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The numerical modelling of forming processes involving the flow of foams requires taking into account the different problem scales. 
Thus, in industrial applications a macroscopic approach is suitable, whereas the macroscopic flow parameters depend on the cellular 
structure: porosity, size, shape and orientation of the cells, cellular walls properties, etc. Moreover, the shape and orientation of the cells 
are induced by the flow during the foam expansion (induced anisotropy). This work focuses on this topic, covering both the mechanical 
and the numerical modelling. In particular we will analyse two kind of numerical approaches: the first one involving a fixed mesh of the 
whole domain (which induces some numerical difficulties related to the advection of the free surface and other fields). The second 
approach lies in the use of a meshless technique which allows accurately both fields advection and flow front tracking, without a mesh 
support. The fundamentals of this work are based on some of our former works cited in the references section.
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1. Introduction

Reactive systems are widely used in foam blowing pro-
cesses. Numerical modelling of reactive processes is very
difficult because the flow kinematics is coupled with the
chemical reacting kinetics, which depends mainly on the re-
action time (time elapsed since the reactants mixing). The
kinematics–chemical kinetics coupling is a key point in foam
blowing, being less important, for example, in usual RTM
(resin transfer moulding) processes, where the chemical for-
mulation can be adjusted in order to finish the mould filling
before a significant rise in the resin viscosity.

The polymerisation reaction increases the material viscos-
ity and the expansion induces the material growing, generat-
ing a porous structure. When the polymerisation takes place
much faster than the foam expansion, the material becomes
too rigid before the conclusion of the expansion. In this case
the cellular walls can be broken with direct consequences
in the mechanical properties of the conformed parts. On the
other hand, when the expansion finishes before the complete
polymerisation, the low material consistency is not enough
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to preserve the final geometry, and the structure collapses
when the expansion is finished.

The numerical modelling of forming processes involving
the flow of foams requires taking into account the differ-
ent problem scales. Thus, in industrial applications a macro-
scopic approach is suitable, whereas the macroscopic flow
parameters depend on the cellular structure: porosity, size,
shape and orientation of the cells, cellular walls properties,
etc. Moreover, the shape and orientation of the cells are
induced by the flow during the foam expansion (induced
anisotropy). We have analysed the influence of process con-
ditions on the cellular shape[1]: elongated cells were ob-
tained by inducing traction or shear in the material during
its expansion.

This microscopic information can be introduced in a
macroscopic model by means of a homogenisation tech-
nique. Thus, at each point in the material domain we can
associate a representative volume containing some cells,
whose size, shape and orientation depend on the considered
point. Now, from the matrix and gas viscosities, and the
cellular structure, we can compute an equivalent viscosity
tensor (seeFig. 1). However, some difficulties appear in
the homogenisation procedure: (i) sometimes surface ten-
sion cannot be neglected, which requires a very accurate
description of the inclusion geometry as well as to consider
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Fig. 1. Micro–macro simulation.

its effect on the homogenised model; (ii) the behaviour
of the matrix fluid becomes quickly non-Newtonian, and
its non linear character makes difficult the application of
usual homogenisation techniques; (iii) the reaction kinetics
remain uncertain for usual industrial processes; (iv) the nu-
merical tracking of a cell (microscopic level) which grows
and deforms into the material flow is today an open prob-
lem, which in spite of some promising and recent works
[2–7] important difficulties persist; (v) the physical mech-
anism of gas diffusion, the cells interaction and fusion,
and the modelling of the final stage of the process, when
the material is concentrated on the cell walls, are, among
many others, important and unsolved difficulties found in
the global modelling of foam growing.

In this way a macroscopic modelling where the reac-
tion kinetics and the viscosity evolution are obtained exper-
imentally is suitable from the point of view of its industrial
application to provide a visualisation of the mould filling
process (foam volume evolution and flow front position dur-
ing the expansion) and it will be useful to optimise the mould
and process design. From that simulation we can determine
the number, size and optimal position of the evacuation ori-
fices to avoid internal overpressures as well as to reduce the
cleaning necessities and the material losses. Moreover, an
accurate flow front tracking allows us to predict the interac-
tions between different flow fronts when the curing reaction
is too advanced (welding lines prediction) as well as to avoid
filling defects related to the air bubbles retained between the
flow front and the mould walls.

In this way the process simulation must be carried out in
two different scales. In the macroscopic scale the flow kine-
matics is computed and the expansion flow front and the
foam volume are updated according to that kinematics. On

the other hand, the microstructure evolution must be com-
puted in the microscopic scale. This computation, local in
space, makes use of the macroscopic kinematics. In this pa-
per, we assume an expansion function experimentally iden-
tified for each reacting system as described in[8], which
avoids the necessity of considering the diffusion mechanisms
in the cellular growth, which are not well known at present.
Thus, from now on, we consider the expansion functionβ(t)
known

β(t) = −∂ρ

∂t

1

ρ
(1)

From the numerical simulation point of view two possibili-
ties exist. The first one is based on the use of a fixed mesh
to solve the mechanical problems at both scales, and the
other one that lies on the use of a moving mesh. The main
drawback of the first approach is the accurate description of
moving boundaries and interfaces. Some appealing strate-
gies for treating this kind of problems are the extended finite
element method[6,7], the volume of fluid method[9], the
level set technique[2,5], among many others. However, as
described later, these capturing techniques require solving
some hyperbolic transport problems, which introduce some
important numerical difficulties. On the other hand, tracking
techniques adjust the mesh to the domain evolution, and this
fact introduces, in the context of the finite element method,
some problems related to large mesh distortions. Recently,
some meshless methods have been introduced (see[10] for
a brief overview) which reduce drastically the geometric
mesh requirements. Among all these techniques, an appeal-
ing strategy is the natural element method, which allows
large domain evolutions without any remeshing requirement,
as well as the direct imposition of essential boundary condi-
tions in any geometry (convex or not)[11–13]. The applica-
tion of both kinds of strategies in multiscale foam expansion
simulations will be treated inSections 3 and 4, using the
mechanical models described in the next section. The results
presented in this work concern some test problems defined
in the micro and in the macro scales, but a real coupling
between both problem scales, according to the procedure il-
lustrated inFig. 1, is a work in progress, out of the aim of
this paper.

2. Mechanical modelling

2.1. Macroscopic model

The equations modelling the foam kinematics during the
expansion are given by the usual balance equations (where
all thermal effects are neglected):

• The equilibrium equation neglecting the inertia and mass
terms results

Div σ = 0 (2)

whereσ is the stress tensor.
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• The mass conservation
∂ρ

∂t
+ Div(ρv) = 0 (3)

wherev is the velocity field andρ the foam density. The
previous equation can be rewritten as

∂ρ

∂t
+ ρDiv v + vGradρ = 0 (4)

When the foam expansion is homogeneousρ = ρ(t) and
Gradρ = 0. In this case,Eq. (4)becomes

Div v = −∂ρ

∂t

1

ρ
= β(t) (5)

• A simplified constitutive equation is given by

σ = −pI + (λ − 2
3η)Tr (D)I + 2ηD (6)

where λ denotes the volumetric viscosity,p the pressure
field, I the unit tensor,η the shear viscosity andD the strain
rate tensor (symmetric part of the gradient of velocity ten-
sor). If the volumetric viscosity contribution is neglected, it
results

σ = −pI + 2ηD (7)

whereD denotes in this case the deviatoric strain rate tensor.
In the examples shown in this paper a homogenised local
viscosity has been considered. See[14–16], and the refer-
ences therein, for a depth discussion on foam rheology.

2.2. Microscopic model

In the microscopic scale the heterogeneity of the flow
must be introduced. Thus, we consider a representative do-
main containing some cells into a polymer matrix, whose
averaged kinematics is derived locally from the macroscopic
kinematics. At this stage, the cell growth can be computed
using the expansion function, and the evolution of their
shapes and orientations requires the resolution of a flow
problem in the representative flow domain. In this way, the
microscopic flow problem results similar to that one involv-
ing a bubble immersed in a Newtonian fluid. The numerical
modelling must consider the existence of two fluids, whose
domains evolve in time, with an eventual surface tension
on its interface. Thus, some results involving the deforma-
tion of a bubble into a Newtonian fluid will be introduced
later.

3. Fixed mesh simulation

3.1. Macroscopic level

The variational formulation ofEqs. (2) and (5)andEq. (7)
results: Findv ∈ H1(Ω(t)) verifying the essential boundary
conditionsv(x ∈ ∂1Ω(t)) = vg andp ∈ L2(Ω(t)) such that∫
Ω(t)

(−pTr(D∗) + 2ηD : D∗) dΩ = 0 (8)

and∫
Ω(t)

− p∗(Div v − β) dΩ = 0 (9)

∀ v∗ ∈ H1
0(Ω(t)) and∀p∗ ∈ L2(Ω(t))

where a null traction is assumed in∂2Ω(t) = ∂Ω(t)−∂1Ω(t),
a homogeneous expansion is considered (Gradρ = 0 in
Eq. (4)), andH1(Ω(t)),H1

0(Ω(t)), L2(Ω(t)) are the usual
Sobolev and Lebesgue functional spaces.

In order to update the foam volume, some possibilities
exist. The simplest lies in the introduction of a foam presence
function I that takes a unit value in the foam domain and
vanishes in the empty region, i.e.

I(x, t) =
{

1, x ∈ Ω(t),

0, x /∈ Ω(t)
(10)

and whose evolution is governed by the following linear
advection equation:

∂I

∂t
+ vGradI = 0 (11)

The discretisation ofEqs. (8) and (9)is carried out us-
ing a mixed finite element formulation. The mini-element
C0−P1+bubbleis used for the velocity interpolation whereas
a C0 − P1 approximation is considered in the pressure in-
terpolation. This choice verifies the LBB condition[17]. On
the other hand, due to the hyperbolic character ofEq. (11)a
discontinuous Galerkin finite element method is considered.
The conservation form ofEq. (11)is:∫
Ωe

(
∂I

∂t
+ Div(Iv) − I Div v

)
dΩ = 0 (12)

whereΩe represents an element of the finite element mesh
associated with the foam domainΩ(t). Eq. (12)can be writ-
ten as∫
Ωe

∂I

∂t
dΩ +

∫
∂Ωe+

Iv · n dS +
∫
∂Ωe−

Iv · n dS

−
∫
Ωe

I Div vdΩ = 0 (13)

where∂Ωe+
and∂Ωe−

denote the outflow and inflow bound-
aries of the elementΩe, respectively. The main difficulty of
using Eq. (13) is that the functionI is not defined on the
element boundaries. The discontinuous Galerkin finite ele-
ment method assumes that on the outflow boundary,I takes
the existing value in the elementΩe, i.e. I(x ∈ ∂Ωe+

) = Ie

(the functionI is assumed constant into each element); and
that on the inflow boundaryI takes the existing value in the
upstream element. Thus,Eq. (13)can be written in the case
of a homogeneous expansion in the form

∂Ie

∂t

∣∣Ωe
∣∣ = −Ie

∫
∂Ωe+

v · n dS −
∑
i

Ie−
i

∫
∂Ω

e−
i

v · n dS

+Ieβ|Ωe| (14)
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where the sum is extended to the neighbouring upstream
elements ofΩe,Ωe−

i , whose value ofI is represented byIe−
i ;

Div v is done byEq. (5), and|Ωe| denotes de volume ofΩe.
To simplify the notation, we will consider, from now on, that
the flow coming to the elementΩe comes from only one
element. If we consider a first order explicit approximation
of the time derivative, we can writeEq. (14)as

Ie(t + �t) = Ie − Ieq
+�t

|Ωe| + Ie− q−�t

|Ωe| + Ieβ�t (15)

whereq+ andq− are the absolute value of the outflow and
inflow rates, respectively, and all the terms in the second
member are evaluated at timet (explicit strategy). Now, we
define the inflow and outflow fluid volumes asΩ− = q−�t

andΩ+ = q+�t, respectively. Thus, we can write finally

Ie(t + �t) = Ie − Ie Ω+

|Ωe| + Ie− Ω−

|Ωe| + Ieβ�t (16)

Eq. (16)allows the foam domain updating, considering that
the fluid domain is defined by the set of elements having a
value of I greater than a threshold value. It can be noticed
that the exact flow front position cannot be determined accu-
rately. An accurate treatment of the transport of other fields,
which are not defined in the empty region, was proposed in
[18]. It is based on the application of the previous explicit
first-order technique to the productIF whereF is an arbi-
trary field related to the fluid and advected by the flow. In
Fig. 2 the foam presence function evolution during a homo-
geneous expansion in a closed square cavity is shown.

3.2. Microscopic level

The main difficulty in applying the previous modelling
for treating the microscopic problem is related to the low
accuracy in the interface location. In this form, the accurate
imposition of a surface tension, for example, is not possible.
To alleviate this problem, one possibility lies on the appli-
cation of the level set strategy in order to locate the moving
interfaces. This technique is based on the substitution of the
fluid presence function by a level set functionφ whose zero
value defines the interface. If we denote byΩp(t) andΩg(t)

the polymer and the gas domains at timet, respectively, and
by Γ(t) the moving interface (Γ(t)= Ωp(t) ∩ Ωg(t)), the

Fig. 2. Foam presence function evolution during a homogeneous expansion in a closed cavity.

level set function is given by

φ(x, t)




> 0, x ∈ Ωp(t),

< 0, x ∈ Ωg(t),

= 0, x ∈ Γ(t)

(17)

Obviously, the level function is convected by the flow, and
then, its evolution is given by the following linear advection
equation:

∂φ

∂t
+ v∗ Gradφ = 0 (18)

wherev∗ is an arbitrary velocity field, verifying

v∗(x ∈ Γ(t)) = v(x ∈ Γ(t))

It has been proved by several authors that the quality of the
level function decreases during its time evolution. In order
to control the excessive numerical diffusion, which destroys
the sharpness of the front, some reinitialisation processes
must be introduced to maintain the level set function as a
distance function for all times. Thus, from a solutionφ(x, t),
a distance functioñφ(x, t) can be computed from the steady
solution of the following non-linear advection equation:

∂φ̃

∂τ
+ sgn(φ)

Gradφ̃∥∥∥Gradφ̃
∥∥∥Gradφ̃ = sgn(φ) (19)

where the initial condition is given by

φ̃(x
¯
, τ = 0) = φ(x

¯
, t) (20)

and whereτ ∈ [0,∞[ is an artificial time and sgn is the sign
function. When the corrected functioñφ(x

¯
, t) is known, we

assign this function to the level set function (φ̃(x
¯
, τ = ∞) →

φ(x
¯
, t)) in order to update its value fromEq. (18)at the next

time step. The density and viscosity can be expressed from
the densities and viscosities of polymer and gas:

ρ(φ) = ρg + (ρp − ρg)H(φ),

η(φ) = ηg + (ηp − ηg)H(φ) (21)

whereH denotes the Heaviside function:

H(φ) =
{

1 if φ > 0

0 if φ < 0
(22)
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Thus, the motion equation results

−
∫
Ω

pDiv v∗ dΩ + 2
∫
Ω

η(φ)D : D∗ dΩ

= σ

∫
Ω

H(φ)Gradk v∗ dΩ + σ

∫
Ω

H(φ)k Div v∗ dΩ

(23)

whereσ is the surface tension andk the curvature. Taking
a smooth approximation of the Heaviside function,Eq. (23)
can be written as

−
∫
Ω

pDiv v∗ dΩ + 2
∫
Ω

η(φ)D : D∗ dΩ

= −σ

∫
Ω

kv∗ GradH(φ) dΩ (24)

where the integral in the second member is not zero only in
the interface neighbourhood.

If an explicit discretisation is considered,Eqs. (18) and
(19) can be solved using some numerical technique appro-
priate to its non-linear and hyperbolic character, whereas for
solving Eq. (24) a mixed finite element method verifying
the LBB condition can be accurately applied. To solve the
advection problems (Eqs. (18) and (19)) we use the Euler or
the Adams–Bashforth methods for time discretisation and
a second order ENO for space discretisation. In[19] sev-
eral numerical schemes proposed in the literature have been
analysed for the resolution ofEq. (19). In this first analysis,
the movement of some bubbles into a Newtonian fluid has
been simulated. In order to illustrate the capabilities of this
technique we depict inFig. 3a sequence of a gas bubble de-
formation under gravity effects into a square closed cavity
fulfilled with a Newtonian fluid, where a viscosity relation
of 1000 and a density relation of 100 between both fluids
are considered. In this example the inertia term in the mo-
mentum equation is introduced as well as the gravity effects.
The inertia term is stabilised in the numerical discretisation
by using the expression of the material derivative along the
characteristic curve.

Fig. 3. Bubble deformation into Newtonian fluid filling a closed cavity and initially at rest: (a)t = 0.1 s, (b) 0.4 s, (c) 0.7 s.

4. Updated Lagrangian simulation

4.1. The natural element method

In the last decade considerable research efforts have been
paid to the development of a series of novel numerical tools
that have been referred as meshless or meshfree methods.
These methods do not need explicit connectivity informa-
tion, as required in standard FEM. The geometrical infor-
mation is generated in a process transparent to the user,
alleviating the pre-processing stage of the method. They
also present outstanding advantages in modelling complex
phenomena, such as large deformation problems, forming
processes, fluid flow, etc., where traditional and more ex-
perienced techniques, like the FEM, fail due to the need of
excessive remeshing. The natural element method (NEM)
is one of the latest meshless technique applied in the field
of linear elastostatics[11,12]. It has unique features among
meshless Galerkin methods, such as interpolant character
of shape functions and exact imposition of essential bound-
ary conditions. These, and its inherent meshless structure,
make the NEM an appealing choice also for application in
the simulation of fluid flows. The NEM is based on the
natural neighbour interpolation scheme[20,21], which turn
relies on the concepts of Voronoi diagrams and Delaunay
triangulations (seeFig. 4), to build Galerkin trial and test
functions. These are defined as thenatural neighbourco-
ordinates (also known as Sibson’s coordinates) of the point

Fig. 4. Delaunay tessellation and Voronoi diagram.
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Fig. 5. Natural neighbour interpolants.

under consideration, that is, with respect toFig. 5, the value
at pointx of the shape function associated with the node 1
is defined as

φ(x) = Area(abfe)

Area(abcd)
(25)

These functions are used to build the discrete system
of equations arising from the application of the Galerkin
method in the usual way. It has been proved[11] that angles
of the Delaunay triangulation are not influencing the qual-
ity of the results, in opposition to the FEM. In addition, the
NEM has interesting properties such as linear consistency
and smoothness of the shape functions (natural neighbour
coordinates areC1 everywhere except at the nodes, where
they areC0). But perhaps the most interesting property of
the Natural Element Method is the Kronecker delta prop-
erty, i.e. φi(xj) = δij . In opposition to the vast majority
of meshless methods, the NEM shape functions are strictly
interpolants. This property allows an exact reproduction of
linear (even bilinear in some 3D cases) displacement fields
on the boundary of convex domains, since the influence of

Fig. 6. Sequence of a foam expansion: velocity norm prediction using a meshless simulation.

Fig. 7. Cellular shape prediction.

interior points vanishes along convex boundaries. This is not
true in non-convex ones, where some specific treatment is
required[12,13].

The application of the NEM to complex fluid flow sim-
ulations has been recently treated in[22]. The main advan-
tage of using the NEM in the framework of an updated La-
grangian formulation for simulating free or moving surface
flows is the fact that the nodal position can be updated from
the flow kinematics, without remeshing requirements.

4.2. Macroscopic level

In this case the mixed variational formulation (Eqs. (8)
and (9)) is discretised by using the natural neighbour inter-
polation to construct both trial and test functions. In order
to describe accurately the mass conservation, a discontin-
uous pressure approximation considering the pressure con-
stant into each Voronoi cell is used.Fig. 6 depicts the foam
expansion sequence corresponding to one shown inFig. 2.

4.3. Microscopic level

In this case, the interface is represented by a set of
nodes whose position evolves in time (updated Lagrangian
method). The approximations can represent some field dis-
continuities through the interface using for example the
strategies proposed in[13,23]. Thus, inFig. 7, an example of
bubble shape evolution in the microscopic scale is depicted.
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5. Conclusions

Different simulation strategies able to predict the evolu-
tion of the microstructure during foam expansion have been
described. The first one concerns a fixed mesh simulation
based on the application of the finite element method involv-
ing some stabilisations to treat the hyperbolic character of
advection terms. The second alternative lies on the use of a
meshless technique, in the context of an updated Lagrangian
strategy. A deep comparison between both techniques is a
work in progress.

References

[1] P. Chirivella, F. Chinesta, M. Godet, Experimental analysis of the
induced anisotropy in foam forming processes, Internal Report,
LRTMM-CNAM, Paris, 2000.

[2] M. Sussman, P. Smereka, S. Osher, A level set approach for comput-
ing solutions to incompressible two-phase flows, J. Comput. Phys.
114 (1994) 146–159.

[3] M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, M. Welcome,
An adaptative level set approach for incompressible two-phase flows,
J. Comput. Phys. 148 (1999) 81–124.

[4] M. Sussman, E. Fatemi, An efficient interface preserving level set
redistancing algorithm and its applications to interfacial incom-
pressible fluid flows, SIAM J. Sci. Comput. 20 (4) (1999) 1165–
1191.

[5] M. Sussman, E. Puckett, A coupled level set and volume-of-fluid
method for computing 3D and axisymmetric incompressible
two-phase flows, J. Comput. Phys. 162 (2000) 301–337.

[6] N. Sukumar, D. Chopp, N. Moes, T. Belytschko, Modeling holes
and inclusions by level sets in the extended finite element method,
Comput. Meth. Appl. Mech. Eng. 190 (2001) 6183–6200.

[7] J.M. Melenk, I. Babuska, The partition of unity finite element method:
basic theory and applications, Comput. Meth. Appl. Mech. Eng. 39
(1996) 289–314.

[8] F. Chinesta, Predicting material defects in reactive polymeric systems,
Int. J. Form. Process. 5 (2–3) (2002) 259–268.

[9] C. Hirt, B. Nichols, Volume of fluid method for the dynamics of
free boundaries, J. Comput. Phys. 14 (1974) 227–253.

[10] T. Belytschko, Y. Kronggauz, D. Organ, M. Fleming, Meshless meth-
ods: an overview and recent developments, Comput. Meth. Appl.
Mech. Eng. 139 (1996) 3–47.

[11] N. Sukumar, B. Moran, T. Belytschko, The natural elements method
in solid mechanics, Int. J. Numer. Meth. Eng. 43 (1998) 839–887.

[12] E. Cueto, M. Doblaré, L. Gracia, Imposing essential boundary con-
ditions in the natural elements method by means of density-scaled
alpha-shapes, Int. J. Numer. Meth. Eng. 49 (2000) 519–546.

[13] J. Yvonnet, Ph. Lorong, D. Ryckelynck, F. Chinesta, Interpolation na-
turelle sur les domains non-convexes parl’utilisation du diagramme
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with application to Voronöı polytopes, The Comput. J. 24-2 (1981)
167–172.

[22] M.A. Martinez, E. Cueto, M. Doblare, F. Chinesta, A meshless sim-
ulation of injection processes involving short fibers molten compos-
ites, Int. J. Form. Process. 4 (3–4) (2001) 217–236.

[23] E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, M. Doblaré, Overview
and recent developments in Natural Neighbour Galerkin methods,
Arch. Comput. Meth. Eng. 10/4 (2003) 307–384.

7


	Induced anisotropy in foams forming processes: modelling and simulation
	Introduction
	Mechanical modelling
	Macroscopic model
	Microscopic model

	Fixed mesh simulation
	Macroscopic level
	Microscopic level

	Updated Lagrangian simulation
	The natural element method
	Macroscopic level
	Microscopic level

	Conclusions
	References




