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Abstract

This paper focuses on linear classification using a fast and simple algorithm known
as the Ho–Kashyap learning rule (HK). In order to avoid overfitting and instead of
adding a regularization parameter in the criterion, early stopping is introduced as
a regularization method for HK learning, which becomes HKES (Ho–Kashyap with
Early Stopping). Furthermore, an automatic procedure, based on generalization
error estimation, is proposed to tune the stopping time. The method is then tested
and compared to others (including SVM and LSVM), that use either ℓ1 or ℓ2-norm
of the errors, on well-known benchmarks. The results show the limits of the early
stopping for regularization with respect to the generalization error estimation and
the drawbacks of low level hyperparameters such as a number of iterations.

Key words: Classifier design, Generalization, Ho–Kashyap classifier, Early
stopping, Robustness

1 Introduction

In a linear classification problem, one often tend to use Support Vector Ma-
chine (SVM) classifiers [1–3] which appear to be the state-of-the-art in matter
of classification. But such tools often result in considerably high calculation
times though many efforts have been done and new algorithms proposed to
solve that problem [4–6].
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This paper focuses on linear classification using a rather simple and fast gradi-
ent descent based algorithm known as the Ho–Kashyap learning rule (HK) [7].
Some efforts have been made to incorporate SVM notions in HK classifers. In
[8], a regularization parameter C is introduced to control the tradeoff between
the margin maximization and the training error rate. It has been shown that
this method can yield reasonable performances in a short amount of calcu-
lation time. Yet this method suffers from the same problem as most of the
regularized learning algorithms: the tuning of the regularization parameter
which is commonly carried out with many tests, much time loss and a non-
exhaustive scanning of the parameter values. Some authors proposed other
methods including evolutionary tuning [9] or gradient-based approaches [10]
for the tuning of SVM hyperparameters.

In this paper we introduce early stopping as a new regularization technique for
HK learning called Ho–Kashyap with Early Stopping (HKES). The proposed
method allows to automatically tune the parameter which in that case becomes
the number of iterations before the training is stopped. More precisely, since
the training is not actually stopped, this is the number of iterations retained
for the final classifier. This procedure provides a very fast approximation of
the best performance one can expect with a linear classifier on a given data
set. This can give a good idea of the linear separability of the data. In some
situations when the problem involves linearly separable data, this avoids to
make the solution more complex by introducing non linear kernels. Such situ-
ations can occur in real-world applications, see for instance [11]. Nevertheless,
choosing to tune a number of iterations as a hyperparameter leads to other
problems like its sensitivity to the size of the training set as we will see in the
numerical experiments.

We start in Sect. 2 with the description of 7 linear classifiers: Ho–Kashyap
learning rule (HK), Modified Ho–Kashyap (MHKS and MHKA), Ho–Kashyap
with Early Stopping (HKES) and with Absolute approximation of the errors
(HKESA), Support Vector Machine (SVM) and finally, Lagrangian Support
Vector Machine (LSVM). The methods MHKA, MHKS, SVM and LSVM ap-
pear for a comparison of the performances of HKES and HKESA through
numerical experiments in Sect. 3. In this Section a discussion on the efficiency
of the early stopping (HKES) and the problems that it implies is also pre-
sented, before concluding in Sect. 4.

Notations: all vectors are column vectors unless mentioned otherwise. I stands
for the identity matrix. 1N×1 is the N -dimensional column vector with all
components set to 1 and 1N×N is the (N ×N)-matrix with all components set
to 1.

2



2 Linear classifiers

In a linear binary classification problem, the task is to find a hyperplane sep-
arating 2 classes. Let (xi, yi)1≤i≤N be a set of training samples with xi ∈ R

p

belonging to a class labeled by yi ∈ {+1, −1}. The decision function of a
linear classifier is:

f(x) = sign
(

xtw + w0

)

(1)

where (w ∈ R
p, w0 ∈ R) are the parameters (or weights) of the separating

hyperplane to be estimated. If all the training samples are correctly separated,
then:

yi

(

xt
iw + w0

)

> 0, i = 1, . . . , N . (2)

2.1 Ho–Kashyap learning rule (HK)

Defining a set of N (p + 1)-row vectors Xi:

Xi =







(xt
i, +1) , if yi = +1

(−xt
i,−1) , if yi = −1

(3)

and a (p + 1)-dimensional augmented weight vector W = (wt, w0)
t allows to

write (2): XiW > 0, i = 1, . . . , N . Then piling up the Xi, for i = 1, . . . , N , in
a (N × (p + 1))-matrix X gives:

XW > 0 . (4)

Let B be the ”margin” vector with bi as components. Equation (4) can be
rewritten as:

XW = B

subject to: B > 0 .
(5)

The Ho–Kashyap learning rule [7] solves (5) by minimizing a least squares
criterion. The problem is thus to minimize the square of the ℓ2-norm of the
errors:

J(W, B) = (XW − B)t(XW − B)

subject to: B > 0 .
(6)

The ”margin” vector B is first initialized to B0 with all components set to a
small positive value b0. At each step k, the weight vector Wk is deduced from
Bk by:

Wk = (X tX)−1X tBk = X†Bk (7)

where X† stands for the pseudo-inverse of X. Then a gradient descent is used
to compute a new estimate of the margin vector. Defining the error vector
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Ek = XWk −Bk, the gradient of J(W, B) with respect to B is ∇BJ(W, B)k =
−2Ek. In order to satisfy the constraints bi > 0, the positive components of
∇BJ(W, B)k, which are the negative components of Ek, are set to 0, preventing
bi to decrease and become negative. Thus −(Ek+|Ek|) is used instead of −2Ek

and the iterative scheme is as follows:

Bk+1 = Bk + µ (Ek + |Ek|) (8)

with µ a positive learning rate.

It can be shown [12] that this procedure converges in a finite number of steps
∀µ, 0 < µ < 1, to 0 in the separable case, to a non-zero value otherwise.
This makes the tuning of µ not critical. In practice, one needs to define a
termination criterion. This criterion is as follows:

|J(W, B)k − J(W, B)k−1| < ε . (9)

2.2 Modified Ho–Kahsyap learning rule(MHKA-MHKS)

In [8], a hyperparameter C is introduced to tune the tradeoff between model
complexity and training error. Adding a margin definition in (4): XW ≥ 1N×1,
and a matrix D containing the reliability attached to each pattern, it comes
to the Modified Ho–Kashyap classifier which is trained by minimizing the
following criterion:

J(W, B) = (XW − 1N×1 − B)tD(XW − 1N×1 − B) + Cwtw . (10)

The procedure remains the same except for (7), which becomes:

Wk =
[

(X tDkX + CĨ)−1X t
]

Dk(Bk + 1N×1) (11)

where Ĩ is the identity matrix with the last diagonal element set to 0, and the
error vector which is now Ek = XWk − 1N×1 − Bk .

For the ℓ2-norm criterion, D is set to the identity matrix and remains constant,
Dk = I, ∀ k, allowing the pseudo-inverse in (11) to be calculated only once.
The corresponding algorithm is termed Modified Ho–Kashyap with Squared
approximation of the misclassification errors (MHKS).

The same author [8] proposes another scheme to increase the robustness to
outliers: Modified Ho–Kashyap with Absolute approximation of the misclassi-
fication errors (MHKA). Instead of the ℓ2-norm of the misclassification errors,
the ℓ1-norm is used as in the SVM algorithm with box constraints (see Sect.
2.5). An easy way to obtain this approximation is to let the diagonal com-
ponents of Dk be di = 1/|ei|, i = 1, . . . , N , where ei is the ith component of
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the error vector Ek. Apart from the calculation of Dk at each iteration, the
rest of the procedure remains unchanged. This algorithm is very similar to the
Iteratively Reweighted Least Squares (IRLS) but differs by incorporating the
modification of the vector B.

A major inconvenient of these methods is the tuning of C which is usually
obtained by testing many values of C. Each test implies to run the learning
process to its end and to estimate the resulting generalization error (GE). In
case of a Leave One Out (LOO) estimate of GE, it becomes almost intractable
in terms of calculation time. Therefore, k-fold cross-validation is often used
instead of LOO.

2.3 Introducing early stopping (HKES)

Another way to avoid overfitting is early stopping, i.e. stopping the learning
process before it reaches the optimal solution on the training set. Early stop-
ping has been studied when applied on linear neural networks backpropagation
in [13–15]. It was linked to regularization in [16] and recent works [17] showed
that a margin perceptron with early stopping is equivalent to a soft-margin
SVM.

We will show how one can incorporate early stopping in the original HK learn-
ing rule with automatic parameter tuning.

Let define k∗ so that the algorithm has reached the convergence for k = k∗

iterations. Now, the aim is to find k̂ < k∗ for which GE is minimum. A very
fast implementation of this task is to calculate an estimate GEk of GE on an
independent validation set at each iteration k, for k = 1, . . . , k∗, during the
learning process. Then k̂ is given by:

k̂ = argmin
k=1,...,k∗

(GEk) . (12)

Thus, the process is executed only once, giving both k̂ for GE minimum and
the corresponding weight vector Ŵ = Wk̂. No other parameter has to be

tuned. Indeed, a change in µ leads to a change in k̂ which is automatically
tuned.

Another common method for early stopping is to stop the learning as soon
as GEk is rising. But this method does not always yield the best minimum of
GE since GE can have local minima (see for instance [18]). That is why we
prefer to test all the generalization error GEk estimates.

Compared to standard regularization (with C) used by MHKA and MHKS
[8], this method is faster since only one learning is required. On the contrary,
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to tune C, one should run the learning process for each tested value of C.

2.4 ℓ1-norm for HKES (HKESA)

In order to gain in robustness to outliers, the ℓ1-norm can be chosen for the cri-
terion of the HKES algorithm. To obtain this, the same method as in Sect. 2.2
can be applied. A diagonal weighting matrix D is introduced in the calculation
of the criterion (6):

J(W, B) = (XW − B)tD(XW − B). (13)

and Wk is computed in an Iteratively Reweighted Least Squares (IRLS) scheme
by:

Wk =
[

(X tDkX)−1X t
]

DkBk (14)

where the diagonal components of Dk are equal to di = 1/|ei|, i = 1, . . . , N ,
like in the MHKA method. The procedure is carried out for regularization by
early stopping as explained for HKES in Sect. 2.3.

2.5 Support Vector Machine (SVM)

The Support Vector Machines [1,3] rely on the margin maximization. But to
deal with noisy data, soft margin SVMs relax this constraint and authorize
training errors. This is done by adding a regularization hyperparameter C that
tunes the tradeoff between the model complexity and the training error. Note
that this hyperparameter plays an inverse role compared to C in (10). As the
margin equals 2/‖w‖, the soft margin SVM problem becomes the minimization
of:

J(w, w0, ξ) =
1

2
wtw + Cξt1N×1

subject to: Y (X̃w + w01N×1) ≥ 1N×1 − ξ

ξ ≥ 0

(15)

with X̃ = [x1 . . . xN ]t the matrix of the non-augmented examples vectors,
Y = diag(yi) the outputs matrix and ξ a vector of slack variables. It must be
noticed that here, the ℓ1-norm of the slack variables is used. The dual of this
problem is [3]:

max LD = −
1

2
αtY X̃X̃ tY α + 1t

N×1α

subject to: 0 ≤ α ≤ C1N×1

1t
N×1Y α = 0

(16)
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which is a Quadratic Programming (QP) problem involving the so called box
constraints: 0 ≤ α ≤ C1N×1, where α is the N -vector of the Lagrange multi-
pliers. The classifier parameters can be recovered from the solution α̂ of (16)
by:

ŵ = X̃ tY α̂, and ŵ0 = yi∗ − xi∗
tw (17)

where i∗ is chosen such as 0 < α̂i∗ < C.

2.6 Lagrangian Support Vector Machine (LSVM)

The Lagrangian Support Vector Machine (LSVM) [6] is a much faster imple-
mentation of SVM (at least in the linear case) thanks to a reformulation of the
problem that leads to the minimization of an unconstrained differentiable con-
vex function. Thus the problem becomes solvable by a simple algorithm that
requires only standard native MATLAB commands without any optimization
tools such as linear or quadratic programming solvers. This derives from the
choice of the ℓ2-norm of the errors in the regularization term of the soft mar-
gin SVM minimization problem. However, the use of the ℓ2-norm decreases
the robustness to outliers. This choice together with the introduction of w0 in
the criterion leads to the minimization of:

J(w, w0, ξ) =
1

2

(

wtw + w2

0

)

+
C

2
ξtξ

subject to: Y (X̃w + w01N×1) ≥ 1N×1 − ξ
(18)

with X̃ and Y = diag(yi) defined as in (15). The constraints ξi ≥ 0 are not
present because the choice of the ℓ2-norm makes them redundant. The dual of
this problem is:

min LD =
1

2
αt

(

Y (X̃X̃ t + 1N×N)Y +
I

C

)

α − 1t
N×1α

subject to: α ≥ 0 .
(19)

The classifier parameters can be recovered from the solution α̂ of (19) by:

ŵ = X̃ tY α̂, and ŵ0 = −1t
N×1Y α̂ . (20)

Defining two matrices H = Y [X̃ −1N×1] and Q =
I

C
+ HH t, the dual problem

becomes:

min
0≤α∈RN

f(α) =
1

2
αtQα − 1t

N×1α . (21)

In [6], an iterative algorithm is proposed to solve (21):

αk+1 = Q−1

[

1N×1 +
1

2
(Qαk − 1N×1 − µαk + |Qαk − 1N×1 − µαk|)

]

(22)
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and its convergence proof is given ∀µ, 0 < µ < 2/C.

3 Numerical experiments

In this section, we compare the previously described algorithms: Ho–Kashyap
(HK) learning rule (see Sect. 2.1), Ho–Kashyap with Early Stopping and
Squared (HKES, see Sect. 2.3) or Absolute (HKESA, see Sect. 2.4) approx-
imation of the misclassification errors, Modified Ho–Kashyap with Squared
(MHKS) or Absolute (MHKA) approximation of the misclassification errors
[8] (see Sect. 2.2), Support Vector Machine (SVM) with ℓ1-norm soft margin,
and Lagrangian Support Vector Machine (LSVM) [6] (see Sect. 2.5 and 2.6)
that uses the ℓ2-norm. In order to evaluate the methods, 9 standard bench-
mark data sets from the IDA repository [19] are used. Each data set includes
100 predefined splits of the data 1 into training and test sets, thus allowing to
calculate the average and standard deviation of the test error over 100 runs.
More details and results of non-linear kernel methods on these data sets can
be found in [20].

The following experiments expose two methods for the tuning of hyperparam-
eters. In the first set of experiments, the training data are split into two sets:
one training set and one validation set used for the hyperparameters tuning.
In the second set of experiments, the test set on which the generalization error
is estimated is used to tune the hyperparameters.

Another common procedure for the tuning of hyperparameters is cross-
validation, either Leave One Out (LOO) or k-fold. But this procedure is not
adapted to the HKES algorithm. The number of iterations tuned by HKES
is very sensitive to the size of the training set and to the data. For instance,
by estimating with 5-fold cross-validation the best number of iterations on
folds of size of 4/5 of the training set, one would get a number of iterations
that is irrelevant for another fold or for a training set of full size. This shows
that the number of iterations is not a “good”hyperparameter in the sense that
its value has no proper meaning and is affected by irrelevant factors as the
number of examples. The estimation of the best number of iterations becomes
thus impossible with cross-validation procedures.

1 except for Slice and Image data sets that contain only 20 splits
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3.1 Experiments setup

In all the experiments, and for all the Ho–Kashyap based classifiers, B is first
initialized to B0 with all components set to b0 = 10−6. Tests have been made
and showed that the choice of b0 does not affect the results if the termination
criterion ε (9) is set in accordance with b0. A heuristic choice that appears
convenient is ε = 0.5b2

0. For HKES and HKESA, the early stopping parameter
k̂ is evaluated as described in Sect. 2.3. Figure 1 shows an example of the
evolution of the error on the validation set (the validation error) with respect
to the number of iterations. The shape of this curve depends much on the size
of the training set and the data themselves. Besides, tests have been made and
showed that the choice of the learning rate µ does not influence the results
or not for more than 0.05% (in terms of test error rate) over the 100 runs. It
can thus be claimed that this method requires no parameter tuning. In our
experiments, µ is set to 0.4.

To determine the regularization parameter C (for MHKA, MHKS, SVM and
LSVM), a grid search is performed in two steps. First, an exponentially grow-
ing sequence of C is tested (C = 2−10, 2−8, . . . , 210). Then 9 new testing values
are taken in the neighborhood of the best value 2p (C ∈ [2p−1, 2p+1]) to perform
a fine tuning. This rather usual procedure allows to find a good approximation
of the best C by scanning a wide range of values in a fixed and rather small
number of tests (20 tested values). Figure 2 shows an example of the validation
error for different values of C for the LSVM classifier.

3.2 Experiments with a validation set

In this set of experiments, the data is split into 3 independent sets (training set,
validation set and test set). The classifier is trained on the training set while the
validation set is used to tune the hyperparameters. Then the generalization
error GE is estimated on the test set. One drawback of this method is to
reduce the size of the training set to form the validation set. Moreover, the
optimal ratio between the sizes of the training and the validation sets is not
easily determined. The data sets are preprocessed as follows. Each predefined
training set is divided into a smaller training set (2/3 of the original size) and
a validation set. The 100 predefined test sets are kept unchanged.

Table 1 compares the average test error rates and the standard deviations
over 100 runs respectively for HK, HKES, HKESA, MHKS, MHKA, LSVM
and SVM. All results are in percentages.

It must be first noticed that the difference between the best and the worst re-
sult is never very large. In 5 cases out of 9, the performances of the HKES algo-

9



Table 1. Test error rates on benchmark data sets for HK, HKES, HKESA, MHKS, MHKA, LSVM and SVM tuned on a validation set.
Boldface indicates the lowest error rate. Italic is used to highlight the cases where the error rate of HKES is higher than the error rate
of HK. An asterisk (∗) marks the error rates not significantly different from the best error rate at significance level α = 5%.

Data set HK HKES HKESA MHKS MHKA LSVM (ℓ2) SVM (ℓ1)

Diabetis ∗23.69 ± 1.81 ∗23 .75 ± 1 .79 23.69 ± 1.77 24.80 ± 2.46 26.14 ± 4.61 ∗24.20 ± 2.12 ∗23.98 ± 2.83

Heart 18.20 ± 3.92 ∗17.17 ± 3.33 ∗17.07 ± 3.39 ∗16.83 ± 3.42 ∗16.43 ± 3.52 16.28 ± 3.49 18.36 ± 5.94

Breast-cancer ∗28.35 ± 5.19 ∗28.19 ± 5.08 ∗28.41 ± 4.98 ∗28.21 ± 5.04 ∗28.35 ± 4.64 27.36 ± 4.94 29.13 ± 4.78

Splice 17.02 ± 0.82 16.93 ± 0.60 17.11 ± 0.71 16.90 ± 0.72 16.44 ± 0.65 17.07 ± 0.75 ∗16.73 ± 0.77

Image 17.33 ± 0.90 16.99 ± 1.06 17.25 ± 1.11 17.25 ± 1.35 19.07 ± 2.20 17.37 ± 1.23 15.41 ± 0.83

German ∗24.27 ± 2.30 ∗24 .39 ± 2 .19 24.92 ± 2.49 ∗24.79 ± 2.32 27.23 ± 2.73 24.26 ± 2.16 ∗24.90 ± 2.77

Flare-solar 33.68 ± 1.81 33.65 ± 1.69 36.20 ± 13.2 35.98 ± 5.24 34.55 ± 3.95 33.81 ± 2.00 32.58 ± 2.49

Thyroid ∗10.96 ± 2.89 11 .89 ± 3 .50 15.03 ± 3.44 ∗11.04 ± 2.95 15.40 ± 3.23 11.77 ± 3.41 10.39 ± 2.86

Titanic 22.81 ± 1.48 22.81 ± 1.48 ∗22.82 ± 1.52 23.75 ± 3.23 23.66 ± 3.09 ∗22.85 ± 1.35 25.07 ± 4.27
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Fig. 1. An example of the evolution of the validation error during the training of
HKES.
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Fig. 2. An example of the evolution of the validation error for different values of C

during the fine tuning for the LSVM classifier.

rithm are not significantly different from those of the best classifier. Nonethe-
less, it is clear that the margin maximization of both SVM and LSVM makes
them better in generalization, though MHKS and MHKA classifiers tend also
to maximize the margin. The effect of the ℓ1-norm as a more outliers-robust
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loss function can be seen between HKES, MHKS, LSVM and HKESA, MHKA,
SVM respectively. For instance, on the diabetis data set, the best classifier
(HKESA) uses the ℓ1-norm and for this data set, all the ℓ1-norm classifiers
provide better performances than the corresponding ℓ2-norm classifiers. So
this data set might contain a certain amount of outliers. It must be also no-
ticed that on three data sets (image, splice and thyroid) the results can be
highly enhanced by using non linear classifiers as in [20]. In these cases, a
simple linear hyperplane is not sufficient to separate the data with satisfying
results.

In order to evaluate the effect of the early stopping, a comparison is performed
between Ho–Kashyap with Early Stopping (HKES) and the same algorithm
without any tuning of the number of iterations or early stopping (HK). For
the data set titanic, these two classifiers obtain the same performance which is
also the best performance for this data set. For 5 data sets, the early stopping
allows to improve the results and the average gain between HKES and HK
is 0.33%. For the 3 remaining data sets (highlighted in italic in Table 1), the
test error rates of HKES are higher than those of HK and the average loss
is 0.37%. This might be explained by the overfitting on the validation set.
Nevertheless, the gain over all data sets is +0.54%. So the results of the early
stopping for the HK algorithm are not very clear. The tunning of a very low
level hyperparameter (the number of iterations) is easy to implement and fast
(see Table 2 and the following paragraph) but can also be tricky as it can
sometimes decrease the performances when applied on a validation set.

Table 2
Calculation times in seconds. The number of runs appear next to the data set name.

Data set HKES HKESA MHKS MHKA LSVM OSU-SVM

Diabetes (100) 1 58 47 814 86 360

Heart (100) 4 12 57 142 45 80

Breast-cancer (100) 1 12 11 214 34 77

Splice (20) 11 95 508 1340 424 2875

Image (20) 10 2760 718 3200 195 1990

German (100) 12 228 5000 3500 182 2090

Flare-solar (100) 5 460 843 3340 112 143

Thyroid (100) 24 4 215 41 75 41

Titanic (100) 0.5 5 6 35 5 8

Mean Ratio between LSVM and HKES times: 47

Table 2 compares calculation times for HKES, HKESA, MHKS, MHKA, SVM
and LSVM. Computations are run on an AMD Athlon 2000+ with 256 Mb of

12



memory running Windows XP and MATLAB 6.5. The SVM implementation
used is provided by the OSU SVM toolbox 2 written for MATLAB with the
core in C++ that uses LIBSVM algorithm. The LSVM algorithm is entirely
coded in MATLAB (the code can be found in [6]). The times appear in seconds
for 100 runs. Each run includes the learning on the training set and the pa-
rameter tuning on the validation set. It must be noticed that for MHK(S-A),
SVM and LSVM, the times depend strongly on the number of tested values for
C. The HKES algorithm is about 50 times faster than the LSVM algorithm
tuned over 20 values of C. The use of gradient-based methods for the tuning of
SVM hyperparameters [10] could increase the speed. But even by testing only
one value of C, the HKES algorithm is still faster than the LSVM algorithm
partly because it ensures a complete scanning of the possible values for its
hyperparameter k̂ in only one training. The HKESA classifier benefits from
the same advantage, but when ℓ1-norm is used in a HK based algorithm, the
pseudo-inverse (X tDkX)−1X t has to be computed at each iteration. This ex-
plains the large difference in the calculation time between HKES and HKESA
and between MHKS and MHKA.

3.3 Experiments without a validation set

The procedure used in this Section for the comparison of the performances
of the classifiers is as follows. The 100 predefined splits between the training
and test sets are kept unchanged. For each split the training is performed on
the training set and the test set is used to tune the hyperparameters of the
classifier. The estimation of GE is done on the test set too. This procedure can
lead to a biased estimate of GE because the test set is no more independent.
So the results do not stand for the exact performances of the classifiers but
since the same procedure is used for all the classifiers, they can be considered
as indicators for the comparison of the algorithms.

Table 3 compares the average test error rates and the standard deviations
respectively for HK, HKES, HKESA, MHKA, MHKS, SVM and LSVM over
100 runs. All results are in percentages. In this case, early stopping on the HK
based algorithms is, in 8 cases out of 9, not significantly different from the best
classifier, whereas Modified Ho-Kashyap methods (MHKS and MHKA) that
use C-regularization only achieve this on 6 out of 9 data sets. Moreover, the
effect of early stopping for regularization can be seen by noting that the HK
learning rule without early stopping is always significantly different from the
best classifier except for the splice data set on which HKES gives the lowest
test error rate.

2 OSU SVM Classifier Matlab Toolbox, by Junshui Ma, Yi Zhao, and Stanley Ahalt.
Downloadable from http://www.ece.osu.edu/∼maj/osu svm/ .
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Table 3. Test error rates on benchmark data sets for HK, HKES, HKESA, MHKS, MHKA, LSVM and SVM tuned on the test set.
Boldface indicates the lowest error rate. An asterisk (∗) marks the error rates not significantly different from the best error rate at
significance level α = 5%.

Dataset HK HKES HKESA MHKS MHKA LSVM (ℓ2) SVM (ℓ1)

Diabetis 23.42 ± 1.80 ∗23.15 ± 1.77 ∗22.94 ± 1.71 ∗22.98 ± 1.64 ∗23.12 ± 1.70 ∗22.92 ± 1.76 22.86 ± 1.51

Heart 16.48 ± 2.83 ∗15.36 ± 2.87 ∗15.11 ± 3.33 ∗15.20 ± 2.96 ∗15.14 ± 3.24 14.46 ± 2.99 ∗14.60 ± 3.04

Breast-cancer 27.09 ± 4.80 26.86 ± 4.73 ∗25.82 ± 4.59 26.40 ± 4.72 26.57 ± 4.65 24.64 ± 4.54 26.16 ± 4.38

Splice ∗16.17 ± 0.72 15.90 ± 0.67 ∗16.10 ± 0.57 ∗15.98 ± 0.67 ∗16.31 ± 0.59 ∗15.94 ± 0.66 ∗15.95 ± 0.52

Image 17.08 ± 0.92 16.37 ± 0.94 ∗15.72 ± 0.91 16.63 ± 0.86 18.02 ± 1.48 16.64 ± 0.87 15.20 ± 0.84

German 24.07 ± 2.15 23.84±2.09 23.90 ± 1.91 23.67 ± 2.09 26.31 ± 2.85 22.89 ± 2.13 23.59 ± 2.23

Flare-solar 33.47 ± 1.50 33.31 ± 1.51 ∗32.67 ± 1.60 32.92 ± 1.60 ∗32.55 ± 1.66 ∗32.67 ± 1.60 32.27 ± 1.81

Thyroid 10.57 ± 2.35 ∗9.76 ± 2.32 14.61 ± 3.27 ∗9.97 ± 2.30 15.15 ± 3.12 ∗9.89 ± 2.34 9.45 ± 2.39

Titanic 22.68 ± 1.11 22.68 ± 1.10 ∗22.63 ± 1.11 ∗22.54 ± 1.16 ∗22.50 ± 1.15 22.36 ± 1.13 ∗22.60 ± 1.11
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4 Conclusion

In this paper, we investigated the effect of early stopping as a regularization
method for the Ho–Kashyap (HK) learning rule. Moreover, the choice of a more
outliers-robust criterion (ℓ1-norm) has been studied. Tests on benchmarks have
been conducted to compare early stopping to the standard regularization (with
the addition of a tradeoff parameter in the criterion) on both HK and SVM
algorithms. All of these methods gave comparable results. But it is clear that
Ho–Kashyap with Early Stopping (HKES) is much faster than the others
partly because it requires no hyperparameter tuning. It must also be noticed
that when no independent validation set is used, early stopping on the HK
based algorithms gives, in 8 cases out of 9, results not significantly different
from the ones obtained with the best classifier which, in most cases, is a
SVM classifier. Modified Ho-Kashyap methods (MHKS and MHKA) that use
standard regularization only achieve this on 6 out of 9 data sets. It must be
nevertheless noticed that in this case, the estimation of the generalization error
has been performed on the same test set used to tune the hyperparameters:
the number of iterations for the proposed methods based on the HK learning
rule (HKES and HKESA), the regularization parameter C for the reference
methods based also on the HK learning rule (MHKS and MHKA) or on SVM
framework. This estimation is common for all the methods, thus allowing a
comparison, but can introduce a bias.

Regularization by early stopping is not adapted to other estimations of the
generalization error, such as cross-validation procedures. Indeed, the number
of iterations used for regularization is a too low level parameter which depends
too closely on the number of data and the data themselves. When the perfor-
mance is estimated on a test set independent from the validation set used to
tune the hyperparameters, the early stopping tends sometimes to overfit on
the validation set. The tuning of the early stopping (HKES) can in these cases
lead to higher test error rates than without any tuning or early stopping (HK).
The overfitting on the data used for the tuning explains also why HKES and
HKESA give appreciable results when no independent validation set is used
and that the test set is used for the tuning of the hyperparameters and for the
comparison of the performances. This problem can occur in some applications
when one has not enough data at hand and tends to divide the data only into
a training set and a test set. The method that overfits on the test set will
show the best results but will not necessarily provide the best classifier for the
application.
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