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Abstract Nowadays, the complex manufacturing processes have to be dynamically modelled and controlled to optimise the 
diagnosis and the maintenance policies. This article presents a methodology that will help developing Dynamic Object 
Oriented Bayesian Networks (DOOBNs) to formalise such complex dynamic models. The goal is to have a general reliability 
evaluation of a manufacturing process, from its implementation to its operating phase. The added value of this formalisation 
methodology consists in using the a priori knowledge of both the system’s functioning and malfunctioning. Networks are built 
on principles of adaptability and integrate uncertainties on the relationships between causes and effects. Thus, the purpose is to 
evaluate, in terms of reliability, the impact of several decisions on the maintenance of the system. This methodology has been 
tested, in an industrial context, to model the reliability of a water (immersion) heater system. © 2006 Published by Elsevier 
Science Ltd. 
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1. Introduction  

 
One of the main challenges of the Extended 

Enterprise is to maintain and to optimise the quality of 
the services delivered by industrial objects in a dynamic 
way along their life cycle. The purpose is to conceive 
decision aiding systems to maintain the system in 
operation. Nevertheless, most of the automated systems 
do not provide the means of intelligent interpretation of 
the information when great process disturbances have to 
be considered. Moreover, decisions can be taken without 
a perfect perception of state of the system. This partial 
perception argues in favour of using a probabilistic 
estimation of the system state. As described in [9], tools 
issued from the Artificial Intelligence can be used to 
bring help in decision aiding systems of manufacturing 
processes. 

Works on system safety and Bayesian Networks 
(BNs) were recently developed in [16] and the current 
works presented by Boudali and Dugan [5]. Bobbio, et 
al., [6] explain how the Fault Tree can be implemented 
by using BNs. In the paper [7] the authors describe the 
stochastic modeling techniques as FT, BN and Petri Net. 

They present some application cases and highlight the 
advantages of each technique with respect to the others. 
Nevertheless, large and complex BNs are difficult to design 
and to maintain. This is the reason why the method proposed 
within the SERENE project [8] is interesting. This method is 
based both on BNs and on a hierarchical decomposition of the 
decision-making model for system safety analysis. Recent 
publications focus on Object Oriented Bayesian Networks 
(OOBNs) [18], [3], [4]. Indeed, they allow to implement the 
SERENE methodology based on Bayesian networks.  

The top down BNs construction that uses several levels of 
abstraction, and the powerful model elaboration mechanism for 
the models that have repetitive structures, make OOBNs very 
useful to model processes. Elementary models are then used 
and both the structure and the parameters can be improved 
through an analysis of past experiences. 

Weber, et al. [24], proposed a model-based decision system 
based on a static probabilistic model that allows to diagnose 
faults by using an analysis of the system’s functioning and 
malfunctioning. In order to improve diagnosis and maintenance 
strategies, our purpose is to define a dynamic model of the 
process behaviour. This model allows computing state 
probability distributions by taking into account both the age of 
the components and the latest maintenance operations. 
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The purpose of this paper is to introduce an Object 
Oriented Approach to model the system’s reliability with 
Dynamic Bayesian Networks (DBNs) model. In [20] the 
authors demonstrate that DBNs are equivalent to Markov 
Chains (MCs). The problems that are considered here are 
those involving systems whose dynamics can be 
modelled as stochastic processes, in which the decision 
maker’s actions influence the system’s behaviour. The 
current state of the system and the action that is applied 
on that state determine the probability distribution over 
the next states. In the work [26] a study is dedicated to 
the comparison between MCs and DBNs for system 
reliability estimation and the paper [27] describes the 
reliability modelling effectiveness of the DBNs to 
simulate a stochastic process with exogenous constraints. 

This paper is divided into 6 sections. Section 2 
presents the problem statement and highlights the main 
drawback of a model based on a MC model, i.e. the fast 
growing of the state space with respect to the system  
complexity. Section 3 describes the Bayesian Networks 
theory and defines the dynamic and the object oriented 
representation of BN used in the following. The 
proposed methodology is an original formalisation that 
can be useful to model system reliability (section 4) by 
means of DOOBNs (section 5). Finally, the simulation of 
a water heater system is developed in section 6 and some 
conclusions and perspectives are discussed in Section 7. 

 
2. Problem statement  

 
In order to take the uncertainty into account, the 

process state is considered as a random variable that 
takes its values in a finite state space corresponding to 
the set of all the possible process states. A MC allows to 
model the system dynamics over these states [9].  

 
2.1. The Markov Chain notations in reliability 

 
We will first of all define the notations used to 

describe the MC model. Let X  be a discrete random 
variable used to model a process with a finite number of 
mutually exclusive states{ }Mss ,...,1 . The vector π , then, 

denotes a probability distribution over these states: 
 

[ ])(...)(...)( 1 Mm sss πππ=π , 0)( ≥π ms  

with )()( mm sXps ==π   and 1)(
1

=π∑
=

M

m
ms  

(1)

 
Assuming that the occurrence of events imply system 

state transitions, from a state at time step (k-1) to a  state 
at time step (k), the process produces a sequence 

),,...,( 110 kk ππππ −  that can be modelled as a discrete 

MC if: )()( 1−π==π kmkmk sXps . The Markov 

property makes it possible to specify the statistical 
relationship among states as a transition probability 
matrix PMC. The MC is qualified as homogeneous if the 

state transition probabilities )( 1 ikjkij sXsXpp === −  are 

time independent.  
The reliability of a system can be modelled by using a MC. 

This method leads to a graphical representation ([1], pp. 124). 
Let’s consider the modelling of a component (entity). We will 
use a discrete random variable X  with two states {up, down} 
to represent respectively the operational and failure state of the 
component. The matrix PMC described below defines the 
probabilistic state transitions between (up) and (down): 

 








 −
=
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1 1212 pp
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Where 12p  represents the failure probability of the component 

between time steps (k-1) and (k) 
)( 112 upXdownXpp kk === − . Let T the time to failure of the 

component be a positive random variable with an exponential 

distribution teTf ⋅−⋅= λλ)( . In reliability studies, λ  is the 

parameter known as the component failure rate. Then, we have: 
tp ∆⋅≈ λ12  (see page 37 in [2]) where t∆  represents the time 

interval between time steps (k-1) and (k), λ  being a probability 
per time unit (Fig. 1). In the following t∆  is assumed to be 
equal to 1 hour. For constant failure rates, the Mean Time to 
Failure (MTTF) is defined (see page 87 in 
[10]): λ= /1MTTF . 
 

 

1 2 

λ 

 
Fig. 1. Markov Chain. 
 

2.2. Problem to model complex process 
 
The MC method is suitable for computing the reliability of 

entity or system of low complexity. However, when we deal 
with complex systems with several components, we assist to a 
combinatorial explosion of the number of states that are 
necessary to model the system reliability, making MC 
unmanageable. To decrease the model’s complexity, the 
hypothesis (a) according to which there is no simultaneous 
occurrence of failure is assumed. Even if this hypothesis 
simplifies the transition probability matrix, the number of 
states is still prohibitive for the modelling of complex real 
systems with MC.  

In practice, to deal with this modelling problem, methods 
based on Fault Tree (FT) or Success Tree (ST) (p. 146 in [10]) 
can be used. These methods assume the statistical 
independence between events (hypothesis (b)), and they also 
assume that a static model of the situations is given. However, 
hypothesis (b) is no longer valid when components have 
common causes or when components have several failure 
modes.  

Stochastic Petri Net ([19] and [11]) is also a method 
traditionally used to model the system reliability. Stochastic 
Petri Nets provide a powerful modelling formalism. 
Unfortunately, the reliability analysis relies on a Monte Carlo 
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simulation procedure that requires a great number of 
simulations when very low probabilities are targeted. 

The following part deals with a method that will 
allow to exploit the advantages of both the MC and the 
FT approaches within a single representation that does 
not assume the hypotheses (a, b) and that does not rely 
on a Monte Carlo simulation to calculate the systems 
reliability. This method is based on Dynamic Bayesian 
Networks. 

 
3. Bayesian Network theory  

 
BNs are probabilistic networks based on graph 

theory. Each node represents a variable and the arcs 
indicate direct probabilistic relations between the 
connected nodes. Variables are defined over several 
states. The DBNs allow to take into account time by 
defining different nodes to represent the variables at 
different time slices. 

 
3.1. The Bayesian Network notations 

 
BNs are directed acyclic graphs used to represent 

uncertain knowledge in Artificial Intelligence [15]. A 
BN is defined as a couple: G=((N, A),P), where (N,A) 
represents the graph; “N” is a set of nodes; “A” is a set of 
arcs; P represents the set of probability distributions that 
are associated to each node . When a node is not a root 
node, i.e. when it has some parent nodes, the distribution 
is a conditional probability distribution that quantifies the 
probabilistic dependency between that node and its 
parents. 

A discrete random variable X  is represented by a 
node Nn∈  with a finite number of mutually exclusive 

states. States are defined on { }n
M

n
n ss ,...: 1S . The vector 

nπ  denotes a probability distribution over these states as 

eq. (1), where )( n
m

n sπ  is the marginal probability of n  

being in staten
ms . In the graph depicted in Fig. 2, nodes 

in  and jn  are linked by an arc. If Ann ji ∈),(  and 

Ann ij ∉),(  then in  is considered as a parent of 

jn . The set of the parents of node jn  is defined as 

ij nnpa =)( . 

 

 ni  nj

 
 
Fig. 2. Basic BN. 

 
In this work, the set P is represented with Conditional 

Probability Tables (CPT). Then, each node has an 
associated CPT. For instance, in Fig. 2, the nodes in  and 

jn  are defined over the sets { }ii
i

n
M

n
n ss ,...: 1S  

and { }jj

j

n
L

n
n ss ,...: 1S .The CPT of jn  is then defined by 

the conditional probabilities )( ij nnp  over each jn  state 

knowing its parents states (in ). This CPT is defined as a 

matrix:  
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Concerning the root nodes, i.e. those without parent, the 

CPT contains only a row describing the a priori probability of 
each state. 

Various inference algorithms can be used to compute 
marginal probabilities for each unobserved node given 
information on the states of a set of observed nodes. The most 
classical one relies on the use of a junction tree (see [15], pp. 
76). Inference in BN [13] then allows to take into account any 
state variable observation (an event) so as to update the 
probabilities of the other variables. Without any event 
observation, the computation is based on a priori probabilities. 
When observations are given, this knowledge is integrated into 
the network and all the probabilities are updated accordingly. 

Knowledge is formalised as evidence. A hard evidence of 
the random variable X  indicates that the state of the node 

Nn∈  is one of the states { }n
M

n
n ss ,...: 1S . For instance X  is in 

state ns1 : 1)( 1 == nsnp  and 0)( 1 == ≠
n
msnp . Nevertheless, 

when this knowledge is uncertain, soft evidences can be used 
(see [22]). A soft evidence for a node n  is defined as one that 
enables the updating of the prior probability values for the 

states of n . For example, X  is in state ns1  and n
Ms  with the 

same probability and not in the other states: 5.0)( 1 == nsnp , 

5.0)( == n
Msnp  and ( ) 0)( ,1 == ≠

n
Mmsnp . 

 
3.2. Dynamic Bayesian Network 

 
A DBN is a BN that includes a temporal dimension. This 

new dimension is managed by time-indexed random variables. 

iX  is represented at time step k by a node Nn ki ∈),(  with a 

finite number of states { }ii
i

n
M

n
n ss ,...: 1S . in

kπ  denotes the 

probability distribution over these states at time step k. Several 
time stages are represented by several sets of nodes 0N ,… kN . 

kN  includes all the random variables relative to time slice k 

([14] and [9] pp. 38-45). 
An arc that links two variables belonging to different time 

slices represents a temporal probabilistic dependence between 
these variables. Then DBNs allow to model random variables 
and their impacts on the future distribution of other variables. 
Defining these impacts as transition-probabilities between the 
states of the variable at time step k-1 and those at time step k 
leads to the definition of CPTs, that are relative to inter-time 
slices, equivalent to the one defined in the previous section (eq. 
(3)). With this model, the future slice (k) is conditionally 
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independent of the past given the present (k-1), which 
means that the CPT ))(( ,, kiki npanP  respects the 

Markov properties [17]. Moreover, this CPT is 
equivalent to the Markovian model of the variable iX  

described in section 2.1 if 1,, )( −= kiki nnpa  and 

kiki nn ,1,
SS =

−
 i.e.: 

 

MCkiki nn PP =− )( 1,,  (4) 

 
Starting from an observed situation at time step k=0, 

the probability distribution in
kπ  over in  states is 

computed by the DBN inference. To computein
Tk+π , 

several solutions are proposed in the literature. One of 
them consists in developing T time slices, resulting to a 
network size growing proportionally to T [17]. In this 
work, we have chosen another solution that allows 
keeping a compact network form, and that uses iterative 
inferences [28]. The notion of time is introduced through 
inference. Indeed, it is possible to compute the 
probability distribution of any variable iX  at time step k 

based only on the probabilities corresponding to time 
step k-1. The probability distributions at time step k+1… 
are computed using successive inferences. Then, a 
network with only two time slices is defined Fig 3. The 
first slice contains the nodes corresponding to the current 
time step (k-1), the second one those of the following 
time step (k). Observations, introduced as hard evidence 
or probability distributions, are only realised in the 
current time slice. The time increment is carried out by 
setting the computed marginal probabilities of the node 
at time step k as observations for its corresponding node 
in the previous time slice. 

 ( )1, −kin  

 ( )kin ,  

time feedback 

inference 

))( 1,, −kiki nnP

 
Fig. 3. DBN for the random variable Xi. 

CCMMPP11==  
down 

CCMMPP22  ==  
down 

  SS33==  down 

Fault Tree 

 
Fig. 4. Classical FT models of parallel components. 
 

3.3. Object Oriented Bayesian Networks 
 
Modelling systems containing an important number of 

variables with BNs generally leads to complex models. To 
avoid this phenomenon, Koller has defined a particular class of 
BNs, the Object Oriented Bayesian Networks (OOBN) [18]. 
Their modelling is based on the decomposition of the global 
network into hierarchical levels [3],[4]. This representation 
method allows to decentralize and to structure the knowledge 
within BNs of reduced size. Thanks to their structure, the 
OOBNs are then well suited for the modelling of industrial 
systems. 

 
4. Reliability models with BN 

 
Bayesian networks provide a powerful mathematical 

formalism to model complex stochastic processes. The 
equivalence between Bayesian Networks and the classical 
Fault Trees method is described in the following section in the 
same way as it is in [6] and [5]. The comparison between Fault 
Trees and Bayesian Networks is done under the hypothesis of 
Fault Trees validity: in other words, events related to 
components or to functions can only be modelled with binary 
states. Then, the power of BN will be presented in the next 
section. We will argue that BNs are well suitable methods for 
the modelling of the complex propagation of failures through a 
probabilistic network of multimodal variables. This section will 
present the BN model of the dependent failure modes and the 
propagation of uncertainty. The last section will describe the 
dynamic BN and their equivalence to the Markov Chains.  

 
4.1. Fault Trees and Bayesian Networks to model reliability 

 
A Fault Tree allows to describe the propagation logics of 

the failure across the system. System reliability or availability 
are modelled according to the assumption of independence 
between the events affecting the entities (hypothesis (a), see 
chapter 7 in [10]).  

When components cannot be repaired, the basic fault events 
represent component failures. Under such conditions, the 
probability evaluation of fault trees based on the failure rates 
corresponds to the system reliability. The hypothesis (a) is then 
naturally respected. When components are repairable, the basic 
fault events depend on the failure and repair rate. Thus, the 
components’ unavailability are computed using a Markov 
model and used as basic events in the FT. Under assumption 
(a), the probability evaluation of such fault trees corresponds to 
the system unavailability. Nevertheless, from a practical view 
point, hypothesis (a) is hardly verified. Indeed, in the case of a 
repairable system, the failure of a component generally has an 
effect on the behaviour of the other components. Therefore, in 
this paper the purpose is only to model the systems’ reliability. 

The following notation is adopted: (CMP = up) indicates 
that the component CMP is functioning, and (CMP = down) 
indicates that a failure has occurred (the component is then 
unable to perform its function). Fig. 4 compares elementary 
models of parallel components CMP1 and CMP2 that make up 
the system function S3. Whereas a classical model of this 
parallel structure is based on a Fault Tree, the modelling with 
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Bayesian Network is realized with a single structure as 
depicted in Fig. 5 (the structure is identical for serial 
configurations). The CPT contains the conditional 
probabilities that translate the failure propagation logics 
across the functional architecture of the system. 
Therefore, the CPT is defined automatically by an 
OR/AND gate. These CPTs are a priori given, and 
probabilities are equal to 0 or 1 since the logic of the 
failure propagation is deterministic. To compute the 
reliability of the function S3, events on component are 
considered as statistically independent ([12] and [23]): 

 
( ) ( )upCMPupCMPupS ET =∩=== 213 PrPr

 ( )
( )downCMPdownCMP

downS FT

=∪=
==

21

3

Pr                    

Pr

 

( ) ( )∏
=

===⇒
n

i
iET upCMPupS

1
3Pr Pr

 

( ) ( )BN
i

i upSdownCMP ===−= ∏
=

3

2

1
PrPr1

 

(5) 

 

 

CMP1 

),( 213 CMPCMPSP

CMP2 

 3S  

1 0 0 0 down 

0 1 1 1 up  

S3 

down up down up CMP2 

down up CMP1  

 
 
Fig. 5. Equivalent BN of the parallel structure. 

 
4.2. BN to model dependent failure modes and 

uncertain propagations 
 
Thanks to the CPTs, BNs provide a model of the 

propagation of several failure modes in the system. Then, 
it is possible to synthetically represent in a factorised 
form system made up of entities with several failure 
modes. The hypothesis of independence between events 
(failures) made for FT is not necessary. Indeed, BNs 
allow computing exact repercussions of dependent 
variables to the system reliability. Moreover, it is 
possible to introduce uncertainty by setting probabilities 
in the interval of value [0, 1]. 

Failure Mode, Effects Analysis (FMEA) [23] allows 
to determine the failure modes associated with a 
component (Table 1). Therefore, the states (considered as 
exhaustive) of a CMP node are, for instance:  

• up: the component is available, 
• down1: the component is unavailable due to the 

failure 1, 
• down2: the component is unavailable due to the 

failure 2… 
 

Table 1. FMEA. 
 

Failure Modes Causes Effect 
 
CMP failure1 
 

 
Effect 1 

 
 
function  
in mode 1 
 

 
CMP failure2 
  

 
Effect 2 

 
The states of function S3 are defined by failure modes. For 

instance, node S3 in the BN (Fig. 6) takes the following states: 
up or down. No prior probability is associated with these states 
because they are computed according to the states of their 
parents, i.e. the causes described by CMPi nodes. 

 

 

CMP1 

),( 213 CMPCMPSP

CMP2 

 3S  

1 0 0 0 down 

0 1 1 1 up  

S3 

down up down up CMP2 

down1 up CMP1  

1 0.8 

0 0.2 

down up 

down2 

 
 
Fig. 6. BN to model complex structure. 
 

The CPT of the function S3 is defined by using the columns 
of the causes and the failure modes of the FMEA analysis. 
Nevertheless, a BN representation can turn out to be useful 
insofar as a combination of causes (for instance CMP1=down2 
and CMP2=up) can lead to several failure modes of the 
function with different probabilities. In Fig. 6, the uncertainty 
is represented by the probability distribution (0.2; 0.8). 

As it is known in the FMEA analysis, a failure mode can 
happen to cause other failure modes according to the logics of 
the failure propagation through the system. The BN 
representation is able to model this propagation; nevertheless 
the construction of this model has to be structured. Section 5 of 
this paper presents a method to model the reliability of 
complex systems. 

 
4.3. Dynamic Bayesian Networks to model entities 

 

 

CMP  
(k-1) 

CMP (k) 

time feedback 

 
 
Fig. 7. Generic Component DBN. 
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The reliability of low complexity components can be 
modelled as a DBN made up of two nodes as presented 
in Fig. 7. An MC model of component iX  reliability is 

easily translated into a DBN model [26]. Thus, 
independent components (entities) of the process are 
modelled using DBN equivalent to an independent MC. 
For instance, as it is defined in section 2.1, a component 
is modelled by a discrete random variable X  with states 
{ up, down}. Then two nodes are defined to model the 
random variable at time slices (k) and (k-1): CMP(k) and 
CMP(k-1). These nodes, linked by an arc that represents 
the dependency between the component states at time 
step k and its states at time step (k-1), are both described 
by the states {up, down}.  

Equations (2) and (4) define the CPT 
))1()(( −kCMPkCMPP  linking the two time slices. The 

parameters are those defined to build the MC model of 
the component. To compute the probability 

))(( upkCMPp =  according to which the variable iX  is 

in the state up at (k), the following equation may be used: 
 

( ) ( )upkCMPpt-upkCMPp =−∆λ== )1()1()( (6) 
 
Equation (6) corresponds to the classical formula of 

the discrete model of the MC. 
 

5. Modelling approach  
 
The main interest of such a method enabling a 

reliability modelling thanks to BNs lies in the 
propagation of the component failure states through the 
functionality of the system. Nevertheless, modelling 
complex systems requires a methodology that will help 
specify the BN's structure and the states of its variables. 
Methods like Structured Analysis and Design Technique 
(SADT) and FMEA are traditionally used in practice; 
therefore we will endeavour to formalise the BN from 
this knowledge representation [25]. 

 
5.1. Unification of system functioning and 

malfunctioning knowledge 
 
The model is elaborated before the implementation of 

the system. By that time, the main technological choices 
are made. But it is still necessary to define the logistics 
of maintenance which contribute to reach goals in terms 
of performance. We propose here to design the BN 
model by using both the functional analysis (SADT) and 
the malfunctioning analysis of the system (FMEA).  The 
definition of the environment, external resources, and 
failure modes are formalised at the level of the main 
function and Elementary Function (EF). The description 
of the components failures and reliability are made at the 
level of component (CMP). 

The modelling approach consists, from the analysis 
of the systemic functioning based on SADT graphical 
representation [21], in representing the abnormal 
operation (malfunctioning) based on FMEA and then in 

formalising and unifying these two results in a unique model 
by means of OOBNs. 

The functioning and malfunctioning of the system are dual 
and must be studied together to control each system variable. It 
leads, first, to focus on the system functioning in relation to its 
environment and its internal and external resources. This action 
can be made by using SADT graphical representation. This 
modelling is based on a principle of functional decomposition 
of the components, from functions and sub-functions to 
elementary functions. 

 

Function

HD having to
be transformed
by function

AD having to be
used by function

AD supporting the function

RHD Report on
the function state
in relation to HD

 
 
Fig. 8. Flows and Function Representation. 
 
 

Component 

Entity 

Main Process Functionality 

Elementary functions 

equipment  
set of components 
human resources 

 
 
Fig. 9. Functional decomposition. 
 

Each function (Fig. 8) represents a modification of a 
“product” carried out by the system. It produces or consumes 
flows such as “Having to Do” (HD) materialising the 
Input/Output (I/O) finality and “being Able to Do” (AD) 
representing I/O energies, resources, activity support. From this 
step, simplifying assumptions are made for estimating the 
reliability. Therefore, the output flow is a report (RHD) that 
represents the function’s finality. This flow is assumed to be 
the added value on the product flow represented in Fig. 8 by 
the Input HD flow that is transformed by the function. This 
output flow represents the functioning or failure modes of the 
function (as reliability of the function). Only the RHD flow is 
taken considered as output. It is thus transferred as 
informational view of physical result through the input flow of 
another function. 

From this functioning, the malfunctioning is induced by 
considering that the relationship between these two modes is 
directly linked to the relationship between the normal and 
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abnormal states of the variables. An FMEA analysis 
enables to create a malfunctioning model that helps 
identify the failure or degradation modes of each 
function, the elements that are responsible for the failure 
(causes) and the possible consequences of these failures 
(effects).  

For example, the RHD flow can take the value “up” 
corresponding to the nominal state of the activity or the 
values “down1”, “ down2” to identify the causes and the 
effects associated with these two abnormal states. The 
failure causes are either external (linked to the Input 
flows) or internal when they are linked to the AD 
function support flow (components). A set of states can 
thus be associated with each component. These states 
correspond to: nominal operation, failure 1, failure 2…  

In the same way, the consequences are observable 
either on function output flows or on the influence of the 
component degradation development on itself (to go 
towards a breakdown state). To sum up, a failure cause 
leads to a failure mode (e.g. the modification of the 
function state reported in RHD), which leads the function 
to be unable to produce the HD nominal flow any more. 

 
5.2. Reliability modelling with OOBN 

 
The Bayesian Network representation is based on the 

functional decomposition of the system. The flows are 
represented by discrete random variables that are 
represented by the nodes of the BN. This representation 
is structured as a tree (Fig. 9). Its root is an OOBN 
representing the highest abstraction level. The 
elementary functions represent the lowest functional 
levels modelled by BNs. The connections between the 
sub-functions are modelled by logical functions. OOBNs 
are consist of generic sub-functions in the high 
functional levels of the model. 

Then, a unified representation can be obtained by 
directly building OOBNs from the dual 
functioning/malfunctioning analysis presented above. To 
keep the concept of the generic function, inputs are 
modelled by input nodes defining the random variables 
associated with the flows AD, HD. The generic function 
represented in BN formalism is given in Fig. 10. 

 

AD HD

RHD

Function X

 
Fig. 10. Generic BN input and output nodes structure. 
 

AD HD

RHD

Function 1

Function 2

Function 3
RHD1

RHD2

RHD3

 
 

Fig. 11. High level of the functional decomposition. 

To model high functional levels, OOBNs are composed of 
generic sub-functions that are structured as in Fig. 10. When 
the function carries out several missions, it is possible to 
duplicate several inputs or outputs nodes (AD, HD…). 
Moreover, it is also possible to model sub-functions in parallel 
or in series (Fig. 11). 

In Fig. 11, as the generic sub-functions F1 and F2 are in 
line, the report RHD1 is transferred to F2 through the input 
flow HD. As the functions F2 and F3 form a V structure, the 
node RHD is linked to RHD2 and RHD3 in order to compute 
the RHD of the overall function. The connections between 
functions are defined as CPT that represents the propagation 
logics of the failure modes, as it is presented Fig. 6. 

OOBNs allow to describe systems thanks to serial or 
parallel component architectures. However, the CPTs—rather 
than the OOBN structures—constitute the relations of serial or 
parallel architectures. 

Thus, the same relation between functions can be 
represented by the two different structures depicted in Fig. 12 
and Fig. 13. This structural difference has no impact on the 
calculations of reliability if the CPT is defined as follows, 
where * is a logical operator representing the relation between 
functions F1 and F2: 

• Fig. 12: the CPT of the node F3 defined 
P(F3|F1, F2) = P(F1) * P(F2). 

• Fig. 13: the CPT models the transformation 
P(X|F1, F2) = P(F1) * P(F2) and the CPT associated to 
F3 (P(X|F3)) corresponds to the identity operator (i.e. 
the CPT's diagonal is equal to 1, all the others 
probabilities being equal to 0). 

 

 

RB0 

RB2 RB1 

 1F   2F  

 3F  

 
Fig. 12. RB: V structure. 
 

 

RB0 

RB1 RB2 

 1F  

 2F  

 3F  

X 

 
Fig. 13. RB: in line structure. 
 

These two structures are then equivalent. The choice of one 
structure rather than another depends on the specificity of the 
problem  

The OOBN model offers the possibility to compute the 
system reliability. However, equivalence between FTs and BNs 
is verified only if the system variables are described as binary. 



 8 

This restrictive hypothesis does not apply to BNs as they 
allow to consider random discrete variables defined on 
an unrestricted set of states. In short, a BN can always be 
defined as equivalent to a FT, but the reverse is false. 
Therefore, the modelling of failure modes by OOBN 
represents an increase of precision with respect to the 
reliability model. 

 
5.3. To model Elementary Function states related to 
components 

 
If a component is used to perform several sub-

functions, the output node CMP of the Component BN 
appears at the highest level containing the component. If 
a component performs only one sub-function 
(Elementary Function EF), the output node CMP appears 
as an AD flow supporting the function (Fig. 8) in a 
generic sub-function BN (Fig. 14). 

The CMP output nodes are directly linked to the EF 
nodes representing their functionality. The CMP states 
are defined by the causes analysed by means of FMEA. 
The causes are either internal to the low BN level i.e. 
linked to CMP, or external, i.e. linked to the input nodes 
AD or HD. The common causes are defined in higher 
hierarchical levels and the information is forwarded by 
heritage between the levels through the input and output 
nodes.  

The EF nodes are linked to the CMP nodes and to the 
input nodes leading to compute the RHD states 
probabilities (Fig. 14). If all the EFs are up then the RHD 
is up. 
 

HD AD

RHD

Elementary
Function EF

CMP

Component

 
Fig. 14. Low level of the functional decomposition. 
 

 

CMP(k-1) CMP(k) 

 
Fig. 15. Generic Component BN. 
 
5.4. Model of components DOOBN 

 
As for functions, a generic model is proposed for 

components (or for a set of components). Fig. 15 
describes a Dynamic Object Oriented Bayesian Network 
DOOBN representing the model of a generic component: 
a component node CMP(k-1) and its evolution defined as 
a Markov Chain modelled by the CPT of the node 
CMP(k). 

It is now necessary to determine the probabilities 
associated with the states of the component. These 
probabilities depend on the reliability of the component. 

Then, the probabilities associated with CMP(k) node states 
in the BN are estimated for a given operating time (Table 2). 

The CMP(k) node is defined as an output node. Then, 
probabilities associated with the CMP(k) states are used to 
compute probabilities of the Elementary Function states related 
to this component. 

 
Table 2. Component states and probabilities. 
 

up  
(correct operation) 

1 

down1  
(cause of failure 1) 

0 CMP(k=0) 

down 2  
(cause of failure 2) 

0 

 
5.5. Use of the model in operation: reliability estimator 

 
The objective of the decision-making problems is to 

compare several alternative solutions (combination of 
decisions). The proposed model allows the simulation of 
several scenarios. 

Once decisions have been taken, the BN model defined 
above can be used as an estimator of the system’s reliability 
with respect to the chosen policy. The BN model allows to 
analyse the influences implied by the degradations on the 
functions’ states. This analysis is based on the simulation of a 
component failure, a common cause or an unconformity of a 
sub-function. The objective is to forecast the impact of failures 
on the functions. It is then possible to analyse the upstream and 
downstream consequences on the whole system. For example, 
if we consider a component failure, an evidence can be set as 
P (CMP=down1) = 1. The sub-functions probabilities are then 
updated by the BN inference. The RHD of each function 
relates the failure impact on each functional level.  

 
6. Application  

 
The proposed method is applied to a classical example of a 

water heater process. The objective of the thermal process 
(show in Fig. 16) is to ensure a constant water flow rate with a 
given temperature. The process is composed of a tank equipped 
with two heating resistors R1 and R2. 
 
 

 

V 

R1 

R2 

Qi 
Ti 

Qo 
T 

H P 

H sensor 

T sensor 

 
 

 
Fig. 16. Thermal process. 
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The system inputs are the water flow rate Qi, the 
water temperature Ti and the heater electric power P that 
is controlled by a computer. The outputs are the water 
flow rate Qo and the temperature T that are regulated 
around an operating point (Qi=Qo= 20 l.min-1 and T = 
50°C). The input temperature of the water Ti = 20°C is 
assumed to be constant. 

The components of this system are indexed in the 
FMEA analysis (Table 3). The failure modes of each 
component are defined as well as their effects. The 
causes are linked with the component states or the 
unavailability of the electric energy required to supply 
the component. Therefore, the loss of energy is a 
common cause of the 6 failure modes. 

The figures (Fig. 17 to Fig. 23) present the Mean 
Time To Failure (MTTF) parameter allowing to 

determine the failure rates quantifying the transition between 
component states. These figures depict the Markov Chains of 
the components, which are considered, in this study, as 
independent. State 1 represents a component without failure. 

The process is made of seven components that have 2, 3 or 
4 states. Modelling the system with a Markov Chain leads to 
define 1728 states (4x2x3x4x3x3x2=1728). The system’s 
reliability is then computed according to the transition matrix 
PMC that defines the probabilities linking all the states. This 
matrix requires approximately 3 million parameters.  

Therefore, the reliability estimation of this process from the 
MC model is very difficult to obtain. In the following, the 
DOOBN modelling proves to be a more efficient and 
convenient tool. This model is a unified representation of the 
knowledge formalised from FMEA, SADT analysis, and 
independent MC of components. 

 
 
 
Table 3. FMEA - Component states. 
 
 

Function Element Failure Mode Effects Causes 
Remains closed Qi=0 No energy from (AD) 

Valve is down (state 4) 
Remains open Qi>0 No energy from (AD) 

Valve is down (state 3) 

to transform 
pressure to 
Qi 

VALVE V 

The water flow 
rate is biased 

Qi different from the 
desired Qi 

Valve is down (state 2) 

to stock 
water 
Qi to H 

TANK Leak of water Water loss in the 
environment 

Tank is down (state 2) 
Fissure 

Clogged Qo =0  Pipe is down (state 3) to transform  
H to Qo 

WATER PIPE 
Restricted Qo< desired Qo  Pipe is down (state 2) 
Maximum level 
of heat 

T> desired T  Heating resistor is down 
(state 2) 

No heating T=Ti = 20°C No energy from (AD) 
Heating resistor is down 
(state 4) 

to heat water 
from Ti to T 

HEATING 
RESISTOR 

Heating power 
loss 

T< desired T  Heating resistor is down 
(state 3) 

Biased measure Qo is different from the 
real Qo 

H sensor is down (state 2) to measure 
H 

H SENSOR 

No measure Impossibility to control 
Qo 

No energy from (AD) 
H sensor is down (state 3) 

Biased measure T is different from the real 
T  

T sensor is down (state 2) to measure T T SENSOR 

No measure Impossibility to control P No energy from (AD) 
T sensor is down (state 3) 

to control  
V and P 

COMPUTER Control loss Deviation of T and H No energy from (AD) 
Computer is down (state 2) 
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1 

2 λ1 

4 

λ2 

3 λ4 
λ3 

λ5 

 
MTTF1=10 000 h λ1=1 10-4 h-1 

MTTF2=500 h λ2=20 10-4 h-1 
MTTF3=7 000 h λ3=1.43 10-4 h-1 
MTTF4=2 000 h λ4=5 10-4 h-1 
MTTF5=15 000 h λ5=0.66 10-4 h-1 

 
Fig. 17. HEATING RESISTOR reliability MC model. 
 

 

1 2 

λ1 
3 

λ2 

λ3  
 

MTTF1=5 000 h λ1=2 10-4 h-1 

MTTF2=3 000 h λ2=3.3 10-4 h-1 

MTTF3=45 000 h λ3=0.22 10-4 h-1 

 
Fig. 18. H SENSOR reliability MC model. 
 

 

1 2 

λ1 
3 

λ2 

λ3  
 

MTTF1=5 000 h λ1=2 10-4 h-1 

MTTF2=3 000 h λ2=3.3 10-4 h-1 

MTTF3=45 000 h λ3=0.22 10-4 h-1 

 
Fig. 19. T SENSOR reliability MC model. 
 

 

1 2 

λ1 
3 

λ2 

4 

λ3 

 
 

MTTF1=5 000 h λ1=2 10-4 h-1 

MTTF2=3 000 h λ2=3.3 10-4 h-1 

MTTF3=6 000 h λ3=1.66 10-4 h-1 

 
Fig. 20. VALVE V reliability MC model. 

 
 

 

1 2 

λ1 
3 

λ2 

 
 
 
 

MTTF1=5 000 h λ1=2 10-4 h-1 

MTTF2=10 000 h λ2=1 10-4 h-1 

 
Fig. 21. WATER PIPE reliability MC model. 
 
 

 

1 2 

λ1 

 
 
 

MTTF1=40 000 h λ1=0.25 10-4 h-1 

 
Fig. 22. TANK reliability MC model. 
 
 

 

1 2 

λ1 

 
 
 

MTTF1=8 000 h λ1=1.25 10-4 h-1 

 
Fig. 23. COMPUTER reliability MC model. 

 
 
 

To provide  
Warm Water  

HD1 
Order T=50°C 

AD2 water input 
pressure and Ti 

AD4  
WATER HEATER PROCESS  

RHD water output 
temperature T  
and flow rate Qo 

AD1 Electric 
Power 

AD3 system 
parameters 
temperature T 
and level H 

 

 
 
Fig. 24. SADT level A-0. 
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To transform  
Pressure  

to Qi 

 

HD Order V 

AD2 water input 
pressure and Ti 

AD4-1  
VALVE V 

RHD Qi 

AD1 Electric 
Power 

AD  
Ti To transform  

H to Qo 

AD4-4 
WATER PIPE  

RHD water output 
flow rate Qo 

HD1 
Order T=50°C 

To transform  
Qi to H 
Ti to T 

 

AD 
Qi 

AD4-3 
TANK, HEATING RESISTOR 

RHD water output 
temperature T  

AD1 Electric 
Power 

To control 
V and P 

AD4-2 COMPUTER, 
SENSORS 

HD Order P 

AD3 system 
parameters 
temperature T 
and level H 

AD1 Electric 
Power 

AD water 
level H 

RHD V 

RHD P 

A1 

A2 

A3 

A4 

RHD water 
level H 

 
 
Fig. 25. SADT level A0. 
 
 
 

 
 
Fig. 26. Dynamic Bayesian Network model of the HEATING RESISTOR. 
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6.1. SADT Analysis 
 
Fig. 24 presents the level A-0 of the system SADT 

analysis. This figure depicts the interaction between the 
system and the external environment through the AD, 
HD and RHD flows. The main functionality of the 
process is:  

• to provide Warm Water. 
 
The next figure presents the level A0 describing the 

four functions that are necessary to perform the main 
task of the system (Fig. 25):  

• to transform Pressure into Qi (A1), 
• to control V and P (A2), 
• to transform Qi into H and Ti into T (A3), 
• to transform H into Qo. 
 
Fig. 27 formalises the function “to transform Qi into 

H and Ti into T” from the elementary functions: 
• to stock water supported by the component TANK, 
• to heat water supported by the component 

HEATING RESISTOR. 
 
 

AD Ti 
To heat water 

from Ti to T 

 

AD Qi 

AD4-3 
HEATING RESISTOR  

RHD water 
temperature T 

AD1 Electric Power 

HD Order P 

A3 

AD4-3 
TANK 

To stock 
water 

Qi to H 

 

RHD water level H 

A31 

A32 

AD water  
level H 

 
 
 
Fig. 27. SADT level A3 “to transform Qi to H and Ti 

to T”. 
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0.2 

0.4 

0.6 

0.8 

1.0 

0 500 1000 1500 2000 

P(state1) 
P(state 2) 

P(state 3) 

P(state 4) 

HEATING RESISTOR (k) 

 
 
Fig. 28. States probabilities of the HEATING 

RESISTOR. 
 
 

6.2. DOOBN Model 
 
The DOOBN model is depicted in figures: 26, 29, 30, and 

31.  
The Dynamic Bayesian Network that models the 

component HEATING RESISTOR, is presented in Fig. 26. 
The conditional Probability Table describes the independent 
Markov Chain that models the reliability of this component. 
Inferences are realised by using the BayesiaLab (ββββ version) 
software (http://www.bayesia.com) that uses an iterative 
procedure to compute probabilities. The states probabilities are 
presented in the Fig. 28 according to the current time step (k). 
A maintenance action is simulated when k=1000h. This 
maintenance action is assumed to be perfect, i.e., the 
component is reset in state 1 (no failure, no degradation). This 
event is simulated in order to illustrate its propagation through 
the model. 

The propagation through the Object Oriented Bayesian 
Network model allows to take into account the dependency 
between the failure modes and the common cause to compute 
the system’s reliability R(k). The Fig. 29 to 31 present OOBN 
models corresponding respectively to the SADT levels A3, 
A31 and A32 (see Fig. 27). 

The elementary function “EF to heat water” is supported by 
the component HEATING RESISTOR (Fig. 31), and depends 
on the states of the flows: 

• AD Electric Power, 
• AD Ti, 
• AD Water level H, 
• HD Order P. 
 
This elementary function is described by four states 

according to the FMEA (Table 3). These states correspond to 
the following failure modes: 

• State 1: Function to heat water is correct. 
• State 2: Function to heat water is incorrect, the heating 

level is maximum. 
• State 3: Function to heat water is incorrect, the heating 

level is lower than the required level. 
• State 4: Function to heat water is incorrect, the heating 

level is equal to zero. 
 
Probabilities related to these states are depicted in Fig. 32. 

The maintenance action with the component HEATING 
RESISTOR has an impact on the “EF to heat water” states. 
P(state1) increases and the other probabilities decrease. 
Nevertheless, in spite of the assumptions of a perfect 
maintenance action, P(state1) is less than 1. This is due to the 
failure and the degradation of the other components. The 
ageing of the system results in a degradation of the input flows 
(for example: AD level H or HD Order P) of the function “to 
heat water”. Then, the “EF to heat water” cannot be perfectly 
performed. 

The objective of the system is to provide warm water at 
temperature T with flow rate Qo. The reliability of the system 
depends on the states of the functions: to transform Qi into H 
and Ti into T; to transform H into Qo. 
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to heat water 

to stock water 

AD Ti 

AD Qi RHD level H 

RHD temperature T 

AD Electric Power HD Order P 

 
 
Fig. 29. OOBN model of A3 SADT level. 
 

EF to stock water AD Qi 

TANK 

RHD level H 

 
 

Fig. 30. OOBN model of A31 SADT level. 
 

EF to heat water AD Ti 

HEATING RESISTOR 

AD Electric Power 

HD Order P 

AD water level H 

RHD temperature T 

 
 

Fig. 31. OOBN model of A32 SADT level. 
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Fig. 32. States probabilities of the elementary function: to heat 

water. 
 
 

  RHD water output temperature T (k) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 
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0.8 

0.9 
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Fig. 33. States probabilities states of the flow “RHD water 

output temperature T”. 
 
 
 

 RHD water output flow rate Qo (k) 
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Fig. 34. States probabilities of states of the flow “RHD water 

output flow rate Qo”. 
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Fig. 35. Reliability of the system. 
 

Fig. 33 presents the states of the flow “RHD output 
water temperature T” and Fig. 34 presents the states of 
the flow “RHD output water flow rate Qo”. The “RHD 
output water temperature T” is sensitive to the 
maintenance event. This is not the case for the flow 
“RHD output water flow rate Qo” since the water level is 
assumed to be controlled independently from the water 
temperature. 

Fig. 35 presents the reliability of the system and 
allows to observe the impact of the event corresponding 
to the maintenance of the HEATING RESISTOR.  

 
7. Conclusion 

 
The proposed method, based on the Dynamic 

Bayesian Networks and Object Oriented Bayesian 
Networks theory, easily allows designing DOOBN 
structures to model the temporal behaviour of the 
probabilities of complex system states. The 
correspondence between Markov Chain, Fault Tree 
Event Tree and DBN is presented and applied to the 
system reliability estimation. 

 
Our method turns out to be a satisfying solution as far 

as the modelling of complex systems is concerned. 
Indeed, the number of states needed to model a complex 
system with MC increases exponentially (one state for 
each combination of elementary states). As the DBNs 
representation is based on the modelling of process 
entities, the obtained model is more compact and 
readable than the MC model. Furthermore, the 
dependency between several failure modes of a 
component and common modes is easily modelled by 
BN. This paper shows that DOOBNs represent a very 
powerful tool for decision-making in maintenance. 

 
In future works, in order to achieve this modelling 

technique, we have to define to what extent  the learning 
algorithms of BN can contribute to model the dynamics 
of the system’s reliability, and how the parameters’ 
behaviour can then be modelled. 
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