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We give simple expressions for the mean of the max and min bounds of the critical-to-classical
crossover functions previously calculated [Bagnuls and Bervillier, Phys. Rev. E 65, 066132 (2002)]
within the massive renormalization scheme of the Φ4

d (n) model in three dimensions (d = 3) and
scalar order parameter (n = 1) of the Ising-like universality class. Our main motivation is to get
efficient theoretical expressions to coherently account for many measurements performed in systems
where the approach to the critical point is limited but yield data which are still reproducible by the
Φ4

d (n) model (like in the subclass of one-component fluids).

PACS numbers: 64.60.Ak., 05.10.Cc., 05.70.Jk, 65.20.+w

1. INTRODUCTION

The universal features of the three-dimensional (3D)
Ising-like systems close to their critical points are now
well-established by the renormalization group (RG) ap-
proach [1]. In this theoretical context the Ising-like uni-
versality is attached to the existence of a unique non-
trivial fixed point (the Wilson-Fisher fixed point [2] noted
W-FP in the following) which any Hamiltonian represen-
tation of an actual system at criticality is driven to under
the action of the renormalization transformations [3].

Less known is the existence of theoretical expressions,
obtained using perturbative field theory (FT) techniques
[4, 5, 6, 7, 8], which are used to interpolate between
the critical (non-classical) behavior (controlled by the W-
FP) and a classical behavior (controlled by the Gaussian
fixed point, noted G-FP in the following). Such the-
oretical expressions are customarily named classical-to-
critical crossover functions.

Actual systems undergoing a second order phase
transition also display a kind of “classical”-to-critical
crossover but it is not of the same nature as the theoret-
ical one alluded to above. In actual systems, the “clas-
sical” part is only a non-critical part (not governed by
the G-FP) whereas in the theoretical interpolation, the
classical part still belongs to a critical domain (governed
by the G-FP). Moreover, the renormalization procedure
of FT is reductive in the sense that many sources of non-
universality are discarded because they are unessential in
the vicinity of the critical point. However, non-universal
features become more and more important as one moves
away from the critical point. Finally, these non-universal
characteristics are responsible for the distinction between
the nonasymptotic critical behavior and the asymptotic
critical behavior.

Generally, one cannot expect to observe an agreement

between the theoretical crossover functions and the ex-
perimental data in a wide domain ranging from the close
vicinity of the critical point down to a state far away from
it. Nevertheless, exceptions may exist as in the case of
the “subclass” of one-component fluids.

It has been shown [9, 10, 11, 12, 13] that, despite their
wide range of numerical values, the one component fluid
data collected in the literature regarding a given prop-
erty (susceptibility, order parameter density, correlation
length, etc.) can be reduced to a unique scaling curve
(also called master curve) over a wide critical domain.
Now, it is well known that this scaling curve can be well
reproduced by the classical-to-critical crossover functions
of FT [13]. However, an accurate understanding of the
range of its validity is lacking. In the present paper,
we provide modified versions (named “mean crossover

functions”) of the theoretical forms given in references
[5, 6, 14]. A careful attention is given to the character-
ization of the Ising like preasymtotic domain where the
number and the nature of adjustable parameters can be
easily controlled. A forthcoming paper [15] will illustrate
the application of the mean crossover functions to provide
a precise criterion for estimating the effective extension
of the critical asymptotic domain of the fluid subclass, a
key point for future developments of a complete equation
of state (e.o.s.) for fluids.

Actually, since it is difficult to approach accurately the
critical point both experimentally and theoretically, the
effective (observed) scaling domain is limited towards the
critical point whereas, in the opposite direction, the scal-
ing curve stops when the systems are no longer critical
and before they display any kind of “classical behavior”.
Here classical behavior means the “critical” behavior con-
trolled by the G-FP. Consequently, most of the useful
data on a system near criticality belong to an intermedi-
ate (nonasymptotic) regime where it is not valid to repro-
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duce the data with the currently used expansion limited
to a pure power law eventually corrected by one Weg-
ner’s term [16] (the validity of such a form implies the
close vicinity of the critical point).

For development of an e.o.s., it is of great importance
to have theoretical expressions which reproduce the phe-
nomenologically observed scaling curves and which allow
one to situate unambiguously any data set with respect
to the actual (system dependent) field distance to the
critical point. It must be stressed that, in this view, the
aim is not to test the most refined theoretical hypotheses,
or the most precise estimates of the universal numbers as-
sociated with the asymptotic or pre-asymptotic critical
behavior. In addition, our scheme only applies to the
primary critical paths along the critical isochore in the
homogeneous and the non homogeneous domain, with-
out any supplementary consideration on the roles played
by other nonuniversal scales associated with the eventual
effects such as non symmetry [17] and mixing [18] of the
scaling field variables very close to the critical point.

¿From a pioneering study [19] of the available data on
xenon [20, 21], it is known that the classical-to-critical
crossover functions obtained from the Φ4

d (n) model (with
d = 3 and n = 1) fit the one-component fluid results, in-
troducing explicit determination of the fluid-dependent
scale factor for the relative temperature field. More re-
cently, a similar study [22] of several measurements near
the liquid-gas critical point of 3He [23], has provided an
equivalent conclusion, demonstrating that, 3He as a sim-
ple fluid, is also situated very close to a renormalized
trajectory that links the G-FP to the W-FP. However,
the authors of Ref [4, 5, 6, 14] have given a practical
(max or min) form of their effective functions which is
better adapted to the eventual experimental test of the
“best” theoretical estimates of the asymptotic universal
quantities (attached to the close vicinity of the critical
point), rather than to an unambiguous characterization
of a nonasymptotic critical domain of a given subclass of
systems. In fact, accounting for the error estimates at-
tached to the universal critical quantities under two max

and min bounded sets of functions prevents the charac-
terization of the scaling curve clearly which, of course,
is currently accessible experimentally at some non-small
distance (to be determined) to the critical point but also
is sometimes accompanied by a relatively poor accuracy
in the measurement. Moreover, due to the decrease of
the theoretical error as the distance to the critical point
increases, the mean values of the bounded functions are
sufficient to characterize the scaling curves.

Our aim in the present paper is to determine in-
between controlled functions that are better adapted
for unambiguous determination (within a current experi-
mental mean accuracy) of the characteristics of the scal-
ing curves of the subclass of one-component fluids. An
important point to note a posteriori is the unchanged
value of the temperature scale factor determined in [19].
However the uncertainty is considerably reduced show-
ing that it was essentially generated by the theoretical

uncertainties of the universal values calculated in the
asymptotic regime. That demonstrates the need to pro-
vide mean classical-to-critical crossover functions which,
by construction, have a well defined single asymptotic
limit (i.e. “Ising-like-well-defined”). We will then be
able to determine significative values of the scale factors
which characterizes the scaling behavior occuring in the
intermediate critical domain.

The theoretical crossover functions which we are inter-
ested in have been derived from a massive renormaliza-
tion (MR) scheme applied to the Φ4

d (n) model. The MR
scheme has been initially developed in references [4, 5, 6],
hereafter referenced MR6, using the Borel resummation
technique based on the results of the sixth-loop series
[24]. They have been recently revisited in reference [14],
hereafter referenced MR7, to account for an extension
to the seventh-loop series [25]. We do not consider here
the crossover functions determined by Dohm and cowork-
ers [7, 8] who have used another renormalization scheme
(minimal) within which the known series are shorter than
in the MR scheme and have provided their crossover func-
tions under implicit forms.

The paper is organized as follows.

In Section 2, we introduce the main characteristics of
the MR scheme and of the crossover functions. Special
attention is given to the non-universal nature of the ad-
justable parameters that are introduced in the max and
min theoretical functions for fitting experimental data.

In Section 3, the mean functions are determined rely-
ing on the properties of the theoretical functions in the
two limiting 3D Ising-like and mean field-like descrip-
tions, respectively close to the W-FP and G-FP. Such
descriptions correspond to the pre-asymptotic domains
(PAD) near each fixed point where a Wegner expansion
restricted to two terms (leading and first confluent terms)
is valid. The Ising-like PAD includes the correlations
between parameters due to the error-bar determination
of the exponents and amplitude combinations very close
to the W-FP. The addition of the equivalent mean field

PAD description very close to the G-FP leads to a mean
crossover function with a limited number of calculated
parameters for this function (three in the selected ex-
ample). A well-controlled form of any mean crossover
function can be obtained in a similar manner, i.e. three
calculated parameters for each function. In such a sit-
uation, the theoretical crossover forms are obtained for
a unique value of one parameter among the three. This
parameter acts then as a relative sensor to estimate the
dominant nature, either (Ising-like) critical, or (mean
field-like) classical, of the calculated crossover. Using
this sensor, we propose an explicit criterion to measure
the extension of the Ising-like PAD along the critical iso-
chore where a four parameter characterization of each
system is well-understood in scaling nature. In section 4,
we provide a conclusion.

In Appendix A, assuming knowledge of the criti-
cal temperature of the system, we illustrate the three-
adjustable-parameter characterization of the comparison
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with experimental data. The emphasis is on the role of a
characteristic microscopic length scale, the reminiscence
of which is carried by the dimension of the “bare” φ4-
coupling g0 [see Eq. (1) below].

Appendix B gives some details on the derivation of the
mean crossover function for the particular case of the or-
der parameter in the heterogeneous domain, with a view
to better account for large (theoretical and experimental)
uncertainties in the determination of its corresponding
first confluent amplitude.

2. THE MASSIVE RENORMALIZATION

SCHEME

2.1. The model

The calculations of the crossover functions in the Φ4
d

model rely upon the renormalization program of per-
turbation FT. This scheme makes the perturbative ex-
pansion of the correlation functions free of ultra-violet
divergencies. Before renormalization, the dimensionless
Hamiltonian (a true hamiltonian divided by kBT , with
kB the Boltzman constant) of the actual system reads:

H =

∫

ddx

{

1

2

[

(

▽−→
Φ0

)2

+ r0

(−→
Φ0

)2
]

+
g0

4!

[

(−→
Φ0

)2
]2

+~h.
−→
Φ0

}

(1)

in which d is the space dimension and ~h and
−→
Φ0 are vec-

tors of dimension n. ~h is the (magnetic-like) ordering

field vector.
−→
Φ0 is the spin-like vector. The ordering

field vector ~h is not renormalized and so will no longer
be considered explicitly in the following (except when
required). The coupling field r0 and the coupling con-
stant g0 are the bare (physical) parameters, which are
two system-dependent quantities characterizing the crit-
ical point location of the physical system.

For the sake of simplicity, we limit ourselves in the
following discussion to the scalar case n = 1.

At this stage, it is worthwhile to state that the dimen-
sion of any quantity appearing in H is expressed in terms
of only one inverse length unit: a wave-vector cutoff, Λ
(or the inverse of a lattice spacing for magnetic solid sys-
tems for example). Since H is dimensionless, a simple
evaluation of Eq. (1) shows that the dimension (in unit
Λ) of Φ0 is d−2

2 , while that of r0 is 2, and that of g0 is
4 − d.

When d = 4, the perturbative expansion in powers
of the dimensionless coupling constant g0 involves ultra-
violet divergencies which are removed by redefining the
three initial Hamiltonian (bare) parameters {Φ0, r0, g0}
into new (renormalized) ones {Φ,m, g}, via the following
relations:

r0 = m2 + δm2 (2)

Φ0 = [Z3 (g)]
1
2 Φ (3)

g0 = (m)
4−d

g
Z1 (g)

[Z3 (g)]
2 (4)

with subtraction conditions which, in four dimensions
(d = 4), are required to make the renormalized pertur-
bative expansion in powers of g finite.

In three dimensions, however, only the mass renormal-
ization is needed to have a finite theory. Consequently,
with the introduction ofm instead of r0, the renormaliza-
tion functions, like Z1 and Z3, even expressed in terms of
the “bare” coupling g0 and without ultra-violet regulator
Λ (set to infinity), are well defined functions. Introduc-

ing the notation Γ
(L,N)
0 ({q, p} ;m, g0, d) for the Fourier

transforms of the bare N -point vertex functions with L
“insertions” of the squared field Φ2

0, the following defini-
tions stand (for d < 4)

Z−1
3 =

∂

∂p2
Γ

(0,2)
0 (p;m, g0, d)

Z−1
1 =

Γ
(0,4)
0 ({0} ;m, g0, d)

g0

Z−1
2 = Γ

(1,2)
0 ({0} ;m, g0, d)

in which Z2 is a renormalization function which restores
the linear measure of the distance to the critical temper-
ature Tc, originally defined by the bare parameter r0 and
which has been lost when introducing the renormalized
mass m [via Eq. (2) and a condition, not written here,
which defines m as the inverse correlation length].

Since Λ has been eliminated in the renormalization
process,m plays the role of the effective wave-vector scale
of reference and could be used as the unit to express the
dimension of any dimensioned quantity. However, be-
cause m (the inverse of the correlation length) vanishes
at the critical point it is preferable to use g0 which, for
d 6= 4, is a dimensioned constant at the critical tem-

perature [see Eq. (10) below]. Hence, (g0)
1

4−d will be
substituted to Λ to play the role of the wave-vector unit
(see below). Notice that in three dimensions g0 has ex-
actly the dimension of Λ (i.e. of the inverse of a length)
which is very convenient but not essential.

The dimensionless renormalization functions Zi have
been calculated up to sixth order [24] and then partly up
to seventh order [25] in powers of g. These series have
been summed to estimate the critical exponents with
great accuracy [26, 27] and also to determine nonasymp-
totic critical functions in the homogeneous phase [4, 5].
With the calculation of supplementary integrals [6], the
calculations have been exended to the inhomogeneous
phase up to fifth order allowing the determination of the
nonasymptotic critical functions [6] in this phase and of
the equation of state [27, 28]. The calculations of the
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nonasymptotic critical functions have been revisited [14]
in order to account for the most recent estimates of the
asymptotic universal critical quantities [27] and also to
provide complete classical-to-critical crossover forms [14]
which we are presently interested in.

2.2. The crossover functions

In the perturbative framework, the renormalized cou-
pling g may take on any value in the range [0, g∗] where
g∗ is its W-FP value (a value which may be estimated
in three dimensions by looking at the nontrivial zero of
some series) and 0 is its G-FP value. The crossover func-
tions have been obtained by resumming the series of a
physical property P of interest such as the correlation
length ℓ (g) [= (m)

−1
] or the susceptibily χ (g), for a

discretized variation of g in this range. An expression
for the critical scaling field t (g) (which “measures” the
physical distance to the critical point) is obtained via an
integration of the resummed series of Z2 (g) (see ref. [5]
for example). Hence the variations of ℓ or χ, in terms of
t, are primarily obtained implicitly via the dummy pa-
rameter g. Explicit functions of t representing ℓ or χ are
then obtained by fitting ad hoc forms to their discretized
evolutions in the range ]0, g∗[.

It is to be noted that, appart from r0 which is used to
determine t (see below), the only remaining dimensioned
parameter of the Φ4

d model is the bare coupling g0 with a
dimension (in length unit) equal to d− 4 . Then, all the
final functions are reduced by the appropriate powers of
g0 so as to be dimensionless.

In MR6, contrary to MR7, the entire crossover (cor-
responding to the complete range ]0, g∗[) had not been
published. Also, in MR6, the error analysis was made
independently from that associated with the estimates
of the critical exponents done by Le Guillou and Zinn-
Justin [26]. In MR7 the convergence criteria for the Borel
resummation of the different functions, like ℓ or χ, was
chosen such that the max and min bounds of the re-
sulting critical exponents agreed as closely as possible to
the (revised) values obtained by Guida and Zinn-Justin
[27]. However, in doing so, it is more than likely that the
error bars have been over estimated compared to what
the resummation method used would have naturally indi-
cated (following the rules applied in MR6). This is why
the results of MR6 are also of interest to us especially
in the case of the order parameter in the heterogeneous
domain for which the large uncertainties of MR7 are not
favourable for accurate fitting of the experimental data
(see appendix B).

In MR7, two tables were presented to give an envelope
for each function FP (t∗) representing a (dimensionless)
model property P versus a discretized dimensionless scal-
ing field t∗ [defined in Eq. (11) below] over the entire
range ]0, g∗[ for the max and min bounds. The follow-
ing expressions FP (t∗) were used to continuously fit the

discrete data from each particular table

FP (t∗) = Z
±
P (t∗)−eP

K
∏

i=1

(

1 +X±
P,i (t∗)D±

P
(t∗)
)Y ±

P,i

(5)

with

D±
P (t∗) = ∆ − 1 +

S±
P,1

√
t∗ + 1

S±
P,2

√
t∗ + 1

(6)

In Eq. (5), 3 ≤ K ≤ 5, depending on the required fit

quality for each property P =
{

(χ∗)−1 ; (ℓ∗)−1 ;C∗;m∗
}

[the superscript * indicates dimensionless quantities, χ∗

is the susceptibility; ℓ∗ is the correlation length; C∗ is
the heat capacity; m∗ is the order parameter in the non-
homogeneous domain (note the distinction with the dec-
orated m used for the renormalized mass)]. eP and ∆
are the leading and first confluent universal exponents,
respectively. The symbol ± indicates the possible homo-
geneous (+) and nonhomogeneous (−) domains. All the
constants Z

±
P , X±

P,i, Y
±
P,i, and S±

P,i in Eqs. (5) and (6) are

tabulated in [14]. They result from the fitting of eqs. (5,
6) to the theoretical calculations done point by point in
the discretized complete t∗ = {∞, 0} range correspond-
ing to the complete range ]0, g∗[. The critical behavior
of the specific heat is particular such that, compared to
Eq. (5), it involves an additive critical constant that we
note X±

P,6.

2.3. Physical validity of the functions

2.3.1. Analytical corrections discarded

To compare the theoretical functions to measurements,
we must relate the Hamiltonian parameters (r0, g0, h) to
their physical counterparts. This is done by the (usual)
basic assumption that the bare quantities (g0, r0, h) are
analytical functions of the corresponding physical quan-
tities T and H (in usual notations for magnetic systems)
which control the approach to the actual critical point.
Implicitly, we admit that the Hamiltonian energy is com-
parable to the physical free energy measured in unit of
kBT ∼= kBTc very close to the actual critical temperature
Tc of the system.

Assuming that analytical corrections to scaling are
negligible, this introduces two arbitrary scale factors
(noted ϑ and ψ in the following) associated with the two
bare fields r0 and h, respectively, and one constant in-

verse length scale (g0)
1

4−d which fixes the dimensionality
of the physical variables. This can be accomplished as
follows:

1. At h = 0, the bare field r0 = r0 (T ) must be related
to the actual temperature T of the system, leading
to define its critical value r0c = r0 (Tc) from the
actual critical temperature Tc of the system. For T
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close to Tc, it becomes possible to relate the bare
field difference r0 (T )− r0c (Tc) to the temperature
distance T − Tc by the following analytical (linear)
approximation

r0 − r0c = const× (T − Tc) + O
[

(T − Tc)
2
]

(7)

In an equivalent manner, at r0 = r0c, the bare field
h must be related to the actual (magnetic field)
variable H (in notations for magnetic system) of
the system, leading also to the possible analytical
(linear) approximation

h = const×H + O
[

H2
]

(8)

for h close to zero. Correlatively, the linearization
between the bare order parameter m = 〈Φ0〉 to
the actual (magnetization) density variable M (in
notations for magnetic system) reads

m = const×M [(T − Tc) , H ]+

O
[

(T − Tc)
2
, H2, H × (T − Tc)

]

(9)

where the two constant prefactors of Eqs. (8) and
(9) are interrelated by thermodynamic considera-
tions attached to the conjugated variables M and
H (or m and h equivalently).

Finally, at the above linearized order of the rela-
tions between the bare fields and the physical fields,
close to the critical point defined by T −Tc = 0 (or
r0 − r0c = 0) and H = 0 (or h = 0), we can intro-
duce one finite value of the coupling constant such
as,

g0 = const + O (T − Tc) + O [H ] (10)

which appears then as a system-dependent critical
quantity which must take the d − 4 dimension (in
length unit). In the Eqs. (7) to (9), one generally
keeps only the leading terms but one must keep in
mind that far away from Tc, the neglected second

order analytical terms O
[

(T − Tc)
2
]

, O
[

H2
]

, and

O [H × (T − Tc)] (within r0, h and m) could have
some importance especially in approaching the G-
FP.

2. With g0 defined by Eq. (10), we can now appropri-
ately make dimensionless the bare quantity r0 by
introducing the dimensionless scaling field t∗ used
in Eqs. (5) and (6):

t∗ =
r0 − r0c

(g0)
2

4−d

(11)

For the actual system, it is convenient to define the
reduced temperature distance in units of the criti-
cal temperature (already chosen to express the en-
ergy unit of the hamiltonian), leading to the usual

notation of the thermal like field ∆τ∗ = T−Tc

Tc
. As-

suming a “sufficiently” small ∆τ∗, t∗ and ∆τ∗ are
related by the first dimensionless arbitrary scale
factor ϑ:

t∗ = ϑ× ∆τ∗ (12)

Similar assumptions stand for the second scaling
field h which must be related to H by Eq. (8).

A second arbitrary scale factor appears, noted ψ,
between the dimensionless field h∗ = h

(g0)
d+2

2(4−d)

and

its corresponding dimensionless physical quantity
H∗ (here in notations for magnetic systems):

h∗ = ψ ×H∗ (13)

Correspondingly, the dimensionless order parame-
ter field m∗ = 〈Φ∗

0〉 = m

(g0)
d−2

2(4−d)

is then related

to the dimensionless physical quantity M∗ (here in
notation for magnetic systems) by

m∗ = (ψ)
−1 ×M∗ (14)

Finally the “length” (g0)
1

d−4 must be related to a
microscopic length scale a characteristic of the ac-
tual system as:

(g0)
1

d−4 = u∗0 × a (15)

where u∗0 is a dimensionless number similar to ϑ and
ψ. Notice that u∗0 has the characteristic of taking
a value which depends on the (a priori) choice of
a system dependent length scale a, not attached
to the critical behavior. That characteristic will
be used to determine a subclass of “comparable”
systems [i.e. systems having a comparable charac-
teristic length scale a (see below)].

As will be shown in Appendix A, it is worthwhile
already indicating here that the consideration of a
via Eq. (15) is not required when the correlation
length is considered alone. This is because the di-
mensionless correlation length ℓ∗ of the theoretical
model is naturally compared with the experimental
measurement ξ via the following relation:

ℓ∗ = (g0)
1

4−d × ξ (16)

In Appendix A, limiting our calculations to the d = 3
case, we illustrate the way the adjustable parameters are
determined where the emphasis is also on the choice of
the microscopic length scale a appearing in Eq. (15).
When the critical temperature of the system is known,
fitting the asymptotic two-term expansion of our theo-
retical crossover functions to the singular behavior of the
experimental quantities, permits unambiguous determi-
nations of the three system-dependent parameters ϑ, ψ,
and g0. We then indicate how the dimensionless coupling



6

constant u∗0 may be used to characterize “comparable”
systems which belong to a same subclass of universality
when an explicit length scale unit (a) is known for each
system. We show that the theoretical crossover functions
then provide an explicit analytical form of the “master”
(i.e. unique) singular behavior associated to this subclass
and discriminate the role of the energy and length scale
factors for the subclass.

2.3.2. Non-analytical corrections discarded –

Some ideas on renormalization

The renormalized Φ4
d (n) model of the perturbative FT

is an efficient reduction of a complicated mathemati-
cal problem which originally involves an infinite num-
ber of parameters to one parameter g (the renormalized
Φ4 coupling g of section 2.1). In order to better under-
stand the impact of this reduction, it is necessary to con-
sider the complete and non-perturbative renormalization
group theory developed by Wilson [3].

Explaining the use of the renormalization theory in
the study of critical phenomena is out of the scope of
the present paper. However, it is worthwhile to indicate
briefly some general ideas which may help someone to un-
derstand the use of our crossover functions in comparison
with experimental data.

The RG theory is a general theory to treat situations
where infinitely many degrees of freedom are correlated,
such as near a critical point where the correlation length
ξ diverges. Since in such cases, we are essentially in-
terested in describing the large distance behavior, and
because of the correlations, one may represent the state
of a system near criticality by means of a dimensionless
hamiltonian H which depends only on a local field φ (x)
which summarizes, over a volume of linear size Λ−1 cen-
tered on x, only general properties of the genuine local
variable which critically fluctuates (e.g. the spin vari-
ables Si of the Ising system). Beyond φ (x), H depends
also on the relevant physical parameters like the temper-
ature T and the magnetic field H (for the sake of sim-
plicity we shall not consider H). The form of H is quite
general provided it satisfies some required properties of
symmetry. For systems which are O(1)-symmetric [more
precisely Z2-symmetric, i.e. invariant under the change
φ → −φ such as Ising-like systems], then H must be an
even function of φ (when H = 0).

In order to concretize a bit the form of H, one may
look at its expansion for small values of φ (x), in the case
of the Z2-symmetry, it becomes (a0 being a term which
is usually discarded in FT) :

H = a0 +

∫

ddx
{

a1 (∇φ)
2

+ a2φ
2 + a3φ

4

+a4φ
6 + a5φ

2 (∇φ)
2
+ · · ·

}

(17)

in which the expansion in powers of the derivatives is
a consequence of the short range interactions between

the original spins and the coefficients ai depend on T .
Actually one is free to redefine the global normalization
of the field so as to set a1 = constant (in general one
chooses a1 = 1

2 ) but this is not mandatory. Furthermore
all the dimensions are measured in terms of Λ, so that it
is convenient to deal with dimensionless quantities in H.

The set
{

ai

(

T
Tc

)}

characterizes a given physical system

near a critical temperature Tc. It may be seen as the
coordinate of a point in a space S of infinite dimension.

The problem is that calculation of any critical quantity
with H is very complicated. The reason is that the pa-

rameters at hand
{

ai

(

T
Tc

)}

are attached to the length

scale Λ−1, while the physics under consideration refers
to phenomena that occur at all the length scales smaller
than ξ and greater than Λ−1. Now because the ratio

ξ
Λ−1 tends to infinity, there are an infinity of scales to be
accounted for to solve the problem.

Introducing a parameter s such as s ∈ [0, ∞[, the
renormalization group transformations precisely con-
struct successive hamiltonians H (s), obtained by inte-
grating out the degrees of freedom over the scales ranging

in
[

(e−sΛ)
−1
,Λ−1

]

, and then rescaling back the wave-

vector scale (hence Λ′ = e−sΛ → Λ). By construction,
the renormalized hamiltonian H (s) presents a correla-
tion length ξs which is reduced, compared to the ξ of
the initial hamiltonian H (s = 0) = H, with ξs = e−sξ,
and the effective hamiltonian H (s) is no longer critical

when ξ
Λ−1 ≃ 1. If the initial hamiltonian is critical (i.e.

if ξ = ∞), then H (s) reaches a fixed point when s→ ∞.
The evolution of H (s) under an infinitesimal change

of s is governed by an equation, called the exact RG
equation. It is a complicated integro-differential equation
which may be expanded in powers of the derivative of the
field without losing the non-perturbative character of the
complete theory (for a review see [29]).

At leading order of the derivative expansion, called the
local potential approximation (LPA), the exact RG equa-
tion reduces to an ordinary differential equation for a
function V of one variable φ. Its relation to the Φ4

d model
is better seen if one expands V in powers of φ. Imposing
the property of parity in φ, it becomes (for φ close to 0):

V (φ, s) = V0 (s) + V2 (s)φ2 + V4 (s)φ4 + V6 (s)φ6 + · · ·
(18)

The form of Eq. (18) shows the relation with Eq. (1)
when the derivatives of the field are neglected (again, for
the sake of simplicity, the account of h, which would re-
quire the presence of odd powers of φ, is not considered
here). In particular, the initial form chosen for V may be
directly related to the bare parameters of the Φ4

d model
with, e.g. Λ2V2 (0) = r0

2 , and Λ4−dV4 (0) = g0

4! (and
V0 (0) = V6 (0) = 0), they are parameters attached to the
microscopic length scale Λ−1 of the initial hamiltonian
(s = 0). As for the renormalized coupling g of the per-
turbative framework, it is not a constant but a running
parameter like V4 (s). To be more precise, one must look
at the flow of V (φ, s) solution of the RG equation.
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In LPA, the derivatives of the field are neglected but
one may account for all the effects of all the Hamiltonian
terms via the evolution of the complete function V (φ)
under the action of the RG transformation.

In three dimensions, a non-trivial fixed point V̊ (φ) ex-
ists and may be (numerically) determined. One may il-
lustrate this by writing (as a formal polynomial of φ):

V̊ (φ) = V̊0 + V̊2φ
2 + V̊4φ

4 + V̊6φ
6 + · · · (19)

and then calculating the values of V̊0, V̊2, V̊4, V̊6, etc.
As a consequence, one may situate the fixed point in
the formal space S truncated to the set of couplings
{V0, V2, V4, V6, · · · } of infinite dimension. To visualize the
evolution of a RG trajectory of V (φ, s) (the evolution of
V (φ) under a continuous RG transformation controled
by the parameter s ∈ [0, ∞[ in S), one may project it in
the plane {V4, V6}, for example.

We may choose to integrate the differential equation
with an initial simple form for V (φ, s = 0) like, for
example:

V (φ, 0) = V2 (0)φ2 + V4 (0)φ4 + V6 (0)φ6 (20)

in which V2 (0), V4 (0) and V6 (0) are numbers represent-
ing the initial values of V (s). As soon as s 6= 0, then
V (φ, s) contains all powers of φ.

To approach the fixed point V̊ (φ) starting with (20),
one must adjust one of the three initial parameters, e.g.
V2(0), to a particular value V2c, which depends on the
value chosen for the other parameters V4(0) and V6(0).
The requirement is similar to the adjustment of the crit-
ical temperature with a view to reach the critical point
in actual systems. The resulting value Vc (φ) is said to
belong to the critical subspace Sc of S, which forms the
domain of attraction to the W-FP. Sc has the same di-
mension as S minus one (the codimension of Sc is equal
to one) which corresponds to the fact that the W-FP
has only one direction of unstability, corresponding to a
direction locally orthogonal to Sc (we suppose h = 0).

It is thus possible to illustrate the RG trajectories in
Sc which, starting from some arbitrary points of S reach
the W-FP when s → ∞ (one initial parameter must be
finely adjusted). This is demonstrated in Figure 1. On
this figure one sees that, whatever their starting points,
the critical trajectories reach the W-FP asymptotically
along a unique ideal trajectory which links the G-FP to
the W-FP. The closer the starting points are chosen to
the G-FP, the longer is the way along this ideal trajec-
tory. This ideal RG trajectory is called the “renormal-
ized trajectory” (RT) because the RG flow running on
it corresponds, in the vicinity of the G-FP, to the RG
flow discovered in the perturbative theory of renormal-
ization. Since the RT is a manifold of dimension one, a
single parameter (the renormalized coupling “constant”
g) is sufficient to characterize the RG flow running on it.

Hence, in some sense (there is an arbitrariness in the
definition of the renormalized coupling) the renormalized
(or running) coupling g of the perturbative framework

Figure 1: Ideal Renormalization Group trajectory in the bi-
nary diagram of coupling parameters V4 and V6 [see text and
Eqs. (19) and (20)].

implicitly “flows” along the RT. Actually, g is a function
of s, more precisely in the circumstances of the massive
field theory, it is a function of m

Λ . The difference with the
complete Wilson’s RG theory is that, in the perturbative
framework, one has implicitly assumed to be “exactly on”
the RT, so that the distance to the W-FP is measured by
the values taken by a unique parameter g

(

m
Λ

)

− g∗ (g∗

being the value of g at the W-FP). The consequence is the
presence of only one family of correction-to-scaling terms,
such as in the following expansion of the (dimensioless)
correlation length for example:

ℓ∗ (t∗) = ℓ∗±0 |t∗|−ν

[

1 +

∞
∑

k=1

b±k |t∗|k∆

]

(21)

with ∆ a specific exponent the value of which (close to
0.5) may be estimated by resumming series of the renor-
malized perturbation theory of the Φ4

d model. It is pre-
cisely expansions like in Eq. (21) that have been summed
into the crossover functions considered above.

The other transients not accounted for by the Φ4
d model

(by implicitly assuming that the only possible RG tra-
jectory is the RT) are responsible for other kinds of
correction-to-scaling terms characterized by a hierachi-
cal set of exponents ∆j (j = 2, · · · ,∞) such that:

∆ < ∆2 < ∆3 < · · · < ∆∞
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The fact that ∆ (the exponent which controls the
asymptotic approach, along the RT, to the W-FP) is the
smallest exponent is well illustrated on Figure 1 by the
coincidence of all trajectories with the RT before reach-
ing the W-FP.

The few estimates of ∆2 indicate that its value in three
dimensions and for n = 1 is of order 2∆ so that, on a
general ground, the expansion (21) is a priori not valid
beyond the first correction term. This is why one often
uses the following two-term Wegner expansion to analyse
the experimental data:

ξ (∆τ∗) = ξ±0 |∆τ∗|−ν
[

1 + a±ξ |∆τ∗|∆
]

(22)

with the exponents ν and ∆ fixed to their FT values.
The domain of validity of such a two-term expansion is
called the preasymptotic domain (PAD) and noted |t∗| .

LIsing
PAD .

For the same reason, the crossover functions calcu-
lated in FT were not expected to generally reproduce
the experimental data beyond the Ising like PAD. How-
ever this objection does not account for the amplitudes
of the correction terms. It may well occur that the co-
efficients of the corrections associated to the exponents
∆j (j = 2, · · · ,∞) are very small so that in effect only
the Φ4

d-like corrections have to be considered even on a
range of t∗ for which several (more than two) terms of the
expansion of Eq. (21) are not negligible. It is the case of
initial Hamiltonians the coordinates of the critical point
of which correspond to a point lying very close to the RT.
This particularity may even validate the entire crossover
functions of FT if the initial point lies close to the G-FP.

Of course, the RT does not represent the unique pos-
sibility of approaching to the W-FP and the infinite di-
mension of Sc leaves room for an infinity of possibilities.
For example, there exists another attractive trajectory
which is characterized by an asymptotic approach to the
W-FP controlled by ∆2, and supplementary adjustment
of the initial Hamiltonian is needed to obtain this kind
of approach. For systems represented by such Hamilto-
nians, the crossover functions of FT have no utility at
all since none of the correction-to-scaling terms is cor-
rect. Similar and more common are those systems which
correspond to an approach to the W-FP from the “op-
posite side” compared to the RT. Their critical behavior
are characterized by amplitudes of the first correction-
to-scaling (controlled by ∆) with a sign opposite to that
generated by the approach along the RT [30].

Up to now, it is not possible to say a priori which kind
of approach to the W-FP may correspond to an actual
system which belongs to a given universality class. A way
to find out is to try a fit of test functions to experimental
data. From such tests, it seems that the subclass of one-
component fluids corresponds to Hamiltonian lying very
close to the RT [31]. This is why the crossover functions
of FT are good candidates to fit the scaling curves of that
subclass.

3. THE THEORETICAL MEAN CROSSOVER

FUNCTIONS

In this section, we determine mean values of the
crossover functions. We also take the opportunity of sim-
plifying the ad hoc functions by limiting the products in
Eq. (5) to only three terms. Hence we have to determine
the value of parameters like those entering Eqs. (5) and
(6), but with K = 3 for all quantities and so that the cor-
responding ad hoc functions lie just in-between the max
and min bounded functions published in Ref. [14]. To
accomplish this, the following is taken into consideration.

1. The required precision in fitting each property re-
quires the recourse to phenomenological confluent

functionsD±
p (t∗) [Eq.(6)] which essentially account

for the crossover between the values ∆ ∼ 1
2 of the

Ising-like confluent exponent as t∗ → 0, and the
exact value ∆mf = 1

2 of the mean-field-like “con-
fluent” exponent as t∗ → ∞. Such a crossover in-
troduces the following condition

S±
P,1 = S±

P,2 (1 − ∆ + ∆mf ) (23)

which confers to one parameter among S±
P,1 and

S±
P,2, a noticeable difference from the other con-

stants appearing in Eqs. (5) and (6).

2. In [14], the ad hoc functions for the susceptibility in
the homogeneous phase are already defined with a
three-term product. In that case, the behaviors of
D+

χ (t∗) as a function of t∗ as illustrated in Figure
2, clearly show that the condition

S±
χ,2

√

t∗0 = 1

can be used as an indicative sensor of the classical-
to-critical crossover (C3) domain (t∗0 stands for the
values of t∗ where the ad hoc confluent functions
take on precisely the mean value ∆ 1

2
=

∆+∆mf

2 ).

The extension δLC3 of the associated “intermedi-
ate” t∗-range can be measured by a characteristic
amplitude ̟ < 1 [which remains to be defined,

see below Eq. (39)], such that to ̟
(

S±
χ,2

)−2
.

t∗ ∈ [δLC3] . 1
̟

(

S±
χ,2

)−2
, separating thus unam-

biguously an Ising-like asymptotic domain of ex-

tension t∗ < LIsing = ̟
(

S±
χ,2

)−2
and a mean-field

like asymptotic domain of extension t∗ > Lmf =
1
̟

(

S±
χ,2

)−2
(see Figure 2).

3. The leading amplitudes Z
±
P , associated with their

respective universal exponents eP satisfying scal-
ing laws, are unambiguously related by universal
amplitude combinations between them.

4. A part of {Xi, Yi}±P ’s accounts for the universal fea-
tures associated to the critical confluent corrections
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Figure 2: Typical crossover behaviors of the confluent
crossover function D+

χ (t∗) [Eq. (6)], for the bounded (max
and min) critical confluent exponents. as a function of
the thermal field (at zero ordering field) for the suscepti-
bility in the homogenous phase (T > Tc). The vertical
lines are indicative of typical discrete variations of the con-
fluent function, showing the practical interest of the condi-
tion S+

χ,2 (∆, ∆mf )
√

t∗0 = 1 (crosses), which corresponds to

D+
χ (t∗0) = ∆ 1

2
=

∆+∆mf

2
. Using a single perfactor ̟ < 1

which remains to be estimated [see below Eq. (40)], it is

possible to define the extensions t∗ < LIsing = ̟
(

S+
χ,2

)−2
,

t∗ > Lmf = 1

̟

(

S+
χ,2

)−2
, and LIsing . t∗ ∈ [δLC3] . Lmf , of

either, the Ising-like (Ising), or the mean-field-like (mf), or
the classical-to-critical crossover (C3) domains, respectively
(see text for details).

to scaling, explicitly characterized by the single uni-
versal exponent ∆ and one first confluent amplitude
(see below) for t∗ → 0.

5. Another part accounts for the asymptotic mean-
field behavior for t∗ → ∞ [implicitly characterized
by the two (leading and confluent) exponents eP,mf

and ∆mf and their associated amplitudes (see be-
low)].

6. The remaining part accounts for the expected
classical-to-critical crossover (C3) in the interme-
diate t∗-range (which also remains to be defined,
see point 2 just above).

These remarks provide constraints on the parameter
entering each specific ad hoc functions. Let us consider
those constraints explicitly.

3.1. 3D Ising-like PAD description

Since the error estimates are the largest in the vicinity
of the W-FP, it is in the Ising-like PAD limit that the
determination of the mean value has important conse-
quences.

Let us define a set of four constraints to control the
mean Ising-like PAD description within the two limiting

Ising-like PAD descriptions given by the bounded func-
tions FP,max and FP,min, respectively.

Starting with Eq. (5), we first consider the two-term
(Wegner) expansion of FP (t∗):

FPAD
P,Ising (t∗) = Z

±
P (t∗)

−eP

[

1 + Z
1,±
P (t∗)

∆
]

(24)

where the function FPAD
P,Ising (t∗) is valid within some

Ising-like PAD extension t∗ ≤ LIsing
PAD . To estimate mean

exponents and mean amplitudes of Eq. (24) from max
and min ones, we impose the following four obvious con-
ditions

eP =
eP,max + eP,min

2
(25)

Z
±
P =

√

Z
±
P,maxZ

±
P,min (26)

∆ =
∆max + ∆min

2
(27)

Z
1,±
P =

∑3
i=1X

±
P,iY

±
P,i

=
∑K

i=1

X±

P,max,i
Y ±

P,max,i
+X±

P,min,i
Y ±

P,min,i

2

(28)

The leading term of our mean function is then identical
to the leading term of the mixing function

FE
P,mix

[

t∗, D±
P,mix (t∗)

]

=
{

FP,max

[

t∗, D±
P,max (t∗)

]}E

×
{

FP,min

[

t∗, D±
P,max (t∗)

]}1−E

(29)
proposed in [14], with E = 1

2 . The three first Eqs.
(25), (26), and (27), provide unequivocal determination
of the mean values of the three parameters eP , Z

±
P , and

∆, respectively. The Eq. (28) involves exclusively the

{Xi, Yi}±P ’s.

3.2. Mean-field-like PAD description

To recover the (asymptotic) mean-field-like behavior
of FP

[

t∗, D±
P (t∗)

]

in the limit t∗ → ∞, the following
relations are required

eP,mf = eP − 1

2

3
∑

i=1

Y ±
P,i (30)

Z
±
P,mf = Z

±
P

3
∏

i=1

(

X±
P,i

)Y ±

P,i

(31)

where eP,mf and Z
±
P,mf are the mean-field (classical) val-

ues of the asymptotic exponent and amplitude, respec-
tively. Such a mean-field situation as t∗ → ∞, can be
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easily characterized in an equivalent manner to the above
Ising situation as t∗ → 0.

Therefore, the following restricted two-term expan-
sions

FPAD
P,mf (t∗) = Z

±
P,mf (t∗)

−emf

[

1 + Z
1,±
P,mf (t∗)

−∆mf

]

(32)
can be easily determined for t∗ → ∞, which are valid
close to the G-FP, within the mean-field-like PAD ex-

tension t∗ ≥ Lmf
PAD. In Eq. (32), ∆mf is the mean field

exponent of the first order term of “classical” corrections,
and Z

1,±
P,mf is the associated amplitude defined by the fol-

lowing equation

Z
1,±
P,mf =

3
∑

i=1

Y ±
P,i

X±
P,i

(33)

As in the case of the Ising-like PAD description, we
impose four conditions on the ad hoc mean function
to describe the mean-field PAD using the original pairs
{Xi, Yi}±P ’s of the bounded functions. These four condi-
tions read as follows

eP,mf = eP − 1
2

∑3
i=1 Y

±
P,i

= 1
2 [eP,max + eP,min

− 1
2

∑K
i=1

(

Y ±
P,max,i + Y ±

P,min,i

)]

(34)

Z
±
P,mf = Z

±
P

∏3
i=1

(

X±
P,i

)Y ±

P,i

=
√

Z
±
P,maxZ

±
P,min

×
∏K

i=1

√

(

X±
P,max,i

)Y ±

P,max,i
(

X±
P,min,i

)Y ±

P,min,i

(35)

∆P,mf =
1

2
(36)

Z
1,±
P,mf =

∑3
i=1

Y ±

P,i

X±

P,i

= λP

2

∑K
i=1

(

Y ±

P,max,i

X±

P,max,i

+
Y ±

P,min,i

X±

P,min,i

) (37)

Eq. (36) fixes the mean value of the mean-field-like
“confluent” exponent, unequivocally. The three Eqs.
(34), (35), and (37), added to Eq. (28), impose the mean

values of two pairs among the 3 pairs {Xi, Yi}±P ’s.

3.3. Number and nature of the parameters

The above analysis demonstrates that the theoretical
mean function FP

[

t∗, D±
P (t∗)

]

must satisfy 9 constraints
[Eqs. (23), (25) to (28), and (34) to (37)] to reproduce the

two asymptotic and pre-asymptotic branches of a com-
plete crossover effect. Therefore, any FP

[

t∗, D±
P (t∗)

]

must contain at least 9 parameters.

Eight of them can be readily unequivocally deter-
mined: eP from Eq. (25), Z

±
P from Eq. (26), ∆ from

Eq. (27), ∆mf from Eq. (36) and two {Xi, Yi}±P pairs
from the four Eqs. (28), (34), (35), and (37). Using
S±

P,2 (∆,∆mf ) as an entry data in Eq. (6), leads to the

supplementary determination of S±
P,1 (∆,∆mf ) from Eq.

(23). Subsequently, the parameters attached to the in-
termediate part of the crossover need to be determined.

The phenomenological forms of Eqs. (5), (6) and (23),
with K = 3, introduce 12 parameters [the case with K =
2 (10 parameters) is of limited interest due to the error-
bar propagation which cannot be accounted for via only
two {Xi, Yi}±P pairs]. Therefore, for any fitting procedure

which uses S±
P,2 (∆,∆mf ) as an entry (free) parameter,

only one {Xi, Yi}±P pair, remains truly free in the (K = 3)
product terms of the MR crossover function.

The triad {S2, Xi, Yi}±P of the calculated parameters

is composed of one “crossover sensor” S±
P,2, character-

istic of the t∗-location of the classical-to-critical con-
fluent crossover (see Figure 2), and one “amplitude-

exponent pair” {Xi, Yi}±P , proper to the shape of the
strict crossover part between the two asymptotic PAD
behaviors (we will illustrate this latter point below using
Figure 4 in § 3.4).

Let us look for the possible existence of a unique value
S2 = cte [or S1 = cte by virtue of Eq. (23)], whatever
the selected property and the considered (homogeneous
or non-homogeneous) phase of the system.

The S±
P,i (∆,∆mf ) parameters are only related to the

two universal confluent exponents. However, the numer-
ical values of ∆ appear also conditioned by the error-
bar propagation of asymptotic uncertainties provided by
the theoretical estimations of the leading universal expo-
nents close to the non-Gaussian fixed point. In Figure

3 we have reported by crosses at constant
∆+∆mf

2 as a
function of t∗, all the [max, min, and mixing] conditions
S±

P,2

√
t∗ = 1, whatever P and ± states (extending then

the previous results reported in Figure 2 for the homo-
geneous susceptibility case).

Since the dispersion of the mixing conditions
√

S±
P,max,2S

±
P,min,2t

∗ = 1 is significatively lowered, Fig-

ure 3 supports the possibility of choosing a unique value
for S2.

Moreover, anticipating the S2 estimation given in the
following subsection, the resulting mean value S2 =
22.9007, common to all the properties and all the states,
provides a condition S2

√

t∗0 = 1 in close agreement with
the previous mixed conditions, as shown by the corre-
sponding vertical line in Figure 3. The departure of
the non-homogenous heat capacity case is probably due
to the cumulative effect of the error bar propagation of
the uncertainties on the exponent and on the critical
background amplitude estimations, related here to the
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Figure 3: Characteristic values of the crossover condition
S±

P,2 (∆, ∆mf )
√

t∗ = 1, for all the “min” (upper crosses at
same ∆max value) and “max” (lower crosses at same ∆min

value) crossover functions estimated in Ref. [14] (lin-log ∆;t∗

diagram). The P (property) color indexations are: green
χ∗ (+), red ℓ∗ (+), blue C∗ (+), pink m∗ (−), dark green
χ∗ (−), and dark blue C∗ (−). The corresponding values
for the mixing crossover functions with E = 1

2
[see Eq.

(29)], are indicated by the intermediate crosses (at same
∆mean = ∆max+∆min

2
value). The linear segments show

the agreement with the associated geometrical mean values
√

S±

P,max,2S
±

P,min,2t
∗ = 1 of the min and max crossover con-

ditions. The vertical line illustrates the “universal” crossover

condition S2

√

t∗0 = 1 [where D

(

1

[S2(∆mean,∆mf)]2

)

=

∆mean+∆mf

2
from Eq. (6)], which is selected in the present

study, whatever the property (P ) or the phase domain (±).

non-zero value of the regular background term (equal
to 3) below Tc. We can then note that the above well-
controlled origin of this “universal” model-parameter S2,
partly compensates for the arbitrariness of its numerical
value.

3.4. Unique form of the mean confluent function

For each property, the three associated functions,

FP,th

[

t∗, D±
P (t∗)

]

=



















FP,max

[

t∗, D±
P,max (t∗)

]

FP,min

[

t∗, D±
P,max (t∗)

]

F
E= 1

2

P,mix

[

t∗, D±
P,mix (t∗)

]



















,

proposed in reference [14] can be considered. The three
corresponding residual functions, rP (t∗), expressed in
%, are calculated from reference to our mean func-
tion noted FP [t∗, D (t∗)], such as rP (t∗) = 100 ×
(

FP,th[t∗,D±

P
(t∗)]

FP [t∗,D(t∗)] − 1

)

. The results reported hereafter are

obtained from the minimization method of the residuals

0 P 1/ℓ∗ 1/χ∗ C∗

1 e+

P −0.6303875 −1.2395935 0.1088375

2 Z
+
P 2.121008 3.709601 1.719788

3 ∆ 0.50189

4 Z
1,+
P −5.81623 −8.56347 8.06569

5 S1 22.8573

6 S2 22.9007

7 XP,1 40.0606 29.1778 36.6874

8 YP,1 −0.098968 −0.178403 0.220033

9 XP,2 11.93211 11.7625 3.23787

10 YP,2 −0.153912 −0.282241 −0.000133095

11 XP,3 1.902735 2.05948 2.84102

12 YP,3 −0.00789505 −0.0185424 −0.00222489

13 XC −3.79829

14 eP,mf −0.5 −1 0

15 Z
+

P,mf 1 1 3.79004

16 ∆mf −0.5

17 Z
1,+
P,mf −0.0195196 −0.0391128 0.00517327

Table I: Numerical values of the parameters of the mean
crossover functions FP [t∗, D (t∗)] [see Eqs. (5) and (6), with
K = 3 and S±

P,2 = S2], corresponding to the dimensionless
correlation length ℓ∗, susceptibility χ∗, and specific heat C∗,
in the homogeneous phase (T > Tc). The lines 1 to 4 corre-
spond to the characteristic parameters of the Ising-like PAD
description [see Eqs. (24) to (28)], while the lines 14 to 17
correspond to the characteristic parameters of the mean field-
like PAD description [see Eqs. (32) to (37]. The universal val-
ues of the interrelated crossover sensors S1 and S2 [see Eqs.
(23)], are given in the lines 5 and 6. The values of the three
amplitude-exponent pairs {Xi, Yi}+

P given in lines 7 to 12,
have been determined by a carefull adjustement to the theo-
retical mixing functions of Eq. (29) (with E = 1

2
) proposed in

Ref. [14], using specific constraints of Equations (25) to (28)
and (34) to (37). The value of the critical background XC of
the specific heat given in line 13 is the mean value of the min
and max values of parameters X6 of Ref. [14].

related only to the mixing function with E = 1
2 [see Eq.

29].
In a first step, starting with the susceptibility in

the homogeneous phase as a basic property (since
K = 3 already), we have validated the deriva-
tion of several mean functions using several entry tri-

ads made of
√

S+
χ,max,2S

+
χ,min,2 and one among the

three pairs {Xi,max, Yi,max}+
χ , {Xi,min, Yi,min}+

χ , or
{

√

Xi,maxXi,min,
Yi,max+Yi,min

2

}±

χ
for each i value be-

tween 1 to K. The two remaining pairs {Xj 6=i, Yj 6=i}+
χ s

were then calculated from Eqs.( 28), (34), (35) and (37).
This step was then repeated for all the properties with
two main results:

1. at least one solution with K = 3 exists for all the
properties and all the states;
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0 P m∗ (MR7) m∗ (MR67) 1/χ∗ C∗

1 e−P 0.3257845 0.3257845 −1.2395935 0.1088375

2 Z
−

P 0.937528 0.937528 17.762821 3.203771

3 ∆ 0.50189 0.50189

4 Z
1,−
P 3.42538 7.70712 −40.4666 6.69984

5 S1 22.8573 22.8573

6 S2 22.9007 22.9007

7 XP,1 219.597 124.274 470.671 116.515

8 YP,1 −0.0284374 0.0206744 −0.0332665 −0.105953

9 XP,2 38.3772 20.9461 43.6468 72.9532

10 YP,2 0.224464 0.20453 −0.585082 0.247902

11 XP,3 6.92804 6.92808 5.2264 12.6739

12 YP,3 0.152404 0.123226 0.139161 0.0757262

13 XC −3.79349

14 eP,mf 0.5 0.5 −1 0

15 Z
−

P,mf

√
6

√
6 2 6.79349

16 ∆mf −0.5 −0.5

17 Z
1,−
P,mf 0.0277176 0.0277175 0.0131516 0.00846373

Table II: Same as Table I for the dimensionless order pa-
rameter m∗, susceptibility χ∗, and specific heat C∗, in the
non-homogeneous phase (T < Tc). The distinction be-
tween the MR7 and MR 67 results accounts for difference
in the numerical values of the first confluent amplitude Z

1
M

of Eq. (28), which provides the (central) universal values
Z
1
M

Z
1,+
χ

(MR7) = 0.45 and
Z
1
M

Z
1,+
χ

(MR67) ≡ Z
1
M

Z
1,+
χ

(MR6) = 0.9

(see Appendix B for details).

2. the residuals are minimum for the triad
{

√

Smax,2Smin,2,
√

Xi,maxXi,min,
Yi,max+Yi,min

2

}±

P
.

The following complementary observations were also
made:

1. The significative values of residuals are in a t∗-range
where S±

P,2

√
t∗ ≃ 1.

2. The t∗-range where our mean functions compare to
the max (or min) functions, corresponds to t∗ >
0.1

S±

P,2

(in this domain, the residuals are of the same

order of magnitude than those obtained using the
(E = 1

2 ) mixing functions and remains . 10−3).

3. Each Ising-like PAD description by equation (24)
agrees with the complete crossover function within

an error-bar lower than 0.01% for t∗ ≤ LIsing
PAD ,

where LIsing
PAD is then defined by the value

(

S±
P,2

)2

LIsing
PAD ≃ 10−3 (38)

In a second step, for the inverse susceptibility and the
inverse correlation length in the homogeneous state, we

have minimized the residuals by successive small vari-
ations around the above mixing values of each consti-
tutive parameter of the entry triad. We have then se-
lected the best mean functions for each property, using
the mean value S2 = 22.9007 of the two optimized values
Sχ,2 = 22.9321 and Sξ,2 = 22.8693, associated to χ and
ξ, respectively. The final step was to minimize all the
residuals with S2 = 22.9007 fixed, whatever the property
or the domain. As a main consequence, the universal con-
fluent crossover condition S2

√
t∗ = 1 is such that t∗ = t∗0,

with

t∗0 =
1

(S2)
2
∼= 2. 10−3 (39)

Accordingly, Eq. (38) has a universal form whatever the
property, leading to well-controlled PAD extension t∗ ≤
LIsing

PAD , with

LIsing
PAD ≃ 10−3

(S2)
2 = ̟ × t∗0

∼= 2. 10−6 (40)

where ̟ ∼= 10−3 is then a convenient parameter to ac-
count for the intermediate crossover range between the
two (Ising like and mean field like) PADs (see Figure 2,
for the susceptibility case as a typical example ).

The corresponding parameters of the theoretical mean
functions are given in Table I (homogeneous state, ∆τ∗ >
0) and Table II (non-homogeneous state, ∆τ∗ < 0). The
mean crossover functions for the susceptibility, the cor-
relation length and specific heat in the homogeneous do-
main are within the above theoretical level of precision in
the complete t∗-range. For the order parameter, suscep-
tibility and specific heat in the non-homogeneous domain
we get a sufficient accuracy (±0.1%) to have agreement
with the theoretical crossover shape in the intermediate
t∗-range. The MR67 order parameter case in the non-
homogeneous domain is the object of a specific analysis
(see Appendix B) related to the application restricted to
the one component fluid subclass. Correspondingly, for a
more detailed analysis on the level of precision, we have
also reported in this Appendix B the residuals for all the
properties (see Figures 5 to 10).

To evaluate the influence of the constant universal
value S2 = cte = 22.9007, we have made a compari-
son between all the t∗eP

-values where the following local
mean value

eP,eff = eP, 1
2

=
eP + emf

2
(41)

of the effective exponent eP,eff occurs for any max, min,
and mixing crossover function [the effective exponent is

given by the equation eP,eff = −∂ ln[FP [t∗,D±

P
(t∗)]]

∂ ln t∗ [32]].
In Figure 4, using a vertical arbitrary unit (a.u.) scale

between ePmin, 1
2
(a.u.) = 0 to ePmax, 12

(a.u.) = 1, then

with eP, 1
2
(a.u.) = ePmix, 1

2
(a.u.) = 1

2 at t∗ = t∗eP
, permits

to generalize the (confluent) ∆ case reported in Figure
3. We can observe that the conditions of Eq. (41) match
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Figure 4: t∗eP
-position (semi-log scale) of the effective mean

value eP, 1
2

=
eP +emf

2
, (in arbitrary units), between critical

and classical asymptotic exponents. Upper, lower, and me-
dian circles are for eP max, min, and mixing values of ref-
erence [14], while median crosses are for mean values of the
present mean crossover functions. See the legend of Figure
3 for the P color indexation. The vertical (black) line in-
dicates the t∗0-position for the universal confluent condition
S2

√

t∗0 = 1. Note the significative differences in t∗eP
-positions

for max, min, and mean values of the effective leading expo-
nents for each property, compared to the “universal“ effective
confluent exponent case reported in Figure 3.

perfectly at t∗ = t∗eP
for mean crossover functions and

mixing crossover functions.
Figure 4 is the second result supporting our S2 = cte

suggestion to construct the “universal” confluent func-

tion. The corresponding condition ∆ 1
2

=
∆+∆mf

2 for

the effective confluent exponent, where S2

√

t∗0 = 1
[Eq. (39)], demonstrates that the t∗eP

-values are read-
ily “C3” in nature (see Figure 3), since, either the con-

ditions 1
10

(

1
S2

)2

. t∗eP
. 2

(

1
S2

)2

, or the conditions
∣

∣

∣
∆eff

(

t∗eP

)

− ∆ 1
2

∣

∣

∣
< 1

2

∣

∣

∣
∆Asymp − ∆ 1

2

∣

∣

∣
, with ∆Asymp =

∆ or∆mf , are satisfied. We note that the relative t∗-

differences between the values of t∗γ (−) ≈ 1
10

(

1
S2

)2

, and

t∗γ (+) ≈ 2
(

1
S2

)2

, for the inverse susceptibility in the

non-homogeneous (−), and homogeneous (+), phases, is
correctly reproduced, while the t∗-similarity, t∗α (−) ≈
t∗α (+) ≈ 1

3

(

1
S2

)2

of the corresponding values for the

specific heat, is also recovered (compare with the Figure
1 of Ref. [14]).

4. CONCLUSION

By construction, the mean theoretical crossover func-
tions determined in the present work do not account
for any uncertainty on the parameters which, in the
preasymptotic critical domain (PAD), characterize the

critical behavior of the functions considered (correla-
tion length, susceptibility, specific heat and coexistence
curve). The recourse to such mean functions is justified
by the fact that the amplitude and propagation of the
asymptotic error-bars have a large extension which can
affect significantly the classical-to-critical crossover espe-
cially in the intermediate region where most experimental
data are reported. Actually, it is known that in such a
situation, when the comparison with experimental data is
made following the common way of trying to determine
the leading and first confluent amplitudes in the Ising-
like PAD, the theoretical and experimental uncertainties
add to each other. Consequently, it is usual to fix the ex-
ponents to their mean theoretical values in order to get
some definite information on the correction amplitudes.
If we use the min and max theoretical crossover functions
very close to the critical point, we obtain non-satisfying
information on the intermediate crossover because the
physical parameters ϑ and ψ, introduced by the basic
Eqs. (12) and (13) are not sufficiently well defined. The
mean functions constructed with controlled constraints
which correctly account for the universal features proper
to the Ising-like PAD, provide useful criteria to define
the extension of the Ising-like PAD. Fitting the experi-
mental data with our mean crossover functions can then
be a convenient method to validate any phenomenolog-
ical approach by predicting the values of the two-scale
factors which characterize the asymptotic singular be-
havior within the Ising-like PAD and finally to identify
eventual subclass of universality. In a forthcoming pa-
per [15], the importance of the mean crossover functions
will be illustrated by providing a complete characteriza-
tion of the one component fluid subclass, within an ex-
tended asymptotic range well beyond the Ising like PAD,
recovering then the practical intermediate range which is
usually described by more complex formulations [33, 34].

Appendix A: THE ADJUSTABLE PARAMETERS

To simplify our analysis, we select the three-
dimensional Ising-like Φ4

d=3 (n = 1) model, with g0 ∼
[length]

−1
.

Let us consider the theoretical crossover function of
Eq. (5) for the (dimensionless) correlation length ℓ∗ (t∗)
given in Table I at h∗ = 0 as a typical example, writing
then

ℓ∗ = g0 × ξexp (A1)

and [see Eq. (12)],

t∗ = ϑ× ∆τ∗ (A2)

Now fitting the experimental correlation length
ξexp (∆τ∗), in the homogeneous phase ∆τ∗ > 0, gives
access to the two adjustable parameters g0 and ϑ. Conse-
quently, due to the asymptotic validity of Eq. (A2) close
to the critical point, is known the asymptotic two-term
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Figure 5: Residuals (%) for the inverse susceptibility in the homogeneous phase. The right part compares relative residuals
to the theoretical fitting precision of 0.01%. Color indexation: green (dark green) : MR7 (MR6) min crossover function; blue
(dark blue): MR7 (MR6) max crossover function; red (dark red): MR7 (MR6) mixing crossover function with E = 1

2
; Residuals

for MR6 functions are not visible in the magnified rigth scale, except in the C3 range. Four characteristics t∗-positions are
indicated by vertical lines which correspond to the t∗ ≤ LIsing

PAD (i.e. the Ising like PAD extension) (orange line), the S2

√

t∗0 = 1

condition (black line), the t∗ = t∗γ condition [Eq. (41)] (blue line), and t∗ ≥ Lmf
PAD (i.e. the mean field like PAD extension)

(pink line), respectively (see text for details). The amplitude and propagation of the asymptotic theoretical error-bars for the
non-gausssian limit t∗ → 0 are clearly evident in the left part. To compare the amplitude of the theoretical error-bar to the
one of the experimental uncertainty, the squared point and its associated theoretical error-bar indicate “equivalence” between
the model and the experimental situation encountered at the “lowest ” temperature distance T −Tc = 1 mK above the critical
temperature of xenon (see Ref. [15] for details). The rigth part corresponds to the residual magnification at the scale of the
allowed [14] theoretical precision level (≤ 0.01%).

Figure 6: Same as Figure 4 for the inverse correlation length in the homogeneous phase.

Wegner expansion of the experimental singular behavior
for the correlation length, which reads as follows

ξexp = ξ+0 (∆τ∗)
−ν
[

1 + a+
ξ (∆τ∗)

∆
+ ...

]

(A3)

The associated two-term expansion of the theoretical
function reads as follows

ℓ∗ =
(

Z
+
ℓ

)−1
(t∗)−ν

[

1 − Z
1,+
ℓ (t∗)∆ + ...

]

(A4)

Using Eqs. (A1,A2), a term-to-term identification be-
tween Eqs. (A3) and (A4), gives,

ϑ =

(

a+
ξ

−Z
1,+
ℓ

)
1
∆

(A5)

and

g−1
0 = ξ+0 Z

+
ℓ ϑ

ν (A6)
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Figure 7: Same as Figure 4 for the specific heat in the homogenous phase. Compared to results of Figures 4 and 5, the
significative increases in amplitude and propagation of the error-bars is such as the residuals attain the admitted theoretical
level in the C3 domain.

Figure 8: Residuals (%) for the order parameter in the non-homogenous phase. See Appendix B for details between the MR7
(upper part) and MR 67 (lower part) results.

Within the preasymptotic domain, the two adjustable
parameters of the model at h∗ = 0 are unequivocally
defined by Eqs. (A5) and (A6). Two important remarks
can be made:

i) the nonuniversal scale factor ϑ is uniquely defined
by the confluent corrections to scaling;

ii) the nonuniversal inverse length g0 is proportional to
the inverse of the leading amplitude of the actual corre-
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Figure 9: Same as Figure 4 for the susceptibility in the non-homogenous phase. Compared to the general trend of all the other
max and min crossover functions, a curious “exact crossing” between min and max functions occurs in the present case around
t∗ ≃ 3 10−13, as revealed by the converging residuals for t∗ < 10−5. That provides the maximun amplitude for theoretical
error-bars observed outside the PAD extension. The associated error-bar propagation is then significative in a large C3 domain.

Figure 10: Same as Figure 4 for the specific heat in the non-homogenous phase. Compared to the homogeneous phase (Figure
6), we suspect that the non-zero value of the backgroung term contributes to increase amplitude and error-bar propagation
over the C3 domain, leading to its over-extended range close to the Gaussian limit t∗ → ∞.

lation length.

¿From now on, the complete characterization of the
system would follow from the determination of ψ which
requires the consideration of one suplementary singular
property, such as the susceptibility (as shown in the sec-
ond paper [15]).

However, the inverse length g0, determined from cor-
relation length measurements, is not a “natural” scale
for the actual system because a measurement of the cor-
relation length would be a prerequisite condition to set
the length scale unit. One may easily show [35] that
when the thermodynamic description of a magnetic sys-
tem is normalized per particle, then all lengths are mea-
sured in units of the thermodynamic microscopic length
amag = (vmag)

1/d (where vmag is the particle volume at

criticality). In this respect, amag plays a role similar to
that of the lattice spacing aIsing of the Ising uncompress-
ible solid. The natural approach is thus to first choose a
microscopic length unit such as aIsing, which implicitly
introduces the number of particles per lattice cell. There-
fore, the value of g0 is obtained via the length aIsing from
the determination of an intermediate parameter u∗Ising

[like in Eq. (15)] such as:

g0 × aIsing = u∗Ising (A7)

As a conclusion, fitting experimental results with the
dimensionless theoretical functions requires reference to
one length scale unit [aIsing, or amag] and the energy
scale unit kBTc to reduce to dimensionless quantities
the thermodynamic and correlation functions. The fit-
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ting results of correlation length and susceptibility mea-
surements for example [15], enable the determination of
three dimensionless numbers ϑ, ψ, and g0 × aIsing (or
g0 × amag). In such a situation, ϑ and ψ act as the
two-scale factors characteristic of the asymptotic univer-
sal features of the Ising-like system, while the product
g0 × aIsing (or g0 × amag) insures that the extensivity of
the total macroscopic system is correctly accounted for
in units of the actual critical correlation length.

However, to compare between two systems of the same
universality class remains not easy in the absence of
explicit thermodynamic definition of the (coupling con-
stant) inverse length g0. This exercice is left to the second
paper [15].

Appendix B: THE COEXISTENCE CURVE AND

ITS CONFLUENT CORRECTION ERROR-BAR

As explained in Ref. [14], the MR7 crossover functions
involve a forced account of the Guida and Zinn-Justin
estimates [27] of the universal combinations between the
leading critical amplitudes. This has induced an overesti-
mation of the uncertainty on the correction terms in MR7
compared to the previous MR6 calculations (see section
IIB2 of Ref. [14]). In general this does not have an im-
portant impact on the resulting mean crossover functions,
except for the order parameter for which the MR7 deter-
mination finally appears to have (relatively to MR6) a
poor quality (one may appreciate this difference by look-
ing at bottom of Figures 2 (MR6) and 3 (MR7) of Ref.

[22], for example).

To circumvent this non-satisfactory error-bar situa-
tion, we have applied the procedure described in Sec-
tion 3 to construct a “modified” crossover function (la-
belled MR67) of the order parameter. Actually, our
MR67 function incorporates the same mean value of
the leading amplitude as the MR7 one, ZM (MR67) =
ZM (MR7) = 0.937528, and combines the MR6 central

value of the universal ratio
Z
1
M

Z
1,+
χ

(MR6) = 0.9, with the

MR7 amplitude value of Z
1,+
χ (MR7) = 8.5635, so that

Z
1
M (MR67) = 7.70712. Using such a practice, we have

reported the difficulty of accounting for error bars in the
MR7 calculations of the crossover functions on only one
property in the non homogeneous range. In the forthcom-
ing paper dedicated to the study of the one component
fluid subclass [15], a detailed analysis of this particular
choice will be presented.

The corresponding numerical values of the parameters
of Eq. (5), needed to calculate the MR67 mean crossover
function for the order parameter in non-homogeneous
state (t∗ < 0), are given in Table II.

For a reader interested in checking the level of preci-
sion for the present mean crossover functions in the three
Ising-like, intermediate, and mean-field like, t∗-range, we

have reported the residuals 100×
(

FP,max,min,mix[t∗]
FP,mean(t∗) − 1

)

for all the properties (see Figures 5 to 10). The right
part of each figures gives the appropriate magnified scale
of the residuals to compare with the estimated precison
(±0.01%) for the fitting theoretical functions.
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