Theorie de Lubin-Tate non-abelienne et representations elliptiques

Abstract : Harris and Taylor proved that the supercuspidal part of the cohomology of the Lubin-Tate tower realizes both the local Langlands and Jacquet-Langlands correspondences, as conjectured by Carayol. Recently, Boyer computed the remaining part of the cohomology and exhibited two defects : first, the representations of GL_d which appear are of a very particular and restrictive form ; second, the Langlands correspondence is not realized anymore. In this paper, we study the cohomology complex in a suitable equivariant derived category, and show how it encodes Langlands correspondance for all elliptic representations. Then we transfer this result to the Drinfeld tower via an enhancement of a theorem of Faltings due to Fargues. We deduce that Deligne's weight-monodromy conjecture is true for varieties uniformized by Drinfeld's coverings of his symmetric spaces.
Liste complète des métadonnées
Contributeur : Jean-Francois Dat <>
Soumis le : dimanche 2 avril 2006 - 23:34:43
Dernière modification le : mardi 11 octobre 2016 - 12:02:04
Document(s) archivé(s) le : samedi 3 avril 2010 - 22:10:57





Jean-Francois Dat. Theorie de Lubin-Tate non-abelienne et representations elliptiques. 54 pages. 2006. <hal-00022116>



Consultations de
la notice


Téléchargements du document