Estimation of anisotropic Gaussian fields through Radon transform

Abstract : We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes admit a spectral density satisfying the previous assumptions. Finally we use simulated fields to test the proposed estimator in different anisotropic and isotropic cases. Results show that the estimator behaves similarly in all cases and is able to detect anisotropy quite accurately.
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, 2008, 12, pp.30--50
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00019841
Contributeur : Hermine Biermé <>
Soumis le : mercredi 13 décembre 2006 - 11:11:58
Dernière modification le : mardi 11 octobre 2016 - 13:28:52
Document(s) archivé(s) le : lundi 20 septembre 2010 - 18:03:06

Fichiers

Estimation1212.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Hermine Biermé, Frédéric Richard. Estimation of anisotropic Gaussian fields through Radon transform. ESAIM: Probability and Statistics, EDP Sciences, 2008, 12, pp.30--50. <hal-00019841v2>

Partager

Métriques

Consultations de
la notice

157

Téléchargements du document

117