Through-bond homonuclear correlation experiments in Solid-state NMR applied to quadrupolar nuclei in Al-O-P-O-Al chains.

Michaël Deschamps, Franck Fayon, Valérie Montouillout, Dominique Massiot

To cite this version:
Michaël Deschamps, Franck Fayon, Valérie Montouillout, Dominique Massiot. Through-bond homonuclear correlation experiments in Solid-state NMR applied to quadrupolar nuclei in Al-O-P-O-Al chains. Chemical Communications, Royal Society of Chemistry, 2006, N/A, pp.1924-1925. <10.1039/b600514d>. <hal-00021321>
Through-bond homonuclear correlation experiments in Solid-state NMR applied to quadrupolar nuclei in Al-O-P-O-Al chains.

Michaël Deschamps,* Franck Fayon,* Valérie Montouillout* and Dominique Massiot*

DOI: 10.1039/b600514d

Through-bond homonuclear correlation experiments can be realised in solids between spins of type X, separated by four chemical bonds, in X-O-Y-O-X motives, provided a J coupling between X and Y exists: central transitions of quadrupolar \(^{27}\)Al spins can be correlated via the \(J\) scalar coupling between \(^{27}\)Al (X) and \(^{31}\)P (Y) in materials featuring Al-O-P-O-Al motives.

Solid-state NMR is widely recognized as an extremely powerful tool for the structural characterization of a large variety of solid materials (inorganic materials like zeolites or glasses and organic materials like proteins or hybrid organic-inorganic…). The power of this method relies on the ability to characterize the local environment (chemical shift), the spatial proximity (through-space dipolar interaction) or the chemical bonding (through-bond scalar coupling). Quadrupolar nuclei (spin > \(\frac{1}{2}\)) are actually difficult to deal with, as they exhibit fast relaxation in liquid phase and strong first and second order broadenings in solid state. A 2D NMR HMQ experiment has been recently introduced to characterize through-bond heteronuclear correlations between adjacent quadrupolar nuclei (in \(^{27}\)Al-\(^{17}\)O systems) under MAS in solids. Homonuclear through-space correlations methods have also been introduced, using dipolar interactions between neighbouring quadrupolar nuclei.² ³

We present here the first homonuclear correlation experiment applied to quadrupolar nuclei making use of the sole scalar J-coupling. This experiment uses a relayed transfer from \(^{27}\)Al to neighboring \(^{31}\)P and to a second \(^{27}\)Al and is based on the Heteronuclear Single Quantum Correlation (HSQC) experiment. This experiment, shown in Figure 1, and further referred to as an Homonuclear-Heteronuclear Single Quantum Correlation experiment (H-HSQC), provides experimental evidence for through-bond homonuclear correlations between quadrupolar nuclei separated by four chemical bonds.

Weak pulses have been used on the \(^{27}\)Al central transition (further described as a fictitious spin-1/2), which is prepared by enhancement from the satellite transitions by DFS⁶ or RAPT⁷ transfer. The first INEPT transfer allows for the creation of a density operator proportional to \(2\mathbf{A}_{\mathbf{1}}\mathbf{A}_{\mathbf{2}}\mathbf{P}_{\mathbf{z}}\) after an evolution under the scalar coupling during a delay \(2\tau\). The transfer efficiency from the central transition of \(^{27}\)Al to \(^{31}\)P is equal to \(\sin(2\pi \xi J \tau)\) cos\(\alpha\) (2\(\pi\) Jt), where \(\xi\) is the number of \(^{31}\)P atoms J-coupled to the central \(^{27}\)Al spin. The optimum transfers for \(\xi = 1, 2, 3, 4\)

\(\frac{2}{1, 2, 3, 4}\)

² CRMHT-CNRS, 1D, Avenue de la Recherche Scientifique, 45071 Orléans cedex 2, FRANCE. Fax: (+33) (0)2 38 63 81 03; Tel: (+33) (0)2 38 25 55 11; E-mail: deschamps@cnrs-orleans.fr

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See http://dx.doi.org/10.1039/b6000000x/

Fig.1 The H-HSQC experiment is presented, featuring the magnetization transfer from the \(^{31}\)P spin to the \(^{27}\)Al spin. A scheme of the atoms and the scalar couplings involved is shown below in the \(^{27}\)Al/\(^{31}\)P case. The DFS or RAPT (signal enhancement for the Central Transition of the quadrupolar nuclei) and \(^{31}\)P 180° pulses (to prevent the evolution under the scalar coupling of \(^{27}\)Al magnetization during the \(2\tau\) delay) in grey are optional. The Bruker pulse sequence is given in the supplementary material. The States method was used to achieve quadrature detection in the indirect dimension. Two Z-filters (300 rotor periods) have been used to suppress unwanted contributions; these can actually be suppressed for amorphous materials. are obtained when \(\tau \approx \{4J\}^{-1}\{8J\}^{-1}\{10J\}^{-1}\{12J\}^{-1}\) respectively, provided the dephasing of the magnetization can be neglected, and assuming equal J values. The second echo period (2\(\tau\)) allows for the conversion of \(^{31}\)P\(^{\mathbf{1}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\) into \(^{31}\)P\(^{\mathbf{2}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\). The diagonal signal corresponds to the remaining \(^{31}\)P\(^{\mathbf{2}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\) term. This transfer depends upon \(\xi\), the number of \(^{27}\)Al spins coupled to the \(^{31}\)P nucleus. The functions describing the intensities of the diagonal signal \(^{31}\)P\(^{\mathbf{1}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\) and of the cross-peaks (stemming from the conversion of \(^{31}\)P\(^{\mathbf{1}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\) into \(^{31}\)P\(^{\mathbf{2}}\)\(\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\)) are given below. Equations (1), (2) and (3) correspond to \(\xi = 2, 3\) and 4, respectively, with an initial density operator \(\sigma(\tau_2 = 0) = 2\mathbf{A}_{\mathbf{1}}\mathbf{A}_{\mathbf{2}}\mathbf{C}_{\mathbf{P}}\),

\[
\begin{align*}
I(\mathbf{A}_{\mathbf{1}}\mathbf{P}_{\mathbf{1}}) &= -1/2 \left[1 + \cos 4\pi \xi J \tau \right] \\
I(\mathbf{A}_{\mathbf{2}}\mathbf{P}_{\mathbf{2}}) &= -1/2 \left[1 - \cos 4\pi \xi J \tau \right]
\end{align*}
\]

(1)

(2)

(3)

If the \(^{31}\)P spin is only coupled to \(^{27}\)Al\(^{\mathbf{1}}\) and \(^{27}\)Al\(^{\mathbf{2}}\) (\(\xi = 2\)), the transfer, which is proportional to \(-1 + \cos (4\pi \xi J \tau_2)\), will be complete when

http://dx.doi.org/10.1039/b6000000x/
$\tau_2 = (4J)^{-1}$. Hence, the diagonal signal, which is proportional to $1 + \cos(4\pi J \tau_2)$, vanishes, and no diagonal will be observed in the 2D spectrum. The diagonal peak and the cross peak are of opposite signs, and this allows to discriminate the cross peak contribution from the residual diagonal signal. This is especially useful whenever the refocalization is not complete, as some residual diagonal signals will be observed.

When $n'=3$ or 4, the diagonal signal cannot be suppressed, but an off-diagonal signal ($\delta_1 \rightarrow \delta_2$) will appear. Whenever the refocalization is not complete, as some residual diagonal signals will be observed.

This new H-HSQC pulse sequence has been tested on a powder sample of AlPO₄-14. The 27Al and 31P spectra of AlPO₄-14 have been completely assigned and its crystal structure is well known. Each 31P atom is connected to four 27Al atoms via an oxygen atom and each 27Al atom is connected to four 31P atoms also via an oxygen atom. Four different Al sites and four different P sites can be distinguished. These are numbered according to Ref. [9], from which the expected connectivities are also extracted. The HMQC spectrum is shown as a reference in Figure 2 and the H-HSQC spectrum featuring the expected connectivities is shown in Figure 3. In the H-HSQC spectrum, negative cross peaks are observed for every pair of 27Al atoms as expected, except for 31Al which is never connected to another 31Al atom. Hence the signal appearing at $(\delta(Al_1), \delta(Al_1))$ is always positive and purely diagonal, whereas the signal at $(\delta(Al_4), \delta(Al_4))$, stemming from the diagonal signal and from the 31P-27Al-27Al-31P motivates exhibits a negative sign for slightly longer delays ($130 \tau_2$) and is observed in 1D mode using a larger number of scans. Signals stemming from 31Al are actually stronger than the others, due to the fact that 31Al is less affected by second-order quadrupolar broadenings (as seen in the projections of Figure 2). The quadrupolar coupling constants and asymmetry parameters of 27Al are: 5.58, 4.08, 1.74 and 2.57 MHz for $\Delta m_2=0$, 1, 2, 3, respectively, and η=0.95. Hence the cross peak $(\delta(Al_1), \delta(Al_1))$ is not detectable, whereas the $(\delta(Al_4), \delta(Al_4))$ cross peak is very weak.

We show that small scalar couplings ($J=10-30$Hz), persisting in solids under MAS conditions, can be used to generate an Homonuclear H-HSQC correlation experiment that characterizes the through bond connectivity of quadrupolar nuclei in solids across four chemical bonds. This experiment has been tested and demonstrated on an AlPO₄-14 sample where it allows for a detailed characterization of the Al-O-P-O-Al motives in a complex three dimensional bonded network. This experiment opens new possibilities for the characterization of complex chemical bond networks in perfectly crystalline, disordered or amorphous solids.

Notes and references

1. We acknowledge financial support from CNRS UPR4212, FR2950, MIAT and Région Centre and we are grateful to Pr. P.J. Grandinetti for stimulating discussions.

http://dx.doi.org/10.1039/b600514d
Supplementary Materials

1) Pulse sequence

```c
#include <Avance.incl>
#include <Delay.incl>

"p5=p1*2"
"p12=p11*2"
"d0=0u"
"d6=(l6)*(1s/cnst31)-(p1)"
"d8=(l8)*(1s/cnst31)-(p1)"
"d7=(l6-l16)*(1s/cnst31)-(p1)"
"d3=(l3)*(1s/cnst31)"
"d11=30m"
```

```c
1 ze
d11 pl3:f3
2 d1
 ; optional DFS enhancement
#ifdef dfs
(p2:sp1 ph10):f1
100u
#endif

(p1 ph1)
(center (d0) (p12 ph1):f3 )
 ; FIRST INEPT TRANSFER

(d6 (center (p5 ph2) (p12 ph5):f3 )
       d6
       (p1 ph3)
 ; Z FILTER
d3
       (p11 ph6):f3
 ; ECHO for the conversion of I1zSy into I2zSy

d8
       (center (p5 ph2) (p12 ph5):f3 )
       d8
 ;SECOND INEPT TRANSFER
       (p11 ph7):f3
d3

(d1 ph4)
d6
       (center (p5 ph2) (p12 ph5):f3 )
 ;OPTIONAL ACQUISITION OF THE WHOLE ECHO
#endif top
d7
#endif
go=2 ph31
30m mc #0 to 2 F1PH(ip1, id0)
exit
```

2) Notes

Provided the 90°/180° pulses for nuclei I and S have been calibrated, the d6 and d8 delays (corresponding to τ and τ_2) can be optimized:

First, d8/l8 is set to a very small value (i.e. 3μs), in order to prevent the $I_1zSy \rightarrow I_2zSy$ conversion. The INEPT delay d6 is optimized to generate the highest observable signal. Then d8 is optimized in order to maximize the $I_1zSy \rightarrow I_2zSy$ transfer.