax
to semantic domain. Both the abstract syntax and the semantic domain are given as metamodels. The semantic
mapping is specified by model elements (mostly associations). This approach has become known as denotational
metamodeling. The work presented in [19] extends the denotational metamodeling approach by defining Meta
Relations as a mechanism for specifying semantic mappings between the abstract syntax and the semantic domain.
The dynamic semantics specification (part of the semantic domain) is given by graph transformation rules. This
approach is called Dynamic Metamodeling. In our approach the semantic domains and semantic mappings are
defined as parts of ASMs. Dynamic aspect is defined by transition rules.

The language Kermeta [24] is a metamodeling language that contains constructs for specifying operations of
metamodel elements. These operations may be used for specifying the operational semantics of metamodels and
thus the semantics of DSLs expressed in Kermeta. In our approach the operational semantics expressed in ASMs
is clearly separated from the metamodel (abstract syntax).

8 Conclusions and Future Work

In this paper we presented an approach for specifying dynamic semantics of Domain Specific Languages in the
context of Model Driven Engineering. Abstract State Machines formalism was integrated into the AMMA platform
as a semantics specification framework. ASMs is defined as a part of the set of core AMMA DSLs along with KM3,
TCS, and ATL. This allows semantics specifications to be treated as models following the vision that a DSL is a
set of coordinated models. In addition, it is still possibleto use the existing ASM tools (working outside AMMA)
for model simulation and validation purposes.

It should be noted that not all DSLs have dynamic semantics. Furthermore, as the review presented in Re-
lated Work section shows, there are different ways for specifying dynamic semantics. The general problem of
semantics specification of modeling languages is thereforestill open and requires further research. The following
observations can be used as a starting point in this direction.

Models are representations of systems. There exists a general system theory that classifies systems in various
dimensions, for example, static and dynamic systems. Dynamic systems, in turn, may be classified as discrete
or continuous on the base of the underlying model of time. Thesemantics of a modeling DSL should reflect the
nature of the modeled systems. This may be a criteria for selecting the suitable semantics description formalism.
In general, it is more likely that more than one semantic framework will be needed to solve problems. Furthermore,
we have to consider the practical merits of various frameworks.

Finally, the purpose of semantics specification should be the main factor for selecting the semantic framework.
The mature engineering disciplines are based on solid theoretical foundations that allow modeling process that
guarantees at a large extent production of reliable systems. The same goal should be pursued in software engi-
neering as well. Semantics formalisms should answer the need for which the model is built: simulation, analysis,
reasoning, verification, and/or validation. We need more experimental work in each one of these possible uses of
models.
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Abstract

Over the last years, Model Driven Engineering platforms evolved from fixed metamodel tools to systems with
variable metamodels. This enables dealing with a variety ofDomain Specific Languages (DSLs). These generic
platforms are increasingly adopted to solve problems like code generation. However, these environments are often
limited to syntax definitions. The AMMA platform conceives DSLs as collections of coordinated models defined
using a set of core DSLs. For broadening the approach to semantics definition, AMMA should thus be extended.
The paper presents an extension of the core DSLs of AMMA to specify the dynamic semantics of a range of DSLs
by means of Abstract State Machines. Thus, DSLs can be definednot only according to their abstract and concrete
syntaxes but also to their semantics in a uniform and systematic way. The approach is validated by means of the
semantic bootstrap of the ATL transformation language.
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