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Abstract in motion and that the flow can be described by a profile
In this paper we are interested in the mathematical and of Mach’s numberM (y) (M €] — 1,1[). If f denotes

numerical analysis of the time-dependent Galbrun equa- the source of acoustic waves, we have to solve the tran-

tion in a rigid duct. This equation models the acoustic sient Galbrun equation in dimensionless forrg is the

propagation in the presence of a fldly [1]. We propose a perturbation of lagrangian displacement):

regularized variational formulation of the problem, in the

2
subsonic case, suitable for an approximation by Lagrange ]I))—tf - V(divg) = fin Q xR} 1)
flnlte_glements, and corresponding absorbing boundary ¢€n = 0ondQxR. @)
conditions.

_ where2, = & + M(y)Z is the material derivative and
1 Introduction n the unit outward normal vector @f). We complete the

Sound propagation in a flow is a subject of great inter- equations[{1){{2) by adding initial conditions.
est for numerical analysis. The main application concerns

O noise reduction in aeronautics. The understanding of phe- 3 TheLagrangian vorticity equation
nomena of interaction between acoustic waves and flows When f € H(curl, ), applying the curl operator t§](1),
Nis a crucial feature to find the components that efficiently we prove that theurl ¢ = + satisfies:

«_reduce the sound.
G . . . D2w D 0¢, )
Most of the mathematical and numerical studies for —— = 2M(y) —(=E) +curl f in Q@ xR: (3)
transient linearized aeroacoustics are based on linearize ~ Dt? Dt" Ox
Euler equations, whose unknowns are the perturbations Note that when the flow is uniformi{(y) is constant),

o\Jof velocity and pressure. Nevertheless, Galbrun equa- the vorticity 1» can be computed independently &and
; tions, whose unknown is the lagrangian perturbation of the solution is given by :

\_ldisplacement, are an attractive alternative to model the
phenomenon of acoustic propagation in a flow. Indeed, Y(z, y,t)  =alx— Mt y)+x6(x— Mt y)+

these equations seem to have a structure similar to equa- ﬁ Jo (x —a)(curl f)(a, y, t — 52 )da
-—tions in electromagnetism and elastodynamics and they _ o
<’ allow a simple treatment of boundary conditions. wherea et § are two functions that depend only of initial

D Recent studies on Galbrun equations have focused on conditions of the problem.

>_}ime harmonic dependence. We are interested here in4 Reaularized F lation Galb "
[N~studying the transient case. cgulartz ormutation run equation

00 This problem raises many theoretical and numerical The ide? of the_regularization, initially introdu_ced for

LOdifficulties. The major one is the lack of a natural func- Maxyvells equatlons,_ was extended to the t|_me har-
tional frame for a variational setting of the problem. Monic Galbrun equation by A. S Bonnet-Bendhia and al

(O Moreover, a naive numerical resolution of the problem us- (2001). The idea consists in ad_dmg the artificial term

Oing standard nodal finite elements for the space discretiza- 5 €1 (curl —4)) to Galbrun equation. _

Otion is unstable (see Figufk 1). In order to overcome these We replace f[he initial value problerfi (1]-(2) by the equiv-

Sdifficulties , we propose a regularization method analo- a/€ntregularized problem :

@) ' prop g

(Ngous to the one developed for Maxwell's equatidds [3].

Ohis allows to derive a variational formulation suitable

D% _V(dive)+scurl(curlé —¢) = f in  Q xRy

for an approximation by Lagrange finite elements. B (3% —2M'(y)%=) = curl f in QxR
E-n=0, curl€ = on 00 xRy
2 Statement of the problem (4)

LetQ) = Rx]—h, h| be atwo-dimensional rigid duct con-  wheres is a non negative parameter.
taining a compressible fluid. We suppose that this fluid is



In this paper we restrict to the case of uniform flow 6 Theabsorbingboundary conditions

(M'(y) =0 Vy €] — h, h[) for which the problem in) For solving numerically the problem, we need to truncate
and¢, are decoupled. The study of the coupled system the unbounded domaifi. The truncated domaify, :=
will be a subject of future works | — R; R[x[—h; h[requires the introduction of absorbing
boundary conditions (ABCs) on the artificial boundaries
5 Mathematical analysis of the regularized problem I't = {(z,y) € Q, z=+R} (R > 0). The difficulty
When the Mach number is constant the vorticityis is to find appropriate boundary conditions adapted for the
known and the problem ig& is written : regularized formulation. For = 1, the boundary condi-
tions that we propose are the following :
D2§ —V(divE) +scurl (curlé) = fs in QxR
{Dt (dive) (curl ) = f + DE L o -
£E-n=0, curlé¢ = on 00 x R4 Dt on
®) wheren = (£1, 0) is the unit outward normal vector of
wheref, = f + s curly. I'+ andr = (0, +1). The main properties of conditions

The second boundary conditignurl ¢ = 1) of system @ are
@) is necessary for the equivalence with the initial prob-

lem {1)-(2). The property of ellipticity of the spatial op- i) These are exact conditic_)n‘_s forindependent solg-
erator —V(div) + scurl (curl) (which equals—A if tions (planf—:-.waves) . this is why we speak of first
s = 1) allows to carry out the mathematical and numeri- order conditions.
cal study of this problem in a2cla525|cal frame. i) Well-posedness: the truncated problem is well
We considerH := Hy(€2) x L*(€)° where posed and forf = 0 we have the energy decay re-
1 ) sult:
Hy(Q) := {¢ € (H'(Q)?/ &-mn=0,0n0Q}. d o€ |?
To apply Hille-Yosida theorem, we introduce a new un- r-urt
known ¢ = D¢&/Dt. If we poseU = (&, ¢)t, then we where
can rewrite [(6) under the following form : B L ot |? vel? 2| % 2
- ()—i/gba +IVET - M” =
— + AU =F,
{ dt (6) iif) These are compatible with a variational formula-
U(0) =Us tion of the regularized problem, namely:
d? d +
5] _ — (b I
. I wEn g (en+Ten) o
U = , T+ —
—V(div€) + scurl (curl §) + M% ta(&m) +d (& m) = (£,m)
0 with (-, -) is the L2-inner product and
Fs = <fs) ' a(€,n) :/Qb div&divn + curl € curlnp — MQ% . %,
The domain of the unbounded operatbyris defined by : b(&,n) =/ 2ME - %, cri((ﬁ,n) = / 1+ M)E-ndy,
Q ur¥
D(As) ={U = (¢, ¢)" € Htelque A,U € H} . 4" (&,m) :/WHRS_E ‘ndy, R= ( (1) 51 )

Using Costabel's identity[J3] and Hille-Yosida’s theory, Remark 6.1 The construction of good absorbing bound-

we prove that the operatat; is maximal monotone ary conditions is not trivial. For example the following
natural ABC’s :

Theorem 5.1 : If min(1, s) > M?, then for fs €

Cl(Ry; L3(©)?) and sufficiently regular initial data, o6 06 o€,
problem(8) has a unique solution which satisfies: (1- M%) o Tyt (¥ M)—- LT 0 9
08 06 02
& € C'(Ry; Ho) N C*(Ry; L*(Q)?) A-M)Zh - £AFMZE | =0 (10




are still exact for plane waves and variational, but not
stable.

7 Discretization of Galbrun equations

The Lagrange finite element approximation [f (8) leads
to the following ordinary differential system :

d*g,, g,
de? dt
whereM, is the mass matrix, andl;,, By, (CE:t and]D)E:t

are the matrices respectively associated to the bilinear
formsa(., .), b(., .), " (., ) andd™* (., .).

My =2 + (B, + Ch )= + (A + D} )E, = Fr (11)

For the time discretization of_ (JlL1) we use a centered
second order finite difference scheme :
1 -1 1 -1
;LL+ _2€Z+£Z —}—(B +(Cri)52+ _52
At2 h T h oAt
+
(A, + D}, )Er = Fj,

M, +

8 Numerical Simulation

In this first experiment, we simulate a wave initially ex-

cited by a rotational source located in the center of the
domain, in the presence of a horizontal uniform flow with

M = 0.5. The first simulation shows that the method is

not stable if the equation is not regularized= 0).

Figure 1: Euclidean norm f at att; = 1.5s andt, =
1.75s andt; = 2s. Cases = 0

The second simulation corresponds to the regularized
case § = 1). When can distinguish the two parts of
the Lagrangian displacement : the irrotational part corre-
sponds to the outer circular wavefront (whose radius in-
creases with time) while the rotational part corresponds to
the inner circular wavefront (whose radius remains con-
stant). Both are centered at a point which is convected by

Figure 2: Euclidean norm of att; = 1.5s andis
1.75s andt; = 2s. Cases = 1

In the second experiment, we simulate Galbrun wave
propagation in an infinite rigid duct. The wave is excited
by a Gaussian signal in time and a quasi-punctual irrota-
tionnal source in space in the uniform flow witth = 0.5.

We remark on this result that the ABC prevents (partially)
the unphysical reflexion.

Figure 3: Evolution of the Euclidean norm of the dis-
placement
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