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This paper presents the development and application of a numerical procedure for the simulation of the flow

phenomena involved in composite manufacturing processes. The kinematic resolution combines a discretization of the

volume fraction evolution equation and the verification of the movement and the incompressibility equations in a fixed

mesh. We consider a variational formulation of Darcy�s flow weighted by the volume fraction and the variational

formulation of a pseudo-behaviour associated with the empty part of the domain weighted by its complementary

function. For the integration of the advection equation, which governs the volume fraction evolution, a second-order

scheme with flux limiters has been used. In order to validate the proposed method, numerical results in one and two

dimensions are presented.
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1. Introduction

Liquid composites moulding (LCM) processes and, particularly, resin transfer moulding (RTM) are

being increasingly used in the manufacture of fiber-reinforced composite materials. Many of the final

qualities of the piece are determined during the injection and the curing. Therefore, the numerical simu-
lation of these processes can help us to optimise the design and manufacture of these pieces. A good

composite product can be only obtained when the reinforcement is fully impregnated by the resin and
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properly cured. Several numerical methods have been proposed to simulate the resin flow in RTM pro-
cesses.

Once the governing equations in the macroscopic scale are established, one needs to introduce numerical

techniques for their integration. The numerical treatment involves the description of a moving free surface

(the flow front), a fundamental issue in the simulation of mold filling processes. The shape and location of

this flow front can be computed, and then the boundary of the saturated domain must be continuously

redefined at each time step during the integration. Two different kind of numerical procedures can be used

to simulate injection processes: moving grid techniques [11] and fixed grid approaches [1,18]. The moving

grid techniques are based on frequent remeshing of the resin saturated part of the mold. The accuracy of the
moving grid techniques is generally good, but new meshes must be created, which results high CPU time

consuming. Methods have been developed to reduce the frequency of remeshing about one decade ago (see

the works of Tezduyar [13–15] and its review paper [16] and the references therein). However, in some

classes of problems it may not be possible to reduce the remeshing frequency to a practical level. Moreover,

an adequate management of the flow front in the neighbouring of the mold walls and the interaction be-

tween two fronts (molds with inserts or multiple injection ports) must be incorporated in the numerical

scheme.

The numerical method used in this paper is based on the resolution of the equation governing the resin
presence function (resin volume fraction) in a fixed mesh. Due to the problems associated with the mass

conservation, it is very frequent to use a mesh for the computation of the pressures field and other one to

update the flow domain. This method needs two discretisations of the mold, one to solve Darcy�s equation
and another to actualise the fluid domain. There is a control volume cell associated with each node of

the finite elements mesh. The main advantage of the control volume method is that it satisfies automatically

the mass conservation. The flow front location is defined by the partially filled control volumes. Once the

pressure field is computed at a given time, the velocity in each element is obtained from the Darcy�s
equation. Then the flow across each control volume can be easily calculated, and the volume fraction
updated. The flow governing equations are applied only in the filled region and a null pressure is imposed at

the nodes whose control volumes are partially filled or empty. At each iteration the time step selected is

chosen as the shortest required to fill completely a control volume. On the other hand, Advani [1] use a

modified element technique in which the elements and the control volumes coincide, it eliminates the error

due to the deform elements and guarantees the mass conservation.

In the method proposed by Trochu et al. [18], the control volumes coincide with the finite elements. In

this case, however, the pressure field cannot be obtained from the usual continuous interpolation between

elements, because in that case, the velocity becomes discontinuous between elements and the conservation
of the resin mass is not satisfied. Hence, Trochu proposes the use of a non-conforming linear finite element

approximation of the pressure field, in which, in spite of that the pressure is discontinuous on the element

boundaries (except at the middle point), the velocity remains continuous between elements, yielding a

numerical model that satisfies locally the resin mass conservation.

The numerical model proposed in this work uses the same mesh in the pressure calculation and in the

fluid domain updating. However, it employees a linear and continuous interpolation for the pressure field

(conforming method). This strategy is based on the discretisation of the flow variational formulation in the

domain occupied by fluid and the variational formulation of a null pressure condition in the empty part of
the mold. A weighting formulation will be considered in the partially filled elements, where the weight

function depends on the fluid fraction in each element. The fluid fraction will be updated by means of a

second-order upwinding technique using flux limiters, due to the hyperbolic character of the equation

governing its evolution (advection equation).

The numerical resolution of hyperbolic equations has been extensively treated during the last decades

due to the difficulty of obtaining schemes that reproduce with great accuracy the solution in smooth regions

as well as in presence of discontinuities (see, for instance [8,10,17]). First-order upwind schemes have been
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used to approximate solutions of conservation laws. These methods have a strong numerical dissipation in
the neighbourhood of discontinuities giving a low accuracy in smooth regions of the solution. In order to

avoid this problem, some new shock-capturing finite difference schemes have been proposed. These tech-

niques are of second-order in smooth regions of the solution, without generating the spurious oscillations

associated with the conventional second-order schemes, such as Lax–Wendroff, in the presence of dis-

continuities. An important kind of these schemes was introduced by Harten [7]. They are the total variation

diminishing (TVD) schemes, which guarantee that monotone functions remain monotone and second-order

accuracy in the numerical solution. One version of these techniques are the flux limiters, introduced by

Sweby [12], and based on the definition of hybrid schemes that use second-order fluxes in smooth regions of
the solution, with a limitation of the numerical fluxes, to avoid numerical oscillations, in the vicinity of the

discontinuities.

The main aim of this work is the description of a numerical model for RTM simulations in which the

fluid domain is updated by using a second-order scheme with flux limiters. We observe, in the one-

dimensional case, that when the injection takes place through one of the domain boundaries, the original

version of the flux limiters gives excellent results. However, this technique is not adapted to multi-point

injection. For this reason, a new version of the flux limiters will be proposed that provide excellent results

regardless of the position of the injection points. This formulation will be adapted to treat also 2D models.
In order to select the optimal numerical scheme, different flux limiters (Minmod, Superbee and Monot-

onized Centered) have been adapted, tested and compared, to update the volume fraction in the simulation

of the RTM process. Finally, this scheme has been incorporated to the new aforementioned technique

developed by the authors for RTM simulation.

The organization of this paper is as follows. In Section 2, we present the RTM flow model, whose

numerical discretisation will be described in Section 3. In order to compute the pressure and velocity fields

we use an extended variational formulation that combines the governing equations associated with the filled

and empty domains. Then a new version of the flux limiters technique has been developed in one- and two-
dimensional cases in order to update the volume fraction in the context of the RTM process. Section 4 is

devoted to present some numerical results, to finish with the concluding remarks given in Section 5.

2. Governing equations

The resin impregnation is usually modelled as a flow in porous media. The model equations which

describe this process are given by:

• Darcy�s law, which states that the flow velocity, v, is proportional to the pressure gradient, according to

v ¼ �
K

l
rp; ð1Þ

where K is the preform permeability tensor, l is the viscosity of the fluid and p is the pressure.

• The incompressibility of the fluid, expressed as

Divv ¼ 0; ð2Þ

• The evolution of the resin volume fraction I (fluid presence function), which is governed by the following

transport equation:

oI
ot

þ v � rI ¼ 0: ð3Þ
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The value of the variable I measures the degree of saturation and will be used to know the position of the

flow front at each time step. The volume fraction, I , is defined as

Iðx; tÞ ¼ 1 if x 2 XfðtÞ;
0 if x 62 XfðtÞ;

�

where XfðtÞ denotes the fluid domain at time t (see Fig. 1).

If Eq. (1) is introduced into Eq. (2), the pressure at each point of the domain occupied by the fluid results

from the solution of

Div
K

l
rp

� �
¼ 0: ð4Þ

If we assume that the permeability and the viscosity are constants and that the permeability is ortho-

tropic, then the permeability tensor can be written in a diagonal form in the principal directions and Eq. (4)

can be simplified

kxx
l

o2p
ox2

�
þ kyy

l
o2p
oy2

�
¼ 0; ð5Þ

where kxx and kyy are the preform permeability in the principal directions.
The whole domain (mold) is denoted by X, being oX its boundary

X ¼ XfðtÞ [ XeðtÞ;
where XfðtÞ denotes the resin saturated part of the mold at time t, and XeðtÞ is the empty part of the domain.

The boundaries of XfðtÞ and XeðtÞ are oXfðtÞ and oXeðtÞ, respectively. The filled and empty domains of the

mold has a common boundary, which corresponds to the fluid flow front oXadðtÞ (see Fig. 1).

The boundary conditions are:

• The pressure gradient in the normal direction to the mold walls is zero. Physically this means that ma-

terial cannot leaves the mold cavity through the mold walls.

• The pressure or the flow rate are prescribed on the inflow boundary (injection nozzle), oX�, i.e.

Fig. 1. One and two-dimensional models.

4



pðx 2 oX�Þ ¼ Pi or vðx 2 oX�Þ ¼ vi;

oX� ¼ fx 2 oX; vðxÞ � nðxÞ < 0g;
where nðxÞ is the unit outwards vector, defined on the boundary at point x.

• The pressure is zero at the flow front, that is

pðx 2 oXadðtÞÞ ¼ 0:

Moreover, we assume that at time t ¼ 0, the mold is empty, i.e.

Iðx; t ¼ 0Þ ¼ 0 if x 2 X;
1 if x 2 oX�:

�

3. Numerical modelling

In this section we propose an efficient technique to simulate the flow in a porous medium. The resolution

of the governing equations will be performed by means of a conforming finite element Galerkin technique,

whereas that for the fluid domain updating a volume of fluid (VOF) technique [9] will be employed. The

resolution algorithm is based in solving until the complete filling of the mold (while jXfðtÞj < jXj), the next
three problems:

Step 1: Obtain the pressure field using a finite elements discretisation of the variational formulation ex-

tended to the whole domain.

Step 2: Compute the velocity field from the Darcy�s law.
Step 3: Update the fluid presence function I (which defines the fluid and empty domains) by integrating the

transport equation governing its evolution.

3.1. Flow kinematics resolution

In order to achieve steps 1 and 2, we propose to combine the filled domain and the empty domain

behaviours in the same variational formulation. We note that the governing equation to impose in the filled

domain is given by Eq. (4) whereas in the empty region of the mold a null pressure will be imposed

p ¼ 0 in XeðtÞ:
Thus, the variational formulation associated with the empty region is given byZ

XeðtÞ
pp� dX ¼ 0; ð6Þ

where p� denotes the weighting function, whereas the variational formulation of Eq. (4) in the fluid domain

resultsZ
Xf ðtÞ

rp� �
K

l
rpdX ¼ 0: ð7Þ

Both variational formulations (Eqs. (6) and (7)) can be combined and extended to the whole domainZ
X

Irp� �
K

l
rp

�
þ aðIÞð1� IÞpp�

�
dX ¼ 0;
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where aðIÞ is required in order to guarantee the dimensional homogeneity. In a former work [4], the authors

have analyzed the effect and optimal choice of this function.

Since in the practice, we cannot avoid the existence of partially filled elements, with 0 < I < 1, I could be

replaced by a general weighting function f ðIÞZ
X

f ðIÞrp� �
K

l
rp

�
þ aðIÞð1� f ðIÞÞpp�

�
dX ¼ 0: ð8Þ

We observe that Eq. (8) consists in two terms, one that models the flow in the domain occupied by fluid and
the other one that models the pseudo-behaviour (null pressure) imposed in the empty domain. In the flow

front neighbouring, where 0 < I < 1, a weighting of both behaviours is applied. In the case of taking the

weighting function equal to the volume fraction, f ðIÞ ¼ I , the previous expression constitutes a linear

weighting of the flow variational formulation, valid in the domain occupied by the fluid, where I ¼ 1, and

the null pressure condition to be imposed in the empty domain, where I ¼ 0. In any case, the weighting

function, f ðIÞ, must vanish in the empty domain and must take a unit value in the filled domain. If we want

to avoid a weighting of both behaviours in the partially filled elements, a discontinuous function f ðIÞ can be

defined as it is shown in Fig. 2, by using a jump function, where Ith represents at threshold value, from
which we considered an element as full filled (I > Ith) or empty (I < Ith) in the kinematics computation.

The criterion for an optimal choice of aðIÞ and the weighting function f ðIÞ is that the resulting scheme

should be conservative and have a minimal numerical diffusion in the flow front location. A detailed study

about the choice for these functions can be found in [4,5].

The discretisation of the extended variational formulation is carried out by using a standard finite

elements method. We assume the domain X divided in N elements

X ¼
[N
e¼1

Xe

then the FE discretisation of Eq. (8) becomes

XN
e¼1

Z
Xe

rp� �
K

l
rpef ðIeÞ

��
þ ð1� f ðIeÞÞaðIeÞpep�

�
dX

	
¼ 0

from which results the pressure distribution at each time step (Step 1). Then, the velocity is computed from

Darcy�s law (1) (Step 2) and the flow front and fluid domain updating will be achieved by solving Eq. (3)
with the just computed kinematics (Step 3) whose numerical treatment is described in the next section.

Fig. 2. Definition of f ðIÞ as a jump function.
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Remark 1. In spite of that the discretisation of the variational formulation extended to the whole domain

given by Eq. (8) involves the unknown nodal pressure at each node of the whole domain, in fact, in the

resolution, a null pressure is imposed in the nodes surrounded by fluid-free elements, in order to improve

the computational efficiency.

3.2. Fluid domain evolution and flow front tracking

Once the pressure and velocity fields have been calculated at time t, the fluid fraction can be updated in
order to compute the fluid domain and determine the new position of the flow front (Step 3). The evolution

of the variable I is given by the aforementioned linear advection equation

oI
ot

þ v � rI ¼ 0 ð9Þ

with the initial condition

Iðx; t ¼ 0Þ ¼ 0 if x 2 X;
1 if x 2 oX�

�
ð10Þ

and the boundary condition Iðx 2 oX�; tÞ ¼ 1.

Eqs. (9) and (10) define an initial value problem for an hyperbolic conservation law. There are several

and sophisticated schemes for the numerical resolution of these problems (see, for instance, [6–8,10,17]),

most of them are characterized by checking the TVD property [7] that allows to define second-order non-

oscillatory schemes. These schemes can be classified in two main groups: slope limiters [19,20] and flux

limiters [2,3,12]. Our objective is apply the flux limiters suggested by Sweby in [12] to RTM processes and

compare the influence of different flux limiters found in the literature in the numerical solution accuracy.

Remark 2. The proposed strategy can be considered as a particular case of the EDICT strategy proposed

by Tezduyar (see [16] and the references therein) when an explicit formulation is used and different sta-

bilization techniques are applied in the discretisation of the advection equation governing the fluid domain

evolution. In our case, no multi-level meshes are employed.

3.2.1. A flux limiter strategy for one-dimensional problems

Firstly we describe the original version of that technique and later we will propose some improvements in
order to obtain more accurate schemes to simulate general injection processes.

In order to integrate the transport equation, we take into account the expression of a conservative

scheme defined by

Inþ1
i ¼ Ini � kðf̂fiþ1=2 � f̂fi�1=2Þ; ð11Þ

where the subscript denotes the considered element, the superscript indicates the time step, and k the ratio

between the time step and the element size, i.e. k ¼ Dt=Dx, which is assumed constant. From now on, and

for a sake of simplicity, we will omit the superscript in the variables corresponding to the time step n and we

define fk ¼ Ikvk, where vk is the velocity in the element k.
The particular case in which the average flux is obtained from a simple Taylor�s development in the

intermediate time, i.e., the scheme given by Eq. (11) with f̂fiþ1=2 defined by

f̂f LW
iþ1=2 ¼ f nþ1=2

iþ1=2 ¼ 1
2
fi



þ fiþ1 � ðkviþ1=2Þðfiþ1 � fiÞ

�
;

describes the well-known second-order scheme of Lax–Wendroff, that generates numerical oscillations in
the regions involving solution discontinuities. In the previous expression,

7



viþ1=2 ¼ ðvi þ viþ1Þ=2:

On the other hand, the first-order upwind scheme is obtained substituting in Eq. (11) the average flux

f̂fiþ1=2 by

f̂fUP
iþ1=2 ¼ 1

2
fi



þ fiþ1 � signðkviþ1=2Þðfiþ1 � fiÞ

�
: ð12Þ

Thus, the second-order flux average defining the Lax–Wendroff scheme can be written as the sum of the

first-order upwind flux with an additional second-order antidiffusive term that provide the second-order

accuracy, i.e.

f̂f LW
iþ1=2 ¼ f̂fUP

iþ1=2 þ 1
2
signðkviþ1=2Þ
�

� ðkviþ1=2Þ

ðfiþ1 � fiÞ:

The Sweby�s limiters [12] are based on limiting this last term (antidiffusive flux), so that it is cancelled in

the discontinuity regions, preserving the TVD property and, therefore, a non-oscillatory behaviour. In this

way, the discretisation corresponding to the Sweby�s limiters is carried out considering in Eq. (11) the next

definition for the flux

f̂f SW
iþ1=2 ¼ f̂fUP

iþ1=2 þ 1
2
vðriþ1=2Þ signðkviþ1=2Þ

�
� ðkviþ1=2Þ


ðfiþ1 � fiÞ;

where v is the limiting function that avoids the presence of oscillations and the parameter riþ1=2 depends on

two consecutive gradients of the solution

riþ1=2 ¼

Ii � Ii�1

Iiþ1 � Ii
if viþ1=2 P 0;

Iiþ2 � Iiþ1

Iiþ1 � Ii
if viþ1=2 < 0:

8>><
>>:

In general, vðrÞ ¼ 0 if r6 0 to guarantee a first-order accuracy in the neighbourhood of a discontinuity,
since r6 0 implies that the slopes of the solution have opposite signs, i.e. that Ii is an extreme of the solution

(see Fig. 3). On the other hand, it is necessary that vð1Þ ¼ 1 to obtain a second-order scheme in the zones

where the solution is smooth enough. The limiter function should be chosen verifying both conditions and

maximizing the antidiffusive flux. In general, the choice v ¼ 0 gives rise to the original first-order upwind

flux, whereas the choice v ¼ 1 defines the second-order Lax–Wendroff numerical flux.

Different flux limiters can be found in the literature [10,12]. In this paper, we analyze the following classic

limiters:

vMMðrÞ ¼ maxf0;minðr; 1Þg Minmod;
vSBðrÞ ¼ maxf0;minð2r; 1Þ;minðr; 2Þg Superbee;
vMCðrÞ ¼ maxf0;minð2r; 2; ð1þ rÞ=2Þg Monotonized Centered:

We have observed that in the RTM simulation these schemes cannot be applied in the case of injecting

through an internal point of the mold or when two or more injection points are used. This behaviour is

basically due to the fact that the first-order upwind scheme and the flux limiters are based on the sign of the

average velocity between two consecutive elements, which can be different to the sign of the velocity of the

Fig. 3. Localization of local extremes.
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adjacent elements. In order to illustrate this fact we illustrate in Fig. 4 three different situations according to
the location of the injection point(s).

We can notice in Fig. 4 that to identify if the flow is coming or leaving the element i it seems reasonable

to check the sign of the velocity of adjacent elements and not the sign of the average velocity between

elements. When the injection point is located in an extreme of the mold the aforementioned schemes de-

scribe correctly this process because

signðviþ1=2Þ ¼ signðviÞ; 8i:

However, in case of injecting through an internal point or using several points, this equality is not verified

always and the previous schemes cannot be applied.

In order to define accurate and general numerical schemes, we propose the following improvements:

firstly, we define the first-order upwind scheme

Inþ1
i ¼ Ini � kðf þ

iþ1=2 � f �
i�1=2Þ; ð13Þ

where

f þ
iþ1=2 ¼ 1

2
ffi þ fiþ1 � signðviþ1Þðfiþ1 � fiÞg;

f �
iþ1=2 ¼ 1

2
ffi þ fiþ1 � signðviÞðfiþ1 � fiÞg:

Likewise, the new version for the second-order schemes using limiters will be defined from the following
expressions:

Inþ1
i ¼ Ini � kðf SWþ

iþ1=2 � f SW�
i�1=2Þ

being

f SWþ
iþ1=2 ¼ f þ

iþ1=2 þ 1
2
vðrþiþ1=2Þ½signðviþ1Þ � ðkviþ1=2Þ�ðfiþ1 � fiÞ;

f SW�
iþ1=2 ¼ f �

iþ1=2 þ 1
2
vðr�iþ1=2Þ½signðviÞ � ðkviþ1=2Þ�ðfiþ1 � fiÞ

and

rþiþ1=2 ¼

Ii � Ii�1

Iiþ1 � Ii
if viþ1 P 0;

Iiþ2 � Iiþ1

Iiþ1 � Ii
if viþ1 < 0;

8>><
>>: r�iþ1=2 ¼

Ii � Ii�1

Iiþ1 � Ii
if vi P 0;

Iiþ2 � Iiþ1

Iiþ1 � Ii
if vi < 0:

8>><
>>:

Note that now the schemes have been defined taking into account that the flow could be coming in an

element from their neighbouring elements.

Fig. 4. One-dimensional flow: different situations.
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3.2.2. A flux limiter strategy for two-dimensional problems

Following a similar reasoning and assuming a mesh composed of triangles, we propose the following

discretisation of Eq. (9) for the two-dimensional case

Inþ1
i ¼ Ini �

Dt
AðiÞ

X3

j¼1

lijf̂f ij
� nij; ð14Þ

where AðiÞ is the area of the control volume i, j represents a generic neighbouring cell (triangle), nij is the
outward unit vector on the common edge of the triangles i and j and lij is the length of that edge.

As in the one-dimensional case, the numerical fluxes defining a first-order upwind scheme in the two-

dimensional case could be given replacing f̂f
ij
� nij in Eq. (14) by

f̂f
UP

ij
� nij ¼ 1

2
fðf

i
þ f

j
Þ � nij � signðcosðhijÞÞðf j

� f
i
Þ � nijg ð15Þ

in which f
k
¼ vkIk for k ¼ i; j, respectively, and hij denotes the angle between nij and the velocity vector of

the adjacent cell vj. Moreover, since

X3

j¼1

lijnij ¼ 0

for any triangle, then

X3

j¼1

lijðf j
� f

i
Þ � nij ¼

X3

j¼1

lijðf j
þ f

i
Þ � nij

and Eq. (14) can be rewritten as

Inþ1
i ¼ Ini �

Dt
AðiÞ

X3

j¼1

lijf
�
ij
� nij; ð16Þ

where

f �
ij
¼

f
j
� f

i
if cosðhijÞ < 0;

0 if cosðhijÞP 0:

�

We can notice in Eq. (16) that only the incoming characteristics to the control volume i are considered. It is
easy to verify that this new 2D scheme reduces to Eq. (13) when it is restricted to one dimension.

In order to extend the flux limiters technique for the two-dimensional case, we observe that in the present

formulation and by comparison with the classical definition of the second-order Lax–Wendroff scheme in

the one-dimensional case, the numerical flux function associated to the conventional second-order scheme

could be expressed as

f̂f
LW

ij
� nij ¼

1

2
ðf

i

�
þ f

j
Þ � nij �

Dt
dij

vij � nij
� �

ðf
j
� f

i
Þ � nij

	
; ð17Þ

where vij denotes an average velocity between the cells i and j (the arithmetic average, by example) and dij

represents the distance between the baricenters of the triangles i and j.
Analogously, by comparing Eq. (17) with the numerical flux given by Eq. (15), the extension of the flux

limiters techniques to the 2D case requires to replace f̂f
ij
� nij in Eq. (14) by

f̂f
SW

ij
� nij ¼ f̂f

UP

ij
� nij þ

1

2
vðrijÞ signðcosðhijÞÞ

�
� Dt

dij
vij � nij

�
ðf

j
� f

i
Þ � nij:
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Our strategy to define rij is based on a simple heuristic 2D extension of the one proposed in the 1D case,

which compare consecutive variations of the numerical solution according to the flow coming or leaving an

element from their neighbouring elements

rij ¼
mink 6¼j;cosðhikÞ<0

Ii � I ik
Ij � Ii

� 	
if cosðhijÞP 0;

mink 6¼i;cosðhjkÞ<0

Ijk � Ij
Ij � Ii

� 	
if cosðhijÞ < 0:

8>><
>>:

For a generic triangle i, we have denoted by I ik (with k 6¼ j) the value of the volume fraction I in the adjacent

triangles of i, different to j. Analogously, we have denoted by Ijk (with k 6¼ i) the value of the volume fraction

I in the adjacent triangles of j, different to i.
In order to detect discontinuities in the numerical solution, when the flow goes from i to j we compare

the gradients of the solution between the triangles i and j with the gradients of the solution between the

triangle i and their adjacent triangles different to j from which the flow is coming to the triangle i. When
the flow is coming from j to i, we compare the gradients of the solution between the triangles i and j with
the gradients of the solution between the triangle j and their adjacent triangles different to i from which the

flow is coming to the triangle j (see Fig. 5).

4. Numerical examples

In order to evaluate the numerical method just proposed, we analyze both the one- and the two-di-
mensional cases.

4.1. One-dimensional simulation

Exact solutions are available in the one-dimensional case which allows a direct evaluation of the ac-

curacy and facilitates its optimisation. A domain of 1 m of length is considered, where the resin is injected

through the central node with an injection pressure Pi ¼ 3 bars. The preform permeability K and the resin

viscosity l are assumed to be 10�8 m2 and 1 Pa s, respectively. A time step of 0.1 s and f ðIÞ ¼ I have been
considered. At the beginning of the injection process the domain is assumed empty, excepts the two central

elements that represent the injection nozzle. Assuming a constant permeability of the porous medium, the

flow front position at time t is given by

xrfðtÞ ¼ xIP þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ 2

K
l
Pit

s
; xlfðtÞ ¼ xIP �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2l þ 2

K
l
Pit

s
; ð18Þ

Fig. 5. Nomenclature used for the definition of rij.
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where xrf and xlf represent the right and left flow front positions, xr and xl their positions at t ¼ 0 and xIP is

the injection point location. Then, for example, the right flow front velocity and the filling time of the right

part of the mold, become

vfðtÞ ¼
2KPi=lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2r þ 2KPit=l
p ; tfilling ¼

ðL2
r � x2r Þl
2KPi

;

where Lr is the distance from the injection point to the right mold boundary.

Fig. 6 shows the value of the volume fraction 5 s after the beginning of the injection, obtained with the

first-order scheme, Minmod, Superbee and Monotonized limiters, using a uniform mesh of 20 elements. We

can notice the very low numerical diffusion of the flow front, with only two elements located in the flow

front area (0 < I < 1) in spite of the coarse mesh used. As it can be seen in the Fig. 7, all the schemes

overestimate the injected volume, being the first-order scheme the one which exhibits the highest deviation

from the exact solution. The error has been defined from the following time average:

Errorð%Þ ¼ 1

t

Z t

0

AVðt0Þ � IVðt0Þ
IVðt0Þ

����
����dt0 � 100;

where AVðt0Þ denotes the VOF accumulated inside the mold at time t0 (computed from the volume fraction

solution at time t0) and IVðt0Þ denotes the exact injected volume at time t0 (computed directly from the inflow

boundary condition).

As expected, Fig. 8 shows that for a given time, in this case t ¼ 25 s, the solution accuracy increases as

the elements size decreases. Moreover, we can notice that the Superbee flux limiter bring the best results.

Fig. 6. Volume fraction at t ¼ 5 s for different limiters.
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Fig. 9. Evolution of the mass conservation error during the injection process (1D simulation using a mesh of 100 elements).
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Fig. 9 depicts the evolution of the mass conservation error during the injection process, when a mesh
containing 100 elements is considered.

4.2. Two-dimensional simulations

Now we focus on the two-dimensional evaluation of the proposed strategy. In all cases, we have used to

update the volume fraction a second-order scheme with the Superbee flux limiter, because this limiter leads

to the best results in the one-dimensional case.

For the two-dimensional analysis we consider a mold in which, due to its geometry and boundary
conditions, the resulting flow becomes in fact unidirectional, allowing to a comparison with the exact

solution.

The first mold domain considered is 1 m� 0:4 m. A first mesh of 80 triangles is shown in Fig. 10. The

resin is injected through the left boundary with a constant flow velocity vi ¼ ð10�3; 0Þ m/s. The preform

permeability K and the resin viscosity l are 10�7 m2 and 0.1 Pa s, respectively.

As in the one-dimensional case, the volume fraction, I , is used to describe the evolution of the fluid

domain. The initial fluid domain is also depicted in Fig. 10. The grey colour represents the full filled do-

main, whereas the white colour represents the empty domain. Since the injected flow rate is constant, we
know the exact position of the flow front, which progresses linearly in time. The exact flow front position is

represented in all figures with a grey horizontal bar (Fig. 10). Besides, the error between the computed

accumulated volume (numerically computed) and the injected one can be calculated.

A linear weighting function f ðIÞ ¼ I has been considered in the numerical simulations with aðIÞ adjusted
to 2� 10�6 (Pa s)�1.

Fig. 11 shows the pressure fields at times t ¼ 200, 400, 600 and 800 s. Since the injection velocity is

constant, the injection pressure increases as the flow front progresses. As it can be noticed, the pressure

decreases linearly from the inflow boundary to the flow front, being zero in the empty domain, in spite of
the coarse mesh considered in this simulation.

Figs. 12 and 13 represent the evolution of the mass conservation error during the injection process for

two different meshes, the first one (Fig. 12) containing 80 elements and the second one (Fig. 13) with 180

elements. As expected, the error decreases as the number of element increases, being, as in the one-

dimensional case, the Superbee flux limiter the most accurate.

Now, we simulate a 2D mold filling processes with a radial flow. The domain used is a circular mold of

0.5 m of diameter, where a mesh of 512 triangles is considered. The resin is injected through a single point

located at the centre of the mold. An injection pressure of 3 bars, a resin viscosity of 1 Pa s and an isotropic
preform of permeability K ¼ 10�8 m2 are considered.

m
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Fig. 10. Two-dimensional mold domain and Volume Fraction at t ¼ 0.
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Fig. 12. 2D injection simulation: evolution of the mass conservation error using a mesh with 80 elements.
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Fig. 13. 2D injection simulation: evolution of the mass conservation error using a mesh with 180 elements.

Fig. 11. Pressure field at t ¼ 200, 400, 600 and 800 s.
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Fig. 14 shows the pressure fields at t ¼ 0, 2, 4 and 6 s. Small numerical oscillations of the pressure field
appear during the first iterations, that can be removed by a local remeshing.

5. Conclusions

An accurate technique for porous media flow simulation has been presented. This method combines a

discretisation of the fluid fraction evolution equation and the imposition of the equations of motion in a

fixed mesh. The fluid fraction evolution is updated by using a second-order flux limiter scheme. The results
obtained suggest that the present numerical method has a satisfactory capability of simulating the RTM

process.

We have analyzed the behaviour of different flux limiters (Minmod, Superbee and Monotorized Cen-

tered) in the updating of the volume fraction. It has been pointed out that the original version of these

techniques, as they appear in the literature, cannot be applied to specific cases, in particular, in multi-point

injection. With this aim in view, we have proposed some improvements of those techniques that leads

excellent results independently of the position of the injection point. The Superbee limiter provides the best

results, improving significantly the results obtained by using the standard first-order scheme. This strategy
can be also generalized to the 2D case, in the framework of a non-structured mesh of triangles.

For a complete process modelling will be necessary to introduce the energy equations as well as the resin

viscosity evolution during the curing. This modelling can be easily achieved in the framework of the nu-

merical strategy proposed in this paper.
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