On the expressive power of temporal logic for finite words

Abstract : We study the expressive power of linear propositional temporal logic interpreted on finite sequences or words. We first give a transparent proof of the fact that a formal language is expressible in this logic if and only if its syntactic semigroup is finite and aperiodic. This gives an effective algorithm to decide whether a given rational language is expressible. Our main result states a similar condition for the "restricted" temporal logic (RTL), obtained by discarding the until operator. A formal language is RTL-expressible if and only if its syntactic semigroup is finite and satisfies a certain simple algebraic condition. This leads to a polynomial time algorithm to check whether the formal language accepted by an n-state deterministic automaton is RTL-expressible.
Type de document :
Article dans une revue
Journal of Computer and System Sciences (JCSS), Elsevier, 1993, 46, pp.271-294
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00020069
Contributeur : Jean-Eric Pin <>
Soumis le : samedi 4 mars 2006 - 16:15:51
Dernière modification le : jeudi 15 novembre 2018 - 20:26:56
Document(s) archivé(s) le : samedi 3 avril 2010 - 22:42:00

Identifiants

  • HAL Id : hal-00020069, version 1

Citation

Joelle Cohen, Dominique Perrin, Jean-Eric Pin. On the expressive power of temporal logic for finite words. Journal of Computer and System Sciences (JCSS), Elsevier, 1993, 46, pp.271-294. 〈hal-00020069〉

Partager

Métriques

Consultations de la notice

444

Téléchargements de fichiers

221