R-local Delaunay inhibition model

Abstract : Let us consider the local specification system of Gibbs point process with inhib ition pairwise interaction acting on some Delaunay subgraph specifically not con taining the edges of Delaunay triangles with circumscribed circle of radius grea ter than some fixed positive real value $R$. Even if we think that there exists at least a stationary Gibbs state associated to such system, we do not know yet how to prove it mainly due to some uncontrolled ''negative" contribution in the expression of the local energy needed to insert any number of points in some large enough empty region of the space. This is solved by introducing some subgraph, called the $R$-local Delaunay graph , which is a slight but tailored modification of the previous one. This kind of model does not inherit the local stability property but satisfies s ome new extension called $R$-local stability. This weakened property combined with the local property provides the existence o f Gibbs state.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2008, 132 (4), pp.649-667. 〈10.1007/s10955-008-9565-4〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

Contributeur : Remy Drouilhet <>
Soumis le : mardi 11 avril 2006 - 14:12:50
Dernière modification le : lundi 9 avril 2018 - 12:22:32
Document(s) archivé(s) le : samedi 3 avril 2010 - 21:06:49





Etienne Bertin, Jean-Michel Billiot, Rémy Drouilhet. R-local Delaunay inhibition model. Journal of Statistical Physics, Springer Verlag, 2008, 132 (4), pp.649-667. 〈10.1007/s10955-008-9565-4〉. 〈hal-00022574〉



Consultations de la notice


Téléchargements de fichiers