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Invasion and adaptive evolution for individual-based spatially

structured populations

Nicolas Champagnat1, Sylvie Méléard2

December 13, 2006

Abstract

The interplay between space and evolution is an important issue in population
dynamics, that is particularly crucial in the emergence of polymorphism and spa-
tial patterns. Recently, biological studies suggest that invasion and evolution are
closely related. Here we model the interplay between space and evolution starting
with an individual-based approach and show the important role of parameter scalings
on clustering and invasion. We consider a stochastic discrete model with birth, death,
competition, mutation and spatial diffusion, where all the parameters may depend
both on the position and on the phenotypic trait of individuals. The spatial motion
is driven by a reflected diffusion in a bounded domain. The interaction is modelled
as a trait competition between individuals within a given spatial interaction range.
First, we give an algorithmic construction of the process. Next, we obtain large pop-
ulation approximations, as weak solutions of nonlinear reaction-diffusion equations.
As the spatial interaction range is fixed, the nonlinearity is nonlocal. Then, we make
the interaction range decrease to zero and prove the convergence to spatially localized
nonlinear reaction-diffusion equations. Finally, a discussion of three concrete examples
is proposed, based on simulations of the microscopic individual-based model. These
examples illustrate the strong effects of the spatial interaction range on the emer-
gence of spatial and phenotypic diversity (clustering and polymorphism) and on the
interplay between invasion and evolution. The simulations focus on the qualitative
differences between local and nonlocal interactions.
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1 Introduction

The spatial aspect of population dynamics is a fundamental ecological issue that has

been extensively studied (Murray [33], Durrett and Levin [14], Tilman and Kareiva [46],

McGlade [28], Dieckmann et al. [11]). In particular, the spatial organization of populations

is a crucial question, for example concerning spatial invasions and epidemics (Mollison [32],

Murray [33], Rand et al. [38], Tilman and Kareiva [46], Lewis and Pacala [27]), or clus-

tering and agglomeration of a population, i.e. its organization as isolated patches (Hassel

and May [21], Hassel and Pacala [22], Niwa [34], Flierl et al. [16], Young et al. [47]).

The combination of spatial motion and mutation-selection processes is also known for a

long time to have important effects on population dynamics (Mayr [29], Endler [15]). In

particular, it can strongly favor the diversity and the emergence and stability of poly-

morphism in a population (Durrett and Levin [13], Dieckmann and Doebeli [9]). More

recently, several biological studies (Thomas et al [45], Phillips et al. [35]) observed that

classical models could underestimate the invasion speed and suggested that evolution and

invasion are closely related. Namely, the evolution of morphology can have strong impact

on the expansion of invading species, such as insect species ([45]) or cane toads ([35]).

In this context, the study of space-related traits, such as dispersal speed (Prévost [36],

Desvillettes et al. [8]), or sensibility to heterogeneously distributed resources (Bolker and

Pacala [3], Grant and Grant [20]), is fundamental.

In this paper, we propose and construct stochastic and deterministic population models

describing the interplay between evolution and spatial structure. We show how helpful

these models can reveal to understand and predict several specific behaviors related to

clustering and invasion.

We study the dynamics of a spatially structured asexual population with adaptive evo-

lution, in which individuals can move, reproduce with possible phenotypic mutation, or

die of natural death or because of the competition between individuals. The individuals

are characterized both by their position and by one or several phenotypical adaptive traits

(such as body size, rate of food intake, age at maturity or dispersal speed). The inter-

action is modelled as a trait competition between individuals in some spatial range. Our

approach is based on a stochastic microscopic description of the individual mechanisms,

involving both space and traits. This approach has already been developed in simpler

ecological contexts. For populations undergoing dispersal, Bolker and Pacala [2, 3] and

Dieckmann and Law [10], offered the first microscopic heuristics and simulations. Their

individual-based model has been rigourously constructed in Fournier and Méléard [17]. In

a mathematical point of view, dispersion in the physical space can be interpreted as mu-
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tation in a trait space. Such evolutionary models with general mutation and competition

are studied in Champagnat, Ferrière and Méléard [7, 6]. Different large population deter-

ministic or stochastic approximations have been obtained, depending on several scalings

on the ecological parameters.

Here we are concerned by the combination of spatial motion and evolutionary dynam-

ics. In contrast with the references above, we model spatial motion as a diffusion. This

assumption is relevant, when the time scale of the spatial motion is much smaller than

the ecological time scale. Then we are led to define a birth-and-death diffusion process,

in which the diffusion, birth, mutation and death parameters of each individual depend

on its position and trait. An offspring, appearing at the same position as its progenitor,

usually inherits the trait value of the latter, except when a mutation causes the offspring

to take an instantaneous mutation step at birth to new trait values. As soon as it is alive,

an individual moves in the spatial domain according to a diffusion process reflected on

the boundary of the domain. Moreover, each individual dies because of natural death or

is eliminated because of the competition (selecting the fittest traits) between individuals

living in a given spatial range δ > 0.

We are interested in studying the interplay between different scalings of the parame-

ters: population size, mutation amplitude, spatial range and diffusion coefficient. Firstly

we consider a large population assumption and derive a macroscopic deterministic approx-

imation where the spatial interaction is nonlocal with range δ. Secondly we are interested

in local spatial interaction, (δ = 0). Then we study in details three concrete examples.

Two of them are theoretical and the third one is more empirical. Each case is numerically

studied, in order to focus on the interplay between the different parameters. A particular

emphasis is put on the range of spatial interaction. The results of the simulations show

how rich and intricate are these space and trait dynamics.

The model is described in Section 2 and an algorithmic construction is given in Sec-

tion 3. The dynamics is mathematically described by a stochastic Markov point pro-

cess whose generator captures the individual migration and ecological mechanisms in the

population. The existence of this measure-valued stochastic process and its martingale

properties are obtained.

Next (Section 4), we study approximations of this model based on large-population

limits. We consider a large number N of individuals at initial time and assume that a

fixed amount of available resources has to be partitioned between individuals. When N

tends to infinity, the conveniently normalized point process converges to a deterministic

finite measure, solution of a nonlinear nonlocal integro-differential equation, with Neu-

mann’s boundary conditions, parameterized by the spatial range. The proof is based on
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the martingale properties of the process and on limit theorems for measure-valued jump

processes. Moreover, we prove that, for sufficiently smooth and non-degenerate diffusion

coefficients and assuming that the initial condition has a density, the limiting measure

has at each time a density with respect to the Lebesgue measure. This means that no

singularity can appear in finite time in the distribution of the population. This is due to

the regularizing effect of the reflected diffusion process. The proof is based on the mild

formulation of the limiting nonlinear equation.

In Section 5, we study the behavior of this density function as the interaction range

tends to 0. We show its convergence to the solution of a spatially local nonlinear integro-

differential equation with Neumann’s boundary conditions. This equation has been intro-

duced and studied in Prévost [36] from an analytic viewpoint (see also Desvillettes et al.

[8]). In their case, numerical simulations by finite element methods are given and show

the influence of diffusion and mutation parameters on the invasion of the domain by the

population.

In Section 6, we give simulations of the microscopic process illustrating the time-

dependent interplay between space and adaptation. We address the effect of the population

size, and the crucial role of the interaction range with respect to spatial organization

(clustering) and polymorphism. We focus on the qualitative differences between nonlocal

and local interactions. In a first example, it is assumed that a different optimal trait

value corresponds to each spatial position, as a result of non-homogeneously distributed

resources. The simulations show a local adaptation to the optimal trait value. Moreover,

when migrations and mutations are not too strong, a large interaction range induces

a spatial organization of the population as a finite set of isolated clusters, as assumed

in classical metapopulation models ([13]). Such a spatial organization is related to the

ecological notion of “niches” (different types of individuals settle different regions of space,

Roughgarden [41]). Conversely, for sufficiently small interaction range, the clustering

phenomenon is no more observed. Our second example also illustrates spatial clustering,

this time depending on the balance between the spatial interaction range and the size

of the space region with high resources. In this case, simulations suggest that a quite

sharp clustering transition occurs at some critical value of the spatial interaction range.

When it is bigger, there is only one cluster, whereas when it is smaller, two (or more)

clusters coexist. In our last example, we investigate a model describing the invasion of

a species with evolving dispersal speed (as in [8]). The diffusion coefficient and the trait

are assumed to be proportional. One specific feature of our simulations is the triangular

invasion pattern which indicates that the invasion front is composed of faster individuals.

Moreover, mutation produces faster and faster individuals at the invasion front. This
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implies a progressive acceleration of the invasion, in accordance with the observations for

cane toads in Australia ([35]).

Notation

The individuals live in the closure X̄ of a bounded open domain X of R
d of class C3 and

their trait values belong to a compact set U of R
q.

• For x ∈ ∂X , we denote by n(x) the outward normal to the boundary ∂X at point

x.

• For a sufficiently smooth function f and (x, u) ∈ ∂X × U , we denote by ∂nf(x, u)

the scalar product ∇xf(x, u) · n(x).

• We denote by C2,b
0 the space of measurable functions f(x, u) of class C2 in x and

bounded in u satisfying ∂nf(x, u) = 0 for all (x, u) ∈ ∂X × U and by C2,0
0 the

subspace of functions f(x, u) which are moreover continuous in u.

• For each p ≥ 1, the Lp-norm on X̄ × U is denoted by ‖ · ‖p.

• We denote by MF (X̄ ×U) the set of finite measures on X̄ ×U , endowed by the weak

topology, and by M the subset of MF (X̄ ×U) composed of all finite point measures,

that is

M =

{

n
∑

i=1

δ(xi,ui), n ∈ N, x1, . . . , xn ∈ X̄ , u1, ..., un ∈ U
}

where δ(x,u) denotes the Dirac measure at (x, u). For any ν ∈ MF (X̄ × U) and for

any measurable function f on X̄ × U , we write indifferently 〈ν, f〉 or
∫

X̄×U fdν. If

ν =
∑n

i=1 δ(xi,ui), then 〈ν, f〉 =
∑n

i=1 f(xi, ui) and the total mass 〈ν, 1〉 of ν is equal

to the number n of Dirac masses composing ν.

• We denote by D([0,∞),MF (X̄ × U)) the Skorohod space of left limited and right

continuous functions from R+ to MF (X̄ ×U), endowed with the Skorohod topology.

• The constant C will be a constant which can change from line to line.

Remark 1.1 Let us remark that the space of C2(X̄ )-functions with a vanishing normal

derivative is dense, for the uniform norm, in C(X̄ ). Indeed, let us consider the Cauchy

problem for the parabolic differential equation ∂u
∂t

(t, x) = ∆u(t, x) ; t > 0 ; x ∈ X with the

boundary condition ∂u
∂n

(t, x) = 0 ; t > 0 ; x ∈ ∂X . Since X is of class C3, we may apply

Sato-Ueno [42] Theorem 2.1. There exists a smooth fundamental solution q(t, x, y) to this
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problem and each f ∈ C(X̄ ) is the uniform limit of the sequence
∫

X̄ q(t, x, y)f(y)dy of

C2(X̄ )-functions with vanishing normal derivative, as t tends to 0.

We easily extend this result and show that the space C2,0
0 is dense in the space of

continuous functions on X̄ × U .

2 The model

2.1 Ecological Parameters

Let us now describe the evolutionary process we are interested in. The population will be

described at any time by the finite point measure ν ∈ M given by the sum of the Dirac

masses at the pair composed of the position and the trait values of each living individual.

Each individual, characterized by its position and trait (x, u), may move, give birth or

die, as described below. The reader can see three concrete examples of parameters in

Section 6.

1. The migration is described as a diffusion process normally reflected at the boundary

of the domain X . Biologists usually assume that the random behavior is isotropic,

so the diffusion matrix is chosen with the form m(x, u)Id (Id is the identity matrix

on R
d) and the nonnegative coefficient m(x, u) (depending on the position x and

the trait value u), is the diffusion coefficient. We moreover model the environment

heterogeneity (resources, topography, external effects,. . . ) by a drift term driven

by a R
d-vector b(x, u). We assume that the coefficients m(x, u) and b(x, u) depend

Lipschitz continuously on the position and measurably on the trait, and there exist

constants m⋆ > 0 and b∗ > 0 such that for all (x, u) ∈ X̄ × U

0 ≤ m(x, u) ≤ m⋆

|b(x, u)| ≤ b∗.
(2.1)

2. Births and mutations. We consider a population with asexual reproduction. An

individual with position x and trait u can give birth either to a clonal child at rate

λ(x, u), or to a mutant with trait v according to the transition measure M(x, u, v)dv,

both at position x. That means that a mutation occurs at rate
∫

M(x, u, v)dv, and

the mutant trait has law M(x,u,v)
R

M(x,u,v)dv
dv. A typical example is given by λ(x, u) =

β(x, u)(1 − p(x, u)) and
∫

M(x, u, v)dv = β(x, u)p(x, u), where β is the individual

birth rate and p is the mutation probability.

It is natural from a biological point of view to assume that all birth rates are bounded:
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there exists λ∗ such that

0 ≤ λ(x, u) ≤ λ∗, ∀(x, u) ∈ X̄ × U . (2.2)

The kernel M is assumed to be nonnegative and symmetric in (u, v) for each x ∈ X̄
and

sup
x∈X̄ ,u∈U

M(x, u, v) = M∗(v) ∈ L1(U). (2.3)

3. The death rate µ of an individual depends on its position x and trait u and on

the spatial and phenotypic interaction with the individuals located around x. We

assume that the effects of spatial distance and trait are multiplicative. The strength

of the trait competition is governed by a nonnegative and bounded kernel W . We

also introduce a nonnegative and bounded spatial kernel Iδ such for each x ∈ X̄ ,
∫

X
Iδ(x− y)dy = 1. (2.4)

Below, the parameter δ > 0 will be interpreted as the range of the spatial interac-

tion. For a population ν =
∑n

i=1 δ(xi,ui) ∈ M, the death rate is given by

µ(x, u, IδW ⋆ ν(x, u)) = µ

(

x, u,

∫

X×U
Iδ(x− y)W (u− v)ν(dy, dv)

)

= µ

(

x, u,

n
∑

i=1

Iδ(x− xi)W (u− ui)

)

.

The decoupling between spatial and phenotypic interactions is realistic in many

biological situations. This particular choice of interaction modelling will allow us to

scale physical space independently of the phenotype space.

We assume that the function µ(x, u, r) is measurable on X × U × R and that there

exists a positive constant µ∗ such that

∀(x, u, r) ∈ X × U × R, 0 ≤ µ(x, u, r) ≤ µ∗(1 + |r|) (2.5)

A typical example of competition is the so-called logistic competition case, where

µ(x, u, r) = µ0(x, u) + µ1(x, u)r.

A typical example for the spatial interaction is to choose Iδ proportional to 1{|x|≤δ}.

In this case, the interpretation of δ as the spatial interaction range is clear, and (2.4)

means that the interaction is proportional to the area in X around x. This is a

natural biological assumption, especially if x lies on the boundary of X . We will

later assume that the measure Iδ(y)dy weakly converges to the Dirac measure at 0

as δ tends to 0. This limit corresponds to the limit of local spatial interaction.
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Hypotheses (2.1), (2.2), (2.3), (2.4), (2.5) are referred as Hypotheses (H) and will

be assumed in all the sequel.

They imply in particular that for each ν ∈MF (X̄ × U) and each (x, u) ∈ X̄ × U ,

µ(x, u, IδW ⋆ ν(x, u)) ≤ µ∗(1 + ‖IδW‖∞〈ν, 1〉) (2.6)

which yields

µ(x, u, IδW ⋆ ν(x, u)) + λ(x, u) +

∫

U
M(x, u, v)dv

≤ µ∗(1 + ‖IδW‖∞〈ν, 1〉) + λ∗ + ‖M∗‖1 ≤ Cδ(〈ν, 1〉 + 1) (2.7)

and the total jump rate for a population ν is bounded by

Cδ〈ν, 1〉(〈ν, 1〉 + 1). (2.8)

Several explicit expressions for the parameters λ, µ, Iδ, W, b and m, motivated by

various ecological questions, are given in Section 6.

2.2 The Dynamics

We are interested in the evolution of the stochastic point process (νt), taking its values in

M and describing the evolution of the population at each time t. We define

νt =

Nt
∑

i=1

δ(Xi
t ,U i

t )
,

Nt ∈ N standing for the number of living individuals at time t, X1
t , ...,X

Nt
t describing

their position (in X̄ ) and U1
t , ..., U

Nt
t their trait values (in U).

The dynamics of the population can be roughly summarized as follows. The initial

population is characterized by a measure ν0 ∈ M at time t = 0, and any individual located

at x ∈ X̄ with trait u at time t has three independent exponential clocks: a “clonal re-

production” clock with parameter λ(x, u), a “mutant reproduction” clock with parameter

M(x, u, v), and a “mortality” clock with parameter µ(x, u,
∑Nt

j=1 I
δ(x−Xj

t )W (u−U j
t )). If

the “mortality” clock of an individual rings, then this individual disappears; if the “clonal

reproduction” clock of an individual rings, then it produces at the same location an indi-

vidual with the same trait as itself; if the “mutant reproduction” clock of an individual

rings, then it produces at the same location an individual with characteristics (x, v).

All the living individuals move in the domain X̄ according to independent diffusion

processes with diffusion coefficient m(x, u) and drift b(x, u), normally reflected at the

boundary of X .
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The measure-valued process (νt)t≥0 is a Markov process whose law is characterized by

its infinitesimal generator L which captures the dynamics described above. This generator

is the sum of a jump part L1 corresponding to the phenotypic evolution and of a diffusion

part L2. The generator L1 is defined for bounded and measurable functions φ from M
into R and for ν =

∑n
i=1 δ(xi,ui) by

L1φ(ν) =

〈ν,1〉
∑

i=1

λ(xi, ui)(φ(ν + δ(xi,ui)) − φ(ν))

+

∫

U

〈ν,1〉
∑

i=1

(φ(ν + δ(xi,v)) − φ(ν))M(xi, ui, v)dv

+

〈ν,1〉
∑

i=1

(φ(ν − δ(xi,ui)) − φ(ν))µ(xi, ui, IδW ⋆ ν(xi, ui)). (2.9)

This part of the generator captures all the potential changes of the values of φ due to each

possible transition from state ν, weighted by the corresponding transition rate.

A standard class of cylindrical functions generating the set of bounded and measurable

functions from MF (X̄ × U) into R is the class of functions

Ff (ν) = F (〈ν, f〉), (2.10)

for bounded and measurable functions F and f .

For such functions Ff , with F ∈ C2
b (R) and f ∈ C2,0

0 , the diffusive part L2 of the

generator can easily be deduced from Itô’s formula. Its form is similar to the one obtained

in the whole space for branching diffusing processes (cf. Roelly-Rouault [40]) and is given

by

L2Ff (ν) = 〈ν,m∆xf + b.∇xf〉F ′(〈ν, f〉) + 〈ν,m|∇xf |2〉F ′′(〈ν, f〉). (2.11)

Hence,

LFf (ν) = L1Ff (ν) + L2Ff (ν)

=

∫

X̄×U

{

λ(x, u)
(

F (〈ν, f〉 + f(x, u)) − F (〈ν, f〉)
)

+

∫

U

(

F (〈ν, f〉 + f(x, v)) − F (〈ν, f〉)
)

M(x, u, v)dv

+ µ(x, u, IδW ⋆ ν(x, u))
(

F (〈ν, f〉 − f(x, u)) − F (〈ν, f〉)
)

+
(

m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)
)

F ′(〈ν, f〉))

+m(x, u)|∇xf(x, u)|2F ′′(〈ν, f〉)
}

ν(dx, du). (2.12)
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3 Construction of the particle system and martingale prop-

erties

In this section, an algorithmic construction of the Markov process with infinitesimal gen-

erator L on the path space D([0,∞),MF (X̄ × U)) is given. This iterative construction,

which gives an effective simulation algorithm of the population process, if combined with

a diffusion simulation step such as an Euler scheme for reflected diffusions (see Lépingle

[26], Gobet [19], Bossy, Gobet, Talay [4] and Section 6). Then, some martingale properties

satisfied by this process are proved. They are the key points to obtain the large population

approximations of the next section.

3.1 The algorithm

Since the individual jump rates depend on the trait and position, we can not use directly a

standard birth and death construction. However, thanks to the upper-boundedness of the

total population jump rate, our dynamics is stochastically dominated by a Poissonian one.

This observation suggests to use an acceptance-rejection scheme in order to simulate the

birth and death part of our dynamics. We will construct a sequence of potential birth or

death times. Between two of these jump times, the population size and each individual’s

trait values are fixed. Their positions evolve according to independent diffusion with

reflection on the boundary of the space domain. At one potential jump time, we randomly

choose an individual in the population, say with position x and trait u. A simulated

uniform random variable will help to decide what happens to this individual: its death,

a clonal birth, a birth with mutation or nothing. If death occurs, the individual is killed

and the population sizes decreases by one; if clonal birth occurs, a clone is added at (x, u)

and the population size increases by one; if a mutation occurs, the mutant trait is also

computed by the acceptance-rejection procedure, a new individual with this mutant trait

is added at spatial position x and the population size increases by one. It is proved below

that this procedure allows us to obtain, after a finite number of steps, the state of the

population at any fixed time.

More formally, we will inductively construct the sequence (Tk)k of potential birth and

death times, the numbers (Nk)k of individuals in the population at these times, and the

sequence of vectors of individual position and traits (XTk
)k and (UTk

)k at these times

( (XTk
, UTk

) = (Xi
Tk
, U i

Tk
)1≤i≤Nk

∈ (X̄ × U)Nk for any k ≥ 0). The initial number of

individuals is equal to some fixed integer N0 = N ∈ N
∗ and the vector of random variables

(X0, U0) ∈ (X̄ × U)N denotes the initial positions and traits of these individuals. For

each pair of consecutive jump times Tk and Tk+1, we denote by Xt ∈ X̄Nk the vector of
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positions of the individuals in the population at time t ∈ [Tk, Tk+1).

Let us introduce the following sequences of independent random variables, independent

of (X0, U0).

• (Bj,k)j,k∈N∗ are d-dimensional Brownian motions

• (θk)k are uniform random variables on [0, 1]

• (Vk)k take values in U with law M∗(v)
‖M∗‖1

dv

• (τk)k are exponential random variables with law Cδe
−Cδt1t≥0. (The constant Cδ is

defined in (2.7)).

The system is obtained inductively for k ≥ 1 as described below. We set T0 = 0 and

N0 = N . Assume that (Tk−1, Nk−1,XTk−1
, UTk−1

) are given. If Nk−1 = 0, then we put

νt = 0 for all t ≥ Tk−1. If not, let

• Tk = Tk−1 + τk

Nk−1(Nk−1+1) . The form τk

Nk−1(Nk−1+1) for the time between two possible

jumps comes from the upper-bound CδNk−1(Nk−1+1) obtained in (2.8) for the total

jump rate in a population composed of Nk−1 individuals.

• On the time-interval [Tk−1, Tk), the number of particles remains equal to Nk−1 and

their trait values to U j
Tk−1

, 1 ≤ j ≤ Nk−1. Their positions (Xj
t , 1 ≤ j ≤ Nk−1)

evolve according to the stochastic differential equations with normal reflection: ∀t ∈
[Tk−1, Tk],

Xj
t ∈ X̄ ,

Xj
t = Xj

Tk−1
+

∫ t

Tk−1

√

2m(Xj
s , U

j
Tk−1

)dBj,k
s +

∫ t

Tk−1

b(Xj
s , U

j
Tk−1

)ds− kj
t ,

|kj |t =

∫ t

Tk−1

1
{Xj

s∈∂X}
d|kj |s ; kj

t =

∫ t

Tk−1

n(Xj
s )d|kj |s. (3.1)

• At time Tk, an individual Ik = i is chosen uniformly at random among the Nk−1

individuals living during the time-interval [Tk−1, Tk). Its position and trait are

(Xi
Tk
, U i

Tk−1
). The event occurring at time Tk is decided by comparing θk with

computed quantities 0 ≤ θi
1 ≤ θi

2 ≤ θi
3 ≤ 1 related to the rate of each kind of event.

– If 0 ≤ θk ≤
µ(Xi

Tk
,U i

Tk−1
,
PNk−1

j=1
Iδ(Xi

Tk
−X

j
Tk

)W (U i
Tk−1

−U
j
Tk−1

))

Cδ(Nk−1+1) =: θi
1(XTk

, UTk−1
),

then the individual i dies (its characteristics are removed from the vector

(XTk
, UTk−1

) ) and Nk = Nk−1 − 1.

11



– If θi
1(XTk

, UTk−1
) < θk ≤ θi

1(XTk
, UTk−1

) +
λ(Xi

Tk
,U i

Tk−1
)

Cδ(Nk−1+1) =: θi
2(XTk

, UTk−1
), then

the individual i gives birth to an offspring with characteristics (Xi
Tk
, U i

Tk−1
)

(these coordinates are added to the vector (XTk
, UTk−1

) ) and Nk = Nk−1 + 1.

– If θi
2(XTk

, UTk−1
) < θk ≤ θi

2(XTk
, UTk−1

)+
M(Xi

Tk
,U i

Tk−1
,Vk)‖M∗‖1

M∗(Vk)Cδ(Nk−1+1) =: θi
3(XTk

, UTk−1
, Vk),

then the individual i gives birth to a mutant offspring with trait Vk at the posi-

tion Xi
Tk

( (Xi
Tk
, Vk) is added to the vector (XTk

, UTk−1
) ), and Nk = Nk−1 + 1.

– If θk > θi
3(XTk

, UTk−1
, Vk), nothing happens and Nk = Nk−1.

Following this procedure, the state of the population at time t ≤ supk Tk can be

recovered as follows: the total number Nt of individuals at time t is equal to Nt =
∑

k≥0 1{Tk≤t<Tk+1}Nk, and

νt =
∑

k≥0

1{Tk≤t<Tk+1}

Nk
∑

i=1

δ(Xi
t ,U i

Tk
) =

Nt
∑

i=1

δ(Xi
t ,U i

t )
.

In the following subsection, we will actually prove that supk Tk = +∞ almost surely.

3.2 Mathematical formulation and Martingale Properties

In this more technical subsection, we give the mathematical justification of the algorithm

described above, and the basic moment and martingale properties of the process, which

are the key points of the proofs of the macroscopic approximations of Section 4.

The stochastic individual-based process ν can be rigorously expressed as solution of a

stochastic differential equation driven by d-dimensional Brownian motions (Bi)i∈N∗ and

the R+ × N × [0, 1] × U-valued multivariate point process

Q(dt, di, dθ, dv) =
∑

k≥1

δ(Tk ,Ik,θk,Vk)(dt, di, dθ, dv)

associated with the birth, mutation and death of individuals. We will deduce from moment

properties its existence for any time t in R
+.

Let ν0 ∈ M. For each C2,0
0 -function f , we define the process 〈νt, f〉 as a solution of the

stochastic differential equation, which reproduces formally the algorithm of the previous

12



subsection,

〈νt, f〉 = 〈ν0, f〉 +

∫ t

0
〈νr,m(x, u)∆xf + b(x, u).∇xf〉dr

+

∫ t

0

〈νr−,1〉
∑

i=1

√

2m(Xi
r, U

i
r)∇xf(Xi

r, U
i
r)dB

i
r

+

∫

[0,t]×N×[0,1]×U2

{

− f(Xi
r, U

i
r)1{θ≤θi

1
(Xr ,Ur)} + f(Xi

r, U
i
r)1{θi

1
(Xr ,Ur)<θ≤θi

2
(Xr ,Ur)}

+ f(Xi
r, v)1{θi

2
(Xr ,Ur)<θ≤θi

3
(Xr ,Ur,v)}

}

Q(dr, di, dθ, dv). (3.2)

The first two integrals in (3.2) corresponds to the diffusion of each particle and the last inte-

gral to the birth, mutation and death jumps in the process. The existence of a solution can

be proved inductively following the algorithmic construction described in Subsection 3.1.

By Remark 1.1, the knowledge of 〈νt, f〉 for f ∈ C2,0
0 is enough to characterized the

finite measure-valued process ν.

We introduce the canonical filtration

Ft = σ{ν0; B
j
r , j ∈ N

∗; Q([0, r] ×A), A ∈ P(N) ⊗ B([0, 1] × U), r ≤ t},

where B([0, 1] × U) is the Borel σ-field on [0, 1] × U .

Lemma 3.1 The measure

q(dt, di, dθ, dv) = Cδ

∑

k≥0

1{Tk<t≤Tk+1}(Nk + 1)

Nk
∑

j=1

δj(di)dtdθ
M∗(v)

‖M∗‖1
dv

= Cδ(Nt + 1)

Nt
∑

j=1

δj(di)dtdθ
M∗(v)

‖M∗‖1
dv

is the (predictable) compensator of the multivariate point process Q.

Proof. For k ≥ 0, a regular version of the conditional law of (Tk+1, Ik+1, θk+1, Vk+1) with

respect to σ{ν0, (Bj
. ), j ∈ N

∗, (Tp, Ip, θp, Vp), 1 ≤ p ≤ k} is given by the measure

Cδ(Nk + 1)1{Tk<t}e
−CδNk(Nk+1)(t−Tk)

Nk
∑

j=1

δj(di)dtdθ
M∗(v)

‖M∗‖1
dv.

The conclusion is thus a consequence of [23] Theorem 1.33 p.136. 2

Using Lemma 3.1 and Itô’s formula, it can immediately be shown that any solution

ν of (3.2), such that E(supt≤T 〈νt, 1〉2) < +∞, is a Markov process with infinitesimal
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generator L defined by (2.12). Moreover, we also deduce the following existence, moment

and martingale properties.

Proposition 3.2 1) Assume (H) and that E(〈ν0, 1〉) < +∞.

Then E(supt≤T 〈νt, 1〉) < +∞ for each T > 0 and the process ν defined by (3.2) is well

defined on R
+.

2) If furthermore for some p ≥ 1, E(〈ν0, 1〉p) < +∞, then for each T > 0

E(sup
t≤T

〈νt, 1〉p) < +∞.

Proof. We firstly prove 2). Fix T ≥ 0. For each integer k, define Sk = inf{t ≥ 0, 〈νt, 1〉 ≥
k}. A simple computation using (3.2), and dropping the non-positive death term, gives,

for any t ≤ T ,

E( sup
s∈[0,t∧Sk]

〈νs, 1〉p) ≤ CE

(

〈ν0, 1〉p +

∫ t∧Sk

0
(1 + 〈νs, 1〉p)ds

)

≤ C

(

1 + E

(
∫ t

0
〈νs∧Sk

, 1〉pds
))

,

where the constants C depend on T . Gronwall’s lemma implies the existance of a constant

C independent of k, such that E(supt∈[0,T∧Sk]〈νt, 1〉p) ≤ C. Therefore, Sk tends a.s. to

infinity when k tends to infinity and Fatou’s lemma yields E(supt∈[0,T ]〈νt, 1〉p) < +∞.

Point 1) is a consequence of point 2). Indeed, the solution (νt)t≥0 can be built step

by step. To conclude, it is only necessary to check that the sequence of jump times (Tk)k

goes to infinity a.s. as k tends to infinity. But this follows from E(supt≤T 〈νt, 1〉) < +∞.

In particular, the algorithm of the previous subsection allows us to recover the state of

the population at any time. 2

The following martingale properties are the key point to study large population ap-

proximations (Section 4).

Theorem 3.3 Assume (H) and that for some p ≥ 2, E(〈ν0, 1〉p) < +∞.

1) Then, for F and f ∈ C2,0
0 such that for all ν ∈ M, |Ff (ν)|+ |LFf (ν)| ≤ C(1 + 〈ν, 1〉p),

the process

Ff (νt) − Ff (ν0) −
∫ t

0
LFf (νs)ds

is a left limited and right continuous martingale starting from 0. It is in particular true

for F (y) = yp−1.
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2) The process Zf defined for f ∈ C2,0
0 by

Zf
t = 〈νt, f〉 − 〈ν0, f〉 −

∫ t

0

∫

X̄×U

{

m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(

λ(x, u) − µ(x, u, IδW ⋆ νs(x, u))
)

f(x, u) +

∫

U

f(x, v)M(x, u, v)dv

}

νs(dx, du)ds (3.3)

is a left limite and right continuous L2-martingale starting from 0 with predictable quadratic

variation

〈Zf 〉t =

∫ t

0

∫

X̄×U

{

2m(x, u)|∇xf |2 +
(

λ(x, u) + µ(x, u, IδW ⋆ νs(x, u))
)

f2(x, u)

+

∫

U
f2(x, v)M(x, u, v)dv

}

νs(dx, du)ds (3.4)

Proof. Point 1) immediately follows from Itô’s formula and Proposition 3.2. For point

2), we first assume that E(〈ν0, 1〉3) < +∞. Applying point 1) with F (y) = y (or (3.2) and

Lemma 3.1) leads to Zf . Applying point 1) again with F (y) = y2 yields that the process

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0

∫

X̄×U

{

2(m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u))〈νs, f〉

+ 2m(x, u)|∇xf |2 + λ(x, u)(2〈νs, f〉f(x, u) + f2(x, u))

+

∫

U
(2f(x, v)〈νs, f〉 + f2(x, v))M(x, u, v)dv

+ µ(x, u, IδW ⋆ νs(x, u))(−2〈νs, f〉f(x, u) + f2(x, u))

}

νs(dx, du)ds (3.5)

is a left limited and right continuous martingale. On another hand, 〈νt, f〉2 can be com-

puted from (3.3): by Itô’s formula, the process

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0

∫

X̄×U

{

2(m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u))〈νs, f〉

+ 2(λ(x, u) − µ(x, u, IδW ⋆ νs(x, u)))〈νs, f〉f(x, u)

+

∫

U
2f(x, v)〈νs, f〉M(x, u, v)dv

}

νs(dx, du)ds − 〈Zf 〉t (3.6)

is a left limited and right continuous martingale. Comparing (3.5) and (3.6) leads to

(3.4). The extension to the case where E(〈ν0, 1〉2) < +∞ is straightforward, noticing that

E(〈Zf 〉t) < +∞ ∀t ≥ 0 for such an initial condition (Proposition 3.2).. 2

15



4 Large population approximation for a fixed interaction

range

We are now interested in deterministic approximations of the population point process

when the size of the population increases. We assume in this section that the interaction

range δ > 0 is fixed.

4.1 Convergence result

We introduce a parameter N in order to scale the population size. This parameter has the

following biological interpretation. In a case of fixed amount of available global resources,

a large system composed of N individuals may only exist if the biomass of each interacting

individual scales as 1
N

, which implies that the interaction effect between two individuals

scales as 1
N

as well. In the case of competition for resources, the parameter N can also be

interpreted as scaling the amount of available resources, so that an increase of N implies

a decrease of the strength of competition between two individuals for resources.

With this interpretation in mind, we introduce the following scaling of the parameters.

For each N ∈ N
∗, we keep all parameters (m, b, λ,M) unchanged, except the competition

kernel: we assume that for each N ,

µN (x, u, r) = µ(x, u,
r

N
). (4.1)

We consider a sequence of initial measures (νN
0 )N∈N∗ belonging to M, and we assume

that the sequence
νN
0

N
converges, as N tends to infinity. The size 〈νN

0 , 1〉 of the popula-

tion is then of order N and will stay at this order (or at a smaller order) during finite

time-intervals, since birth rates are bounded. Hence, our aim is to study the asymptotic

behavior, as N tends to infinity, of the left limited and right continuous process

ΛN
t =

1

N

Nt
∑

i=1

δ(Xi
t ,U i

t )
=

1

N
νN

t , (4.2)

taking values in MN = { 1
N
ν, ν ∈ M}.

The process (ΛN
t )t≥0 is a Markov process whose generator LN , as in (2.12), can be

decomposed into the sum of a diffusion part LN,1 and a jump part LN,2. An easy compu-

tation gives that, for F ∈ C2(R) and f ∈ C2,0
0 ,

LN,2Ff (ν) = 〈ν,m(.)∆xf + b(.).∇xf〉F ′(〈ν, f〉) + 〈ν, m(.)

N
|∇xf |2〉F ′′(〈ν, f〉) (4.3)
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and (using (4.1))

LN,1Ff (ν) = N

∫

X̄×U

{

λ(x, u)
[

F
(

〈ν, f〉 +
1

N
f(x, u)

)

− F (〈ν, f〉)
]

+ µ(x, u, IδW ⋆ ν(x, u))
[

F
(

〈ν, f〉 − 1

N
f(x, u)

)

− F (〈ν, f〉)
]

+

∫

U

[

F
(

〈ν, f〉 +
1

N
f(x, v)

)

− F (〈ν, f〉)
]

M(x, u, v)dv

}

ν(dx, du) (4.4)

Similarly, we deduce from Theorem 3.3 the following martingale properties, which will

be crucial in the proof of the convergence of ΛN (see Theorem 4.2 below).

Lemma 4.1 Let N ≥ 1 be fixed and assume that for some p ≥ 2, E
(〈

ΛN
0 , 1

〉p)
<∞. For

all C2,0
0 -function f , the process

ZN,f
t =

〈

ΛN
t , f

〉

−
〈

ΛN
0 , f

〉

−
∫ t

0

∫

X̄×U

{

m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(

λ(x, u) − µ(x, u, IδW ⋆ ΛN
s (x, u))

)

f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}

ΛN
s (dx, du)ds

(4.5)

is a left limited and right continuous L2 martingale starting from 0 with predictable quadratic

variation

〈ZN,f 〉t =
1

N

∫ t

0

∫

X̄×U

{

2m(x, u)|∇xf |2 +
(

λ(x, u) + µ(x, u, IδW ⋆ ΛN
s (x, u))

)

f2(x, u)

+

∫

U
f2(x, v)M(x, u, v)dv

}

ΛN
s (dx, du)ds (4.6)

We assume

Assumption (H1):

1) The initial measures ΛN
0 converge in law and for the weak topology on MF (X̄ × U) to

some deterministic finite measure ξ0 ∈MF (X̄ × U), and supN E(〈ΛN
0 , 1〉3) < +∞.

2) All the parameters of the model are assumed to be continuous, either on X̄ × U , or on

X̄ × U × R.

3) There exists a constant kµ such that

∀x ∈ X , u ∈ U , r1, r2 ∈ R+, |µ(x, u, r1) − µ(x, u, r2)| ≤ kµ|r1 − r2|. (4.7)

By the law of large numbers, Assumption (H1-1) is for example satisfied for ΛN
0 =

1
N

∑N
i=1 δ(Xi

0
,U i

0
), when (Xi

0, U
i
0){1≤i≤N} are independent random variables with law ξ0
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with finite 3rd-order moment.

Let us recall that the parameters of diffusion (m, b), birth (λ) and mutation (M)

associated with ΛN are independent of N , whereas the death and interaction parameter

µN is defined by (4.1). The following result shows that, when the population size increases,

the renormalized population process ΛN converges to a macroscopic deterministic limit.

Theorem 4.2 Assume (H) and (H1), and consider the sequence of processes ΛN defined

by (4.2). Then for all T > 0, the sequence (ΛN ) converges in law, in D([0, T ],MF (X̄ × U)),

to a deterministic continuous function ξδ belonging to C([0, T ],MF (X̄ × U)).

This measure-valued function ξδ is the unique weak solution satisfying supt∈[0,T ]〈ξδ
t , 1〉 <

+∞ of the following (weak form of a) nonlinear integro-differential equation. For all func-

tion f ∈ C2,b
0 ,

〈ξδ
t , f〉 = 〈ξ0, f〉 +

∫ t

0

∫

X̄×U

{

m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(

λ(x, u) − µ(x, u, IδW ⋆ ξδ
s(x, u))

)

f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}

ξδ
s(dx, du)ds

(4.8)

Remark 4.3 In the case where ξδ
t (dx, du) has a density gt(x, u) with respect to the Lebesgue

measure dxdu on X̄ × U for any t ≥ 0, then gt(x, u) is weak solution to the nonlocal and

nonlinear partial integro-differential equation

∂tg
δ
t = ∆x(m(x, u)gδ

t (x, u)) −∇x(b(x, u)gδ
t (x, u))

+
(

λ(x, u) − µ(x, u, IδW ⋆ gδ
t (x, u))

)

gδ
t (x, u) +

∫

U
gδ
t (x, v)M(x, u, v)dv ;

gδ
0(x, u) = g0(x, u) ;

∇xg
δ(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U . (4.9)

This equation has Neumann’s boundary condition because of the underlying spatial motion

is a reflected diffusion. Its weak form is given by (4.8). See Subsection 4.3 for conditions

ensuring the existence of a density for ξδ
t .

Remark 4.4 Applying (4.8) to the constant function equal to 1, the positivity of µ and

Hypotheses (H) gives 〈ξδ
t , 1〉 ≤ 〈ξ0, 1〉+C

∫ t

0 〈ξδ
s , 1〉ds. We conclude by Gronwall’s lemma

that any solution ξδ of (4.8) is bounded on every finite time interval [0, T ]:

sup
t∈[0,T ]

〈ξδ
t , 1〉 ≤ 〈ξ0, 1〉eCT .
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4.2 Proof of Theorem 4.2

As a first step in the proof of Theorem 4.2, we now give a mild formulation for solutions of

(4.8). To this aim, and for each fixed trait u ∈ U , we denote by P u the semigroup of the

diffusion process normally reflected at the boundary of X , with diffusion matrix m(·, u)Id
and drift coefficient b(·, u).

Lemma 4.5 Let us consider a solution ξδ of (4.8). Then, for each continuous and bounded

function ϕ defined on X̄ × U ,

〈ξδ
t , ϕ〉 = 〈ξ0, P u

t ϕ〉 +

∫ t

0

∫

X̄×U

{

(

λ(x, u) − µ(x, u, IδW ⋆ ξδ
s(x, u))

)

P u
t−sϕ(x, u)

+

∫

U
P v

t−sϕ(x, v)M(x, u, v)dv

}

ξδ
s(dx, du)ds. (4.10)

Proof. We may classically derive from (4.8) a space-time weak equation for measurable

functions ψs(x, u) = ψ(s, x, u) which are of class C1,2 on [0, t]×X̄ , measurable and bounded

in u and such that ∂nψ = 0 on [0, t] × ∂X × U :

〈ξδ
t , ψt〉 = 〈ξ0, ψ0〉 +

∫ t

0

∫

X̄×U

{

∂sψs(x, u) +m(x, u)∆xψs(x, u) + b(x, u).∇xψs(x, u)

+
(

λ(x, u) − µ(x, u, IδW ⋆ ξδ
s(x, u))

)

ψs(x, u) +

∫

U
ψs(x, v)M(x, u, v)dv

}

ξδ
s(dx, du)ds

(4.11)

Let us now consider a continuous function ϕ on X̄ × U and fix a time t ∈ [0, T ]. Let us

define for (s, x, u) ∈ [0, t] × X̄ × U ,

ψs(x, u) = P u
t−sϕ(x, u).

Then ψ is solution of the boundary value problem

∂sψs(x, u) +m(x, u)∆xψs(x, u) + b(x, u).∇xψs(x, u) = 0 on [0, T ] ×X × U
∂nψs(x, u) = 0 on [0, T ] × ∂X × U
ψt(x, u) = ϕ(x, u) on X̄ × U .

Equation (4.11) applied to this function ψ yields (4.10). 2

Proof of Theorem 4.2. Fix T > 0.

We firstly prove the uniqueness of solutions ξ of (4.8). By Remark 4.4 and Lemma 4.5,

it is equivalent to prove the uniqueness of solutions of (4.10). Let us consider two such

solutions (ξt)t≥0 and (ξ̄t)t≥0 and compute the quantity |〈ξt − ξ̄t, ϕ〉|, for each continuous

function ϕ such that ‖ϕ‖∞ ≤ 1.
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Using (4.10), we obtain for t ≤ T

|
〈

ξt − ξ̄t, ϕ
〉

| ≤
∫ t

0

∣

∣

∣

∣

∫

X̄×U

{

(

λ(x, u) − µ(x, u, IδW ⋆ ξs(x, u))
)

P u
t−sϕ(x, u)

+

∫

U
P v

t−sϕ(x, v)M(x, u, v)dv

}

(

ξs(dx, du) − ξ̄s(dx, du)
)

∣

∣

∣

∣

ds

+

∫ t

0

∫

X̄×U

∣

∣

∣

(

µ(x, u, IδW ⋆ ξ̄s(x, u)) − µ(x, u, IδW ⋆ ξs(x, u))
)

P u
t−sϕ(x, u)

∣

∣

∣
ξ̄s(dx, du)ds

Now, using Assumption (H), Remark 4.4 and the fact that ‖ϕ‖∞ ≤ 1, there exists a

positive constant C1 such that for all (x, u) ∈ X̄ × U and all 0 < s ≤ t ≤ T ,

|λ(x, u)P u
t−sϕ(x, u) +

∫

U
P v

t−sϕ(x, v)M(x, u, v)dv| ≤ C1,

|µ(x, u, IδW ⋆ ξ̄s(x, u))P
u
t−sϕ(x, u)| ≤ µ0(1 + ‖IδW‖∞〈ξ̄s, 1〉) ≤ C1

while thanks to (H1-2),

|µ(x, u, IδW ⋆ ξ̄s(x, u)) − µ(x, u, IδW ⋆ ξs(x, u))| ≤ kµ‖IδW‖∞ sup
‖ϕ‖∞≤1

|〈ξs − ξ̄s, ϕ〉|.

Then
∣

∣

∣

∣

∫

X̄×U

(

µ(x, u, IδW ⋆ ξ̄s(x, u)) − µ(x, u, IδW ⋆ ξs(x, u))
)

P u
t−sϕ(x, u)ξ̄s(dx, du)

∣

∣

∣

∣

≤ C2 sup
‖ϕ‖∞≤1

|〈ξs − ξ̄s, ϕ〉|

where C2 is a positive constant. Therefore, there exists C > 0 such that

|
〈

ξt − ξ̄t, ϕ
〉

| ≤ C

∫ t

0
sup

‖ϕ‖∞≤1
|〈ξs − ξ̄s, ϕ〉|ds

and Gronwall’s lemma yields sup‖ϕ‖∞≤1 |〈ξt− ξ̄t, ϕ〉| = 0 for all t ≤ T , where the supremum

is taken over all continuous functions. By a density theorem (see [5], Corollary 2.24), the

same equality holds when the supremum is taken over all bounded functions. Therefore,

the total variation norm of ξt − ξ̄t is zero for all t ≤ T and uniqueness holds.

Let us next prove that for all T > 0,

sup
N∈N∗

E

(

sup
[0,T ]

〈

ΛN
t , 1

〉3

)

< +∞ (4.12)

Define SN
k = inf{t ≥ 0,

〈

ΛN
t , 1

〉

≥ k} for k ∈ N
∗. A simple computation using the specific

form of LN,1Ff and LN,2Ff with f = 1 and F (y) = y3, dropping the negative death term,
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yields

E

(

sup
s≤t∧SN

k

〈

ΛN
s , 1

〉3

)

≤ E(
〈

ΛN
0 , 1

〉3
) + CE

(

∫ t∧SN
k

0
(〈ΛN

s , 1〉 +
〈

ΛN
s , 1

〉3
)ds

)

where C is a positive constant independent of k and N . Then Assumption (H1-1) and

Gronwall’s lemma imply that there exists a constant CT independent of k and N such that

E
(

sups≤T∧SN
k

〈

ΛN
s , 1

〉3
)

≤ CT . We deduce that the sequence (SN
k )k tends a.s. to infinity

and finally obtain (4.12) by Fatou’s lemma.

Now, we will follow a classical method to prove our convergence result: we will first

prove the uniform tightness of the sequence of the laws QN of the processes ΛN (i.e. the

compactness of this sequence), and next, we will prove that any accumulation point of this

sequence has the required limit law. Following Roelly [39] and using Remark 1.1, in order

to prove the tightness of the sequence (QN )N in P(D([0, T ],MF (X̄ × U))), where MF is

endowed with the vague topology, it is sufficient to prove that the laws of the processes
〈

ΛN , f
〉

form a tight sequence in P(D([0, T ],R)) for any function f ∈ C2,0
0 . By Aldous’ [1]

and Rebolledo’s [24] criteria, this tightness follows from

sup
N∈N∗

E(sup
[0,T ]

|
〈

ΛN
s , f

〉

|) <∞, (4.13)

and from the tightness of the laws of 〈ZN,f 〉 and of the drift part of the semimartingales
〈

ΛN , f
〉

.

Clearly, since f is bounded, (4.13) is a consequence of (4.12). Let us now consider

stopping times (S, S′) satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T . Thanks to Doob’s

inequality, Lemma 4.1, and (4.12), we get

E
(

〈ZN,f 〉S′ − 〈ZN,f 〉S
)

≤ E

(

C

∫ S+δ

S

(

〈

ΛN
s , 1

〉

+
〈

ΛN
s , 1

〉2
)

ds

)

≤ Cδ.

Similar arguments prove that the expectation of the finite variation part of
〈

ΛN
S′ , f

〉

−
〈

ΛN
S , f

〉

is bounded by Cδ. Therefore, by Aldous’ criterion [1], the sequence (QN )N is

uniformly tight for the vague topology.

Let us now denote by Q the limiting law in P(D([0, T ],MF (X̄ ×U))) of a subsequence

of QN , still denoted by QN for simplicity. By construction, almost surely,

sup
t∈[0,T ]

sup
||f ||∞≤1

|〈ΛN
s , f〉 − 〈ΛN

s−, f〉| ≤ 1/N.

We deduce immediately that each process Λ with law Q is a.s. strongly continuous. Let

us finally prove that it is the unique solution of (4.8).
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For t ≤ T , f ∈ C2,0
0 and ν ∈ D([0, T ],MF (X̄ × U)), we define

Ψt,f (ν) = 〈νt, f〉 − 〈ν0, f〉 −
∫ t

0

∫

X̄×U

{

m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(

λ(x, u) − µ(x, u, IδW ⋆ νs(x, u))
)

f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}

νs(dx)ds.

We want to deduce that, for any t ≤ T ,

E (|Ψt,f (Λ)|) = 0, (4.14)

from the fact that (see Lemma 4.1)

ZN,f
t = Ψt,f (ΛN ). (4.15)

A fair computation using Lemma 4.1, Assumptions (H) and (H1), and (4.12) shows that

E
(

|ZN,f
t |2

)

= E
(

〈ZN,f 〉t
)

≤ Cf

N
E

(
∫ t

0

{

1 +
〈

ΛN
s , 1

〉2
}

ds

)

≤ Cf,t

N
(4.16)

which goes to 0 as N tends to infinity. On another hand, since Λ is a.s. strongly con-

tinuous and f ∈ C2,0
0 , the function Ψt,f is a.s. continuous at Λ. Furthermore, for any

ν ∈ D([0, T ],MF (X̄ × U)),

|Ψt,f (ν)| ≤ Ct,f sup
[0,t]

(

1 + 〈νs, 1〉2
)

,

and (4.12) implies that the sequence (Ψt,f (ΛN ))N is uniformly integrable. Thus

lim
N
E
(

|Ψt,f (ΛN )|
)

= E (|Ψt,f (Λ)|) (4.17)

Combining (H1-1), (4.15), (4.16) and (4.17), we conclude that (4.14) holds and that (4.8)

is satisfied for any f ∈ C2,0
0 .

Then Λ is a.s. equal to the deterministic process ξδ, and the sequence (ΛN ) converges

to ξδ in D([0, T ],MF (X̄ × U)), where MF (X̄ × U) is endowed with the vague topology.

To extend this result to the weak topology, we use a criterion proved in [30]. Since the

limiting process is continuous, it suffices to prove that the sequence (〈ΛN , 1〉)N converges

in law to 〈ξδ, 1〉 in D([0, T ],R). We may apply what has been done above with f ≡ 1.

Theorem 4.2 is proved. 2

4.3 Existence of a density for the limit

In the next section, we will be interested in the limit of small spatial interaction range

δ. A preliminary result, also interesting by itself, consists in proving the existence of a
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density for the measure ξδ
t , t ≥ 0. We make the additional

Assumption (H2):

1) The diffusion coefficient m(x, u) is of class C2 in x = (x1, . . . , xd) and the second

derivatives of m with respect to x1, . . . , xd are α-Hölderian, uniformly in u, with α > 0.

Moreover, m is assumed to be positive. Hence, since X̄ × U is a compact set, there exists

m∗ > 0 such that for all (x, u) ∈ X̄ × U ,

m(x, u) ≥ m∗ > 0.

2) The drift coefficient b(x, u) is of class C1 in x and the derivatives of b with respect to

x1, . . . , xd are α-Hölderian, uniformly in u, with α > 0.

Let us prove that, if ξδ
0(dx, du) has a density with respect to the Lebesgue measure

dxdu (i.e. the measure ξδ
0 has no singularity, such as Dirac masses), then this property

propagates in time. In other words, on bounded time intervals, modes can appear, but no

singularity.

Theorem 4.6 Assume (H), (H1) and (H2) and that ξ0(dx, du) = g0(x, u)dxdu. Then for

each time t, the measure ξδ
t (dx, du) has a density gδ

t ∈ L∞([0, T ], L1) with respect to the

Lebesgue measure on X̄ ×U , i.e. ξδ
t (dx, du) = gδ

t (x, u)dxdu. Moreover, gδ is weak solution

to the nonlocal nonlinear partial integro-differential equation (4.9) and, for each t and u,

the function gδ
t (., u) is continuous on X̄ .

The end of this section is devoted to the proof of this result.

Proof. As a preliminary result, assumptions (H) and (H2) and the smoothness of ∂X
allow us to adapt Sato-Ueno [42] (Theorem 2.1 and Appendix) to obtain the following

lemma.

Lemma 4.7 There exists a unique function pt(x, u, y) defined on R+ × X̄ × U × X̄ , con-

tinuous in (t, x, y) and which is a density function in y ∈ X̄ such that, for each continuous

function ϕ defined on X̄ × U and each (x, u) ∈ X̄ × U ,

P u
t ϕ(x, u) =

∫

X̄
pt(x, u, y)ϕ(y, u)dy. (4.18)

Let us come back to the equation (4.10) satisfied by ξδ. Using basic results on linear

parabolic equations, we construct by induction a sequence of functions (gn)n satisfying in
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a weak sense the following semi-implicit scheme

∂tg
n+1
t (x, u) = ∆x(m(x, u)gn+1

t (x, u)) −∇x(b(x, u)gn+1
t (x, u))

+ λ(x, u)gn
t (x, u) +

∫

U
gn
t (x, v)M(x, u, v)dv − µ(x, u, IδW ⋆ gn

t (x, u))gn+1
t (x, u)

gn+1
0 (x, u) = g0(x, u)

∇xg
n+1(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U . (4.19)

Thanks to the nonnegativity of g0, µ, λ and M , and applying the maximum principle, we

can show that the functions gn are nonnegative (see [8]). By symmetry of M , Equation

(4.19) (understood in the weak sense) means that for all C2,b
0 -function ϕ from X̄ × U into

R,

〈gn+1
t , ϕ〉 = 〈g0, ϕ〉 +

∫ t

0

∫

X̄×U

{(

m(x, u)∆xϕ(x, u) + b(x, u).∇xϕ(x, u)

)

gn+1
s (x, u)

+

(

λ(x, u)ϕ(x, u) +

∫

U
ϕ(x, v)M(x, u, v)dv

)

gn
s (x, u)

− µ(x, u, IδW ⋆ gn
s (x, u))ϕ(x, u)gn+1

s (x, u)

}

dx du ds.

(4.20)

Similarly as in in Lemma 4.5, the corresponding mild equation writes as follows. For

each continuous function ϕ,

〈gn+1
t , ϕ〉 =

∫

X̄×U

(
∫

X̄
pt(x, u, y)ϕ(y, u)dy

)

g0(x, u)dxdu

+

∫ t

0

∫

X̄×U

{[

λ(x, u)

(
∫

X̄
pt−s(x, u, y)ϕ(y, u)dy

)

+

∫

U

(
∫

X̄
pt−s(x, v, y)ϕ(y, v)dy

)

M(x, u, v)dv

]

gn
s (x, u)

− µ(x, u, IδW ⋆ gn
s (x, u))

(
∫

X̄
pt−s(x, u, y)ϕ(y, u)dy

)

gn+1
s (x, u)

}

dxduds.

(4.21)

The assumptions on the coefficients allow us to apply Fubini’s theorem. This yields,

for each (y, u) ∈ X̄ × U ,

gn+1
t (y, u) =

∫

X̄
pt(x, u, y)g0(x, u)dx

+

∫ t

0

∫

X̄

{

(λ(x, u)pt−s(x, u, y)g
n
s (x, u) +

∫

U
pt−s(x, u, y)g

n
s (x, v)M(x, u, v)dv

− µ(x, u, IδW ⋆ gn
s (x, u))pt−s(x, u, y)g

n+1
s (x, u)

}

dxds. (4.22)
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Thanks to the nonnegativity of gn+1, we get

0 ≤ gn+1
t (y, u) ≤

∫

X̄
pt(x, u, y)g0(x, u)dx +

∫ t

0

∫

X̄

{

(λ(x, u)pt−s(x, u, y)g
n
s (x, u)

+

∫

U
pt−s(x, u, y)g

n
s (x, v)M(x, u, v)dv

}

dxds. (4.23)

Integrating over y ∈ X̄ , using Fubini’s Theorem, the symmetry of M and Gronwall’s

Lemma, we easily deduce that there exists a constant C independent of δ such that

sup
n∈N

sup
t≤T

‖gn
t ‖1 ≤ ‖g0‖1e

CT . (4.24)

Let us now show the convergence of the sequence gn in L∞([0, T ], L1) to a function gδ.

A straightforward computation using (4.22), Hypotheses (H), (H1) and (H2), and similar

arguments as above yields

sup
s≤t

‖gn+1
s − gn

s ‖1 ≤ C

∫ t

0

(

sup
u≤s

‖gn+1
u − gn

u‖1 + sup
u≤s

‖gn
u − gn−1

u ‖1

)

ds

where C is a positive constant. It follows from Gronwall’s Lemma that for each 0 ≤ t ≤ T

and each n, sups≤t ‖gn+1
s − gn

s ‖1 ≤ C
∫ t

0 supu≤s ‖gn
u − gn−1

u ‖1ds.

Picard’s Lemma then yields
∑

n∈N
supt∈[0,T ] ‖gn+1

t −gn
t ‖1 < +∞ for any T > 0. There-

fore, the sequence (gn)n converges in L∞([0, T ], L1) to a function gδ which satisfies, by

(4.24),

sup
δ>0

sup
t≤T

‖gδ
t ‖1 ≤ ‖g0‖1e

CT . (4.25)

Moreover, the function gδ is weak solution of (4.9). Hence, by the uniqueness result

proved in Theorem 4.2, ξδ(dx, du) = gδ(x, u)dxdu. Moreover, Lemma 4.5 implies that gδ

is also solution of the mild equation

gδ
t (y, u) =

∫

X
pt(x, u, y)g0(x, u)dx

+

∫ t

0

∫

X

{

(

λ(x, u) − µ(x, u, IδW ⋆ gδ
s(x, u))

)

pt−s(x, u, y)g
δ
s(x, u)

+

∫

U
pt−s(x, u, y)g

δ
s(x, v)M(x, u, v)dv

}

dxds. (4.26)

Using (4.26), the continuity of y 7→ gδ
t (y, u) follows immediately from the continuity of

(t, x, y) 7→ pt(x, u, y) and the boundedness of gδ , λ, µ and M . 2
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5 Convergence of the number density when the interaction

range decreases

In this section, our aim is to scale space in order to observe what happens when the spatial

interaction range is very local (δ → 0). We obtain the convergence of the solution gδ of (4.9)

to a nonlinear partial integro-differential equation with localized spatial interaction. In

this equation, the space and trait convolution with respect to the kernel IδW in the

nonlinear term is replaced by a convolution in the trait space only with respect to W .

Our motivation is to recover from an individual-based model a class a models studied by

Prévost [36] and Desvillettes et al. [8].

In order to control the nonlinear term in the equation (4.9) satisfied by gδ , we need

L∞-estimates, independent on δ, on gδ. To this end, we make the following additional

assumption.

(H3) The initial density g0(x, u) is independent of δ and bounded on X × U .

Proposition 5.1 Assume (H), (H1), (H2), (H3). Then there exists a positive constant

CT , such that

sup
δ>0

sup
t∈[0,T ]

‖gδ
t ‖∞ ≤ CT ‖g0‖∞. (5.1)

Proof. Again, we consider the sequence (gn)n approximating gδ introduced in the proof of

Theorem 4.6. The maximum principle implies that supn supt≤T ‖gn
t ‖∞ ≤ C‖g0‖∞, where

C > 0 is a constant only depending on T , λ∗ and M∗ (and independent of δ). This

property is preserved when n → +∞, and (5.1) is proved. (For details on the maximum

principle, see [8]) 2

Let us now prove the convergence of gδ, as the interaction range δ goes to 0, to a locally

nonlinear partial integro-differential equation with Neumann’s boundary condition (again,

because of the reflected diffusion governing the motion of individuals). The convergence

of the interaction range to 0 translates in this result into the assumption that Iδ(y)dy

converges weakly to the Dirac measure δ0 at 0. One can think for example to the case

where Iδ(x) = Cδ1{|x|≤δ}.

Theorem 5.2 Assume (H), (H1), (H2), (H3) and that the measure Iδ(y)dy weakly con-

verges to δ0 as δ tends to 0. Then the sequence (gδ)δ>0 converges in L∞([0, T ], L1) as δ

tends to 0, to the unique function g ∈ L∞([0, T ], L1 ∩ L∞(X̄ × U)) with initial condition
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g0 satisfying (in a weak sense)

∂tgt(x, u) = ∆x(m(x, u)gt(x, u)) −∇x(b(x, u)gt(x, u))

+
(

λ(x, u) − µ(x, u, ρg(t, x, u))
)

gt(x, u) +

∫

U
gt(x, v)M(x, u, v)dv ;

∇xg(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U (5.2)

where ρg describes the (local) interaction in x. It is defined for (x, u) ∈ X̄ × U by

ρg(t, x, u) =

∫

U
W (u− v)gt(x, v)dv.

Moreover, for each t and u, the function gt(., u) is continuous on X .

Proof. As before, we will use the mild formulation of (5.2): a solution g of (5.2) in

L∞([0, T ], L1 ∩ L∞(X̄ × U)) satisfies, for each y, u ∈ X̄ × U ,

gt(y, u) =

∫

X
pt(x, u, y)g0(x, u)dx

+

∫ t

0

∫

X

{

(

λ(x, u) − µ(x, u, ρg(s, x, u))
)

pt−s(x, u, y)gs(x, u)

+

∫

U
pt−s(x, u, y)gs(x, v)M(x, u, v)dv

}

dxds. (5.3)

One can easily prove the existence and uniqueness of the integrable and bounded

function g solution of (5.3) by adapting the proofs of Theorem 4.6 and Proposition 5.1.

The continuity of y → gt(y, u) is obtained as in the proof of Theorem 4.6, and we can

show as in the proof of Proposition 5.1 that

sup
t∈[0,T ]

‖gt‖∞ ≤ CT ‖g0‖∞. (5.4)

Let us write

gδ
t (y, u) − gt(y, u) =

∫ t

0

∫

X

{

(λ(x, u)pt−s(x, u, y)
(

gδ
s(x, u) − gs(x, u)

)

+

∫

U
pt−s(x, u, y)

(

gδ
s(x, v) − gs(x, v)

)

M(x, u, v)dv

−
[

µ(x, u, IδW ⋆ gδ
s(x, u))g

δ
s(x, u) − µ(x, u, ρg(s, x, u))gs(x, u)

]

pt−s(x, u, y)

}

dxds

(5.5)

We want to compute an upper bound for the norm of gδ
t (y, u) − gt(y, u) that allows us

to apply Gronwall’s lemma. Because of (5.1) and (5.4), the unique term which deserves
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attention is the term µ(x, u, ρg(x, u)) − µ(x, u, IδW ⋆ gδ(x, u)). By (4.7), we have
∫

X
|µ(x, u, ρg(t, x, u)) − µ(x, u, IδW ⋆ gδ

t (x, u))|dx

≤ kµ

∫

X

∣

∣

∣

∣

∫

U
W (u− v)gt(x, v)dv −

∫

X×U
Iδ(x− z)W (u− v)gδ

t (z, v)dzdv

∣

∣

∣

∣

dx

≤ kµ

∫

X

(
∣

∣

∣

∣

∫

U
W (u− v)gt(x, v)dv −

∫

X×U
Iδ(x− z)W (u− v)gt(z, v)dzdv

∣

∣

∣

∣

+

∫

X×U
Iδ(x− z)W (u− v)

∣

∣

∣
gt(z, v) − gδ

t (z, v)
∣

∣

∣
dzdv

)

dx

Let us fix our attention on the first term in the right-hand side of this inequality, that we

will call Aδ(t, u). Since Iδ(y)dy weakly converges to δ0,
∫

X I
δ(x − z)gt(z, v)dz converges

to gt(x, v) as δ goes to 0. Because of (5.4), this convergence holds in a bounded pointwise

sense with respect to t ≤ T , x ∈ X and v ∈ U . Then Lebesgue’s theorem implies that

Aδ,T :=
∫

U

∫ T

0 Aδ(t, u)dtdu tends to 0 as δ tends to 0.

Therefore, integrating (5.5) with respect to dy du, we get

sup
s≤t

‖gδ
s − gs‖1 ≤ CTAδ,T + C ′

T

∫ t

0
sup
u≤s

‖gδ
u − gu‖1ds.

We conclude using Gronwall’s lemma. 2

The zero interaction range equation (5.2) has been numerically studied in Prévost [36].

A lot of simulations based on finite element schemes are given, studying the simultaneous

effects of diffusion, mutation and selection parameters on the invasion of the space and

trait domain by the population. The simulations show that the coefficient which seems

to affect the most the invasion aptitude is the mutation size coefficient. However, their

model is restricted to local interactions.

In the next section, we wish to illustrate, by simulations of the stochastic discrete

model, the effect of the spatial interaction range on the interplay between invasion and

evolution, and on the emergence of spatial and phenotypic diversity (clustering and poly-

morphism). Our simulations focus on the qualitative differences between local and nonlocal

interactions.

6 Simulations

This section presents simulations based on the algorithm of Section 3 of several examples

motivated by theoretical and empirical biological issues. The Euler scheme used to simu-

late reflected diffusions is detailed in Section 6.1, as well as some numerically very efficient
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simplifications of the algorithm described in Section 3 in the specific case of linear death

rates (logistic competition). Next, we give simulations of three biologically relevant ex-

amples. In the first one (Section 6.2), the parameters induce an advantage for an optimal

trait value that depends linearly on the spatial position. The simulations show a local

adaptation at this optimal trait value, but not necessarily uniformly over space. When

migrations and mutations are not too strong, a large spatial interaction range induces a

spatial organization of the population as a finite set of isolated clusters. In Section 6.3,

we propose a second example, where a similar transition occurs between clustering and

non-clustering. In this example, clustering happens when the width of the spatial region

of high growth rate is bigger than the spatial interaction range, and the critical interaction

range can be identified quite precisely. In our last example (Section 6.4), we investigate

a model describing the invasion of a species with evolving dispersal speed (the trait is

proportional to the migration speed). The model is similar to the one numerically studied

in [8], but we adapt it to the setting of [35]. The behavior of our model agrees with the

qualitative observations of this article: the invasion speed increases progressively, due to

evolution, and the invasion front is composed of faster individuals.

6.1 Algorithm for logistic interaction and Euler scheme

There is a particular interaction form for which the complexity of the algorithm can be

considerably reduced. In Section 3, one needs to compute IδW ∗ ν(x, u) at some point

(x, u) ∈ X×U at each time step, which involves a sum over all individuals in the population.

In the case of logistic competition (linar death rate), where

µ(x, u, r) = µ0(x, u) + µ1(x, u)r, (6.1)

one can use the following algorithm, that avoids to compute such a sum at each time step.

Fix a constant Cδ in a similar way as in (2.7) such that

µ0(x, u) + λ∗ + ‖M∗‖1 ≤ Cδ and µ1(x, u)‖IδW‖∞ ≤ Cδ.

Take the Brownian motions (Bj,k)j,k∈N and the random variables (θk)k∈N, (Vk)k∈N and

(τk)k∈N as in Section 3. Set T0 = 0 and N0 = N (the initial number of individuals).

Assume that (Tk−1, Nk−1,XTk−1
, UTk−1

) are given, whereNk−1 is the number of individuals

at time Tk−1. At this time, their positions and traits are the coordinates of the vectors

XTk−1
= (Xi

Tk−1
)1≤i≤Nk−1

and UTk−1
= (U i

Tk−1
)1≤i≤Nk−1

.

The two first steps of the algorithm are the same: the next (possible) jump time is

given by Tk = Tk−1 + τk/Nk−1(Nk−1 + 1) and the motion of each particle is governed by

the SDE with normal reflection (3.1).
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The third step deals with the different events that may happen at time Tk. We start

with the same procedure. Choose one individual Ik = i uniformly at random among

the Nk−1 individuals living during the time interval [Tk−1, Tk). Its position and trait are

(Xi
Tk
, U i

Tk−1
). The event occurring at time Tk is decided by comparing θk with constants

related to the rate of each kind of event. The only difference with the algorithm of Section 3

is in the first sub-step, that has to be divided in two steps as follows:

• If 0 ≤ θk <
Nk−1

Nk−1+1 =: θi
0(XTk

, UTk−1
), then let j ∈ {1, . . . ,Nk−1} be such that

j−1
Nk−1+1 ≤ θk <

j
Nk−1+1 . If θk − j−1

Nk−1+1 <
µ1(Xi

Tk
,U i

Tk−1
)Iδ(Xi

Tk
−X

j
Tk

)W (U i
Tk−1

−U
j
Tk−1

)

Cδ
,

then the individual i dies from competition with individual j and Nk = Nk−1 − 1.

Otherwise, nothing happens and Nk = Nk−1. This step amounts to choose j at

random between 1 and Nk−1 and next to do the acceptance-rejection procedure to

determine if the competition exerted by the individual j “kills” i.

• If θi
0(XTk

, UTk−1
) ≤ θk ≤ θi

0(XTk
, UTk−1

) +
µ0(Xi

Tk
,U i

Tk−1
)

Cδ(Nk−1+1) =: θi
1(XTk

, UTk−1
), then the

individual i dies by natural death and Nk = Nk−1 − 1. This step is similar to the

birth step without mutation.

The three other sub-steps are the same.

The main difference with the algorithm of Section 3 is that we no longer have to

compute
∑Nk−1

j=1 Iδ(Xi
Tk

− Xj
Tk

)W (U i
Tk−1

− U j
Tk−1

) in the first sub-step, but it suffices to

compute Iδ(Xi
Tk

−Xj
Tk

)W (U i
Tk−1

−U j
Tk−1

) for chosen i and j. Moreover, we do not need to

compute the position of each individual in the population at each time step. The algorithm

described above only requires to compute the position of at most two particles at time Tk

(the particles numbered i, and possible j).

Next, as mentionned in Section 3, the reflected diffusion which drives the spatial mo-

tion of the particles can be simulated with an Euler scheme. We will assume in this

subsection and in the following examples that X = (α, β) ⊂ R and we will use the scheme

of Lépingle [26] (see also [19]). Fix x ∈ [α, β] and u ∈ U . On any time interval where its

trait is constant, an indivual at (x, u) moves according to the reflected diffusion

Xt = x+

∫ t

0

√

2m(Xs, u)dBs +

∫ t

0
b(Xs, u)ds − kt ,

|k|t =

∫ t

0
1{Xs∈{α,β}}d|k|s ; kt =

∫ t

0

(

1{Xs=β} − 1{Xs=α}

)

d|k|s, (6.2)

where B is a one-dimensional Brownian motion.

If m and b are Lipschitz continuous with respect to the first variable, this diffusion can
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be simulated on [0, T ] as follows. Fix h > 0, ᾱ and β̄ such that α < ᾱ < β̄ < β, and let n

be the first integer greater than T/h. For ρ ∈ {0, 1, . . . , n− 1} and ρh < t ≤ (ρ+ 1)h, let

X̃0 = x,

X̃t = max
{

α,min
[

β, X̃ρh + b(X̃ρh, u)(t − ρh) +

√

2m(X̃ρh, u)(Bt −Bρh)

+ 1{X̃ρh<ᾱ} max(0, Aρ
t − (X̃ρh − α))

− 1{X̃ρh>β̄} max(0, Bρ
t + (X̃ρh − β))

]}

,

where

Aρ
t = sup

ρh≤s≤t

{

−b(X̃ρh, u)(s − ρh) −
√

2m(X̃ρh, u)(Bs −Bρh)

}

,

Bρ
t = sup

ρh≤s≤t

{

b(X̃ρh, u)(s − ρh) +

√

2m(X̃ρh, u)(Bs −Bρh)

}

.

Then, there exists a constant C independent of h such that for any function f on [α, β]

with finite variation bounded by 1, sup0≤t≤T |E(f(Xt) − f(X̃t))| ≤ C
√
h.

In each step of this scheme, one has to simulate simultaneously Bt and St := sups≤t(aBs+

bs) for fixed constants a, b. This can be done as follows (Shepp [43]). Let U be a Gaussian

centered random variable with variance t, and let V be an exponential random variable

with parameter 1/(2t) independent of U . Put

Y =
1

2

(

aU + bt+
√

a2V + (aU + bt)2
)

.

Then the vectors (Bt, St) and (U, Y ) have the same distribution.

Note that this scheme can easily be generalized to state spaces of the form (α1, β1) ×
. . .× (αd, βd) ⊂ R

d, as explained in [26].

We assume in the following examples a logistic competition of the form (6.1) and a

physical space of the form X = (α, β). Our simulations are realized with the previous

algorithm.

6.2 Example 1. Spatial clustering

We consider here a set of parameters similar to the one of [12] and [36], in which, for

each spatial position x, the growth rate is maximal for the trait value u = x. This can

represent the effect of a gradual spatial distribution of different resources, involving a

gradual distribution of traits. For example, for some bird species, a linearly spatially
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varying seed size determines a linear variation of the beak sizes (Grant and Grant [20]).

X = (0, 1), U = [0, 1], m(x, u) ≡ m, b(x, u) ≡ 0,

λ(x, u) = 2 − 20(x− u)2 if |x− u| ≤ 1/
√

10; 0 otherwise,

µN (x, u, r) = 1 +
r

N
, Iδ(y) = Cδ1{|y|≤δ}, W (v) ≡ 1.

Moreover, M(x, u, v) = 0.1 × ks(u, v) where 0.1 is the mutation rate and ks(u, v) is the

probability density of a Gaussian random variable with mean u and standard deviation s

conditioned on staying in U = [0, 1].

We assume in this model that there is no spatial heterogeneity (b = 0 and m constant)

and that competition occurs independently of the trait (W = 1) between individuals

distant of less than δ from each other. The birth rate λ is chosen such that it is maximal

for u = x, and the death rate of an individual is assumed independent of its position and

traits, with logistic form. There are four free parameters in this model, m, δ, s and the

population size N . The initial population in our simulations is composed of N individuals

at (0.5, 0.5).

The simulations of this model show, as in [36], that the invasion of space occurs along

the diagonal x = u, and, as in [12], that polymorphism (stable coexistence of several

sub-populations with different typical traits) may occur in this model, accompanied with

a spatial specialization. Several different population clusters may coexist at different

position, with trait values located around the corresponding optimal traits. We have

investigated in our simulations the effect of the different parameters on the clustering and

polymorphism of the population. We give pictures of the seemingly stable state of the

population (Fig. 1).

On the one hand, we have investigated the effect of the interaction range δ. The

main result is that the existence, the number of clusters and the distance between clusters

strongly depend on the interaction range δ. As shown in Fig. 1(a,b,d), the number of

clusters decreases with δ and the distance between two population peaks is roughly 1.5δ,

which is exactly the width of the interaction interval. This observation can be explained as

follows. The emergence of population clusters is mainly a consequence of local births ([47]).

Indeed, since the progeny of an individual is close to its original location, each individual’s

progeny can create a colony with stable position on short timescales. Once an individual

is at a distance greater than δ from the main part of the population, it experiences very

little competition and it can create a new colony. When several colonies appear, they

organize in a way to minimize the competition between them and to maximize the growth

rate. Moreover, if two population peaks are distant of more than 2δ, then there is a

zone between them with in which an individual alone feels no competition at all. Hence,
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(a) N = 3000, s = 0.01, m = 0.01, δ = 0.1.
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(b) N = 3000, s = 0.01, m = 0.01, δ = 0.3.
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(c) N = 50, s = 0.01, m = 0.01, δ = 0.1.
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(d) N = 3000, s = 0.01, m = 0.01, δ = 0.03.
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(e) N = 3000, s = 0.01, m = 0.003, δ = 0.1.
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(f) N = 3000, s = 0.01, m = 0.1, δ = 0.1.

Figure 1: Simulations of Example 1 for various parameters. All of them are taken at time
4000.
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this individual can create a new colony without any competitive pressure. The distance

between the centers of two clusters is therefore between δ and 2δ. It is also linked to the

“width” of the clusters: if they are wider, then the distance becomes bigger so that there

is very small competition between clusters. As observed in Fig. 1(d), if δ is sufficiently

small with respect to this width, we observe a flat distribution of the population, and thus

a qualitative difference with respect to cases (a,b). As δ decreases, the clusters eventually

overlap and no distinct colony can be observed.

We also investigated the effect of the population size N . It appears that this parameter

has very little qualitative effect on the clustering of the population, except for small

N (Fig. 1(c)), where the width of each clusters is reduced, and we observe much more

fluctuations in the population distribution. However, we still can observe a similar pattern

of population clusters than in Fig. 1(a).

The impact of the diffusion parameter m and the mutation size s on the width of the

clusters and the distance between clusters is illustrated in Fig. 1(e) and (f), where all the

parameters are the same as in Fig. 1(a), except the diffusion parameter. In Fig. (e), the

diffusion parameter is smaller and two main consequences can be observed: Clusters are

narrower and the number of coexisting clusters increases of 1 with respect to Fig. (a).

In Fig. (f), the diffusion parameter is bigger and several consequences can be observed.

First, only four clusters can be distinguished. Second, the clusters are wider in the spatial

direction than in the trait direction because only m was increased and the clusters’ spatial

width is bigger than in Fig.(a). Finally, in Fig. (f), m is big enough with respect to δ so

that quick movements mix the population. The two central clusters are overlapping and

can hardly be distinguished, and no cluster at all can be observed if one looks at the spatial

distribution only. Therefore, this case rather corresponds to a phenotypic clustering than

to a spatial clustering. When the diffusion parameter m is kept equal to 0.01 as in Fig (a)

and the mutation size s varies, qualitatively similar results can be observed in simulations

(except that the roles of the physical space and the trait space have to be exchanged).

If m and s are both increased with respect to their value in Fig. (a), the clusters are

overlapping in both the trait and space directions, and simulations give the same pattern

as in Fig. (d). The patterns we observe in Fig. 1 are therefore closely related to the balance

between m, s and δ. Different parameter values can lead to similar patterns.

We conclude the study of this example with the general observation that the clusters

are more concentrated at the boundary of the domain. This is a consequence of the fact

that the reflected diffusion governing the motion of individuals is not isotropic close to

this boundary, so that the population density is bigger.
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6.3 Example 2. The role of spatial competition for clustering

As we have seen above, the spatial competition range δ and the motion parameters s and

m have a crucial effect on clustering in the population. In this section, we want to address

the balance between the range of competition and the size of the region of space with high

birth rate. For this purpose, we consider the following model, inspired by the adaptive

dynamics model of [9]:

X = (−1, 1), U = [0, 2], m(x, u) ≡ m, b(x, u) ≡ 0,

λ(x, u) = exp(−x2/2ρ2), µN (x, u, r) = 1 +
r

N
,

Iδ(y) = Cδ exp(−y2/2δ2), W (v) = exp(−v2/0.02).

and the same mutation kernel as above. Here again, space is homogeneous, except for the

birth rate, which is maximal at x = 0. The width of the space region with significant

birth rate is ρ (which can also be interpreted as the width of the space region with high

concentration of resources). The spatial competition kernel is of Gaussian shape, with

standard deviation δ. The trait competition is also of Gaussian shape, with fixed standard

deviation of 0.1. Therefore, trait competition is local. Observe that, in this example, the

trait has no effect on the growth rate, so that the trait structure is neutral (all individual’s

parameters are equal, independent of the trait, in absence of interaction).

This example has five free parameters m, δ, s,N , and ρ. The initial population in our

simulations is composed of N individuals at (0, 1).

If we consider the space X as a trait space, this model is similar to the one of [9]. In

particular, the biological theory of adaptive dynamics [31, 18] suggests that evolutionary

branching, i.e. the split of the population into two sub-populations with different traits

stably coexisting (translating in our model into spatial clustering) occurs when the range

of interaction δ is smaller than the width of the growth rate ρ. This is illustrated by

Fig. 2(a) and (b), where, in (a), δ > ρ and the population stabilizes around position 0

(there is no branching) and in (b), δ < ρ and the population stabilizes around two distinct

positions (branching occurs). This branching criterion reveals quite sharp in simulations.

Figures (c) and (d) prove that other phase transitions occur for smaller δ, leading to

the coexistence of three clusters or more. As in Example 1, we notice in Figure (d) that

a very small δ leads to a distribution without distinct clusters. This can be explained by

similar arguments.

It is possible to add some phenotypic structure to this example by assuming that the

growth rate depends on the trait u, in a way such that spatial branching occurs for some
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(a) δ = 1.1, ρ = 1.
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(b) δ = 0.9, ρ = 1.
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(c) δ = 0.5, ρ = 1.
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(d) δ = 0.1, ρ = 1.

Figure 2: Simulations of Example 2. Neutral case. All the figures are taken at time 5000,
except the last one, taken at time 10000 (more time is needed to fill the whole space). In
all the simulations, N = 1000, s = 0.003 and m = 0.003.
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(b) t = 20000.
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(c) t = 45000.
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(d) t = 80000.

Figure 3: Simulations of Example 2. Trait-dependent case. In this simulation, N =
1000, s = 0.003,m = 0.003 and δ = 1. These simulations are seen from a backward point
of view for a better visualisation of the branches.

traits but not for others, according to the above branching criterion. We take the same

parameters, except for the birth rate, which has the following form.

λ(x, u) = exp(−x2/2(u+ 0.1)).

The parameter ρ is then replaced by
√
u+ 0.1, so that branching occurs if u > δ2−0.1. The

constant 0.1 has been added in order to avoid a null standard deviation for the Gaussian

shape of the birth rate.

Actually, this is what happens for small times (Fig. 3(a)), but after a longer time

(Fig. 3(b,c)), the two clusters spread over the trait space because of the mutation phe-

nomenon. Eventually, we actually observe the appearance and the spread of three spatial

clusters, colonizing all the trait space (Fig. 3(d)).
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6.4 Example 3. Invasion and evolution of migration speed

Here, we investigate a model describing the invasion of a species with evolving dispersal

speed (as in [8]). This can model phenomena such as the invasion of Australia by cane

toads, for which an adaptation to high invasion speeds has been recently detected (Phillips

et al. [35]). In particular, it has been observed that the size of the legs of the toads, which

is thought to be related to their speed, is larger at the front of the invasion, and that the

speed of the invasion front increases progressively over years, because of the adaptation of

toads to higher speed.

The parameters are as follows.

X = (−1, 1), U = [0, 3], m(x, u) ≡ m(u+ 0.1), b(x, u) ≡ 0,

λ(x, u) = 1, µN (x, u, r) = 1 +
r

N
,

Iδ(y) = Cδ1{|y|≤δ}, W (v) = exp(−10v2).

and the same mutation kernel as above. Here we study invasion into an homogeneous

space and trait domain (λ is constant, b = 0 and µ is independent of x and u). The

trait competition kernel W is of Gaussian form, with standard deviation 1/2
√

5 ≈ 0.22.

Individuals interact only if they are distant of less than δ from each other. The diffusion

rate m is proportional (up to a constant, in order to avoid a null diffusion constant when

u = 0) to the trait u. Thus, individuals with large u move fast. The trait u can be a

morphological trait responsible for the speed of dispersal (e.g. the length of legs for toads,

[35]). This example has four free parameters, the diffusion coefficient m, the interaction

range δ, the standard deviation of mutations s and the population size N .

In Fig. 4 and 5, we present two extreme cases with respect to the initial trait distri-

bution, but with identical parameters. In the first one, all individuals are at (physical)

position 0, and with traits regularly distributed in U = [0, 3]. In the second one, all

individuals are initially located at a single point (0, 0).

In both figures, we observe a triangular invasion pattern indicating that the invasion

front is composed of faster individuals. In Fig. 5, we also observe a simultaneous invasion

in physical and trait spaces, and a slower spread of the population. This can be explained

by the fact that the population, initially composed of slow individuals, has first to colonize

the trait space before invading the physical space. Because of the progressive appearance

of larger traits, the invasion speed increases over time (compare the different time values

in Fig. 5). This agrees with the observations of [35].

When the parameters vary, the simulations of this microscopic model can show very

different patterns of colonization. As an illustration of the richness of this model, we give
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(a) t = 25.
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(b) t = 125.
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(c) t = 250.
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(d) t = 500.

Figure 4: Simulations of Example 3. The parameters are N = 100, s = 0.03,m = 0.003
and δ = 0.1. The initial condition is composed of N individuals located at 0 and with
trait values 3i/N for 1 ≤ i ≤ N .

an example (Fig. 6) where the interaction range δ is bigger. The parameters N and m are

chosen such that two clusters appear for large traits and spread over the trait space in a

short time. The initial condition is the same as in Fig. 4. We can observe two branches

linking the initial cluster with the two extreme valued clusters (Fig. 6(c,d)).

7 Conclusion

We have proposed different levels of models which describe the interplay between evolu-

tion and space. We started from a microscopic detailled stochastic model, in which each

individual’s birth and death are described, and which include ecological interactions be-

tween individuals. We have also given an efficient algorithm allowing us to construct and
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(b) t = 750.
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(c) t = 850.
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(d) t = 1000.

Figure 5: Simulations of Example 3. The parameters are N = 100, s = 0.03,m = 0.003
and δ = 0.1. The initial condition is composed of N individuals located at (0, 0).
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(b) t = 10.
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(c) t = 20.
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(d) t = 50.

Figure 6: Simulations of Example 3. The parameters are N = 1000, s = 0.03,m = 0.03
and δ = 1. The initial condition is composed of N individuals located at 0 and with trait
values 3i/N for 1 ≤ i ≤ N .
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simulate such a population process. We then obtained a simpler, macroscopic determin-

istic model in the form of a nonlocal and nonlinear partial integro-differential equation.

In order to recover deterministic models already studied in [36] where the spatial interac-

tion is local, we then studied the limit of small spatial interaction range, and obtained a

spatially localized nonlinear partial integro-differential equation. The local and nonlocal

models show very different behavior.

We then made the numerical study of several biological examples, in order to illustrate

the role of the spatial interaction range. More precisely, our first two examples illustrated

the local adaptation to the maximal resources exploitation (Example 1) and the interplay

between the various parameters in terms of spatial clustering (Examples 1 and 2). Specif-

ically, we have shown that the number of clusters decreases when the spatial interaction

range increases and that the width of clusters increases when the speed of spatial motion

and the range of mutation increase. When these two parameters are too big, then, no

cluster is observed, and the population distribution is flat. The impact of the population

size on clustering seems quite weak. We also showed that the width of the space region

with high growth rate has to be sufficiently large in order to obtain clustering. In our sec-

ond example, we were able to identify quite precisely the critical range of interaction for

which clustering appears. We also studied another class of models (Example 3) describing

the interplay between invasion and evolution. We were in particular able to recover in

simulations the experimental observations on the invasion of Australia by toads obtained

in [35]. Our numerical study of this model shows a wide variety of patterns of invasion,

depending on the parameters.

Further works can be developed in many directions. From a mathematical point of

view, several other macroscopic limits of the stochastic individual process can be studied,

in a similar way as in [6]. This would allow to obtain macroscopic models where the

mutation term has a reaction-diffusion form, and to include is these models a demographic

stochasticity. Such stochastic partial differential equations are biologically very interesting,

but their mathematical study and simulation are quite difficult. Many other questions

can be asked about the clustering phenomenon, and its evolutionary counterpart, called

“evolutionary branching”. One could study the stationary distribution of the individual

process, and look at its form. Under suitable assumptions, for example when motion

is slow, the stationary distribution could converge to a sum of Dirac masses (clusters).

A challenging problem would then be to determine the distance between clusters, their

width, and the way they depend on the motion parameters. The dynamical study of

branching and clustering (i.e. the transition from one cluster to two or more clusters) is

also an important problem. The adaptive dynamics theory provides a first progress in this
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direction [31, 18]. From a biological point of view, the clustering phenomenon is related to

the notion of ecological niches, and it is the basis of the metapopulation models, which are

extensively studied. It is therefore important to have criterions (for example on the motion

parameters and the range of competition, or the width of the space region with high birth

rate) allowing to validate such models. Invasion phenomena are also extensively studied.

With our example, we wanted to point out the fact that evolution has also a crucial role in

these phenomena. Our model is a first attempt to describe the interplay between evolution

and invasion from a microscopic point af view. The richness of the dynamics we obtain

shows that the study of this problem is difficult. A next step could be to list all types

of behaviors that can be expected in our model and to identify the parameters that are

responsible for each particular type of invasion.
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