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ABSTRACT

We present in this paper a Bayesian CAD system
for robotic applications. We address the problem of
the propagation of geometric uncertainties, and how
to take into account this propagation when solving in-
verse problems. The methodology used to represent
and handle uncertainties using conditional probabil-
ity distributions on on the system’s parameters and
the sensor measurements is presented. It may be seen
as a generalization of constraint-based approaches in
which we explicitly model geometric uncertainties. Us-
ing this methodology, a constraint is a represented by
a probability distribution instead of a simple equal-
ity or inequality. Numerical algorithms used to apply
this methodology are also described. Using an exam-
ple, we show how to apply our approach by providing
simulation results using our CAD system.

KEYWORDS: Robotics, CAD, Bayesian reasoning,
Monte Carlo methods, Geometric constraints.

1 INTRODUCTION

Using geometric models in robotics and CAD sys-
tems necessarily requires a more or less realistic mod-
eling of the environment. However, the validity of cal-
culations using these models depends on their degree
of fidelity to the real environment and the capacity of
these systems to represent and to take into account
possible differences between these models and reality
when solving a given problem.

This paper presents a methodology based on
Bayesian formalism to represent and handle geometric
uncertainties in robotics and CAD systems. The ap-
proach presented in this paper may be seen as a gener-
alization of constraint-based approaches where uncer-
tainties on models are taken into account. A constraint
on a relative pose between two frames is represented by
a probability distribution on parameters of this pose
instead of a simple equality or inequality.

For a given problem, the marginal distribution on
the unknown parameters is inferred using the proba-
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bility calculus. The original problem is reduced to an
optimization problem over the marginal distribution
to find a solution with maximum probability. In the
general case, this marginal probability may contain an
integral on a large dimension space.

The resolution method wused for this integra-
tion/optimization problem is based on an adaptive ge-
netic algorithm. The problem of integral’s estimation
is approached using a stochastic Monte Carlo method.
The accuracy of this numerical estimation of integrals
is controlled by the optimization process to reduce
computation time.

Experimental results made on the implemented
CAD system have demonstrated the effectiveness and
the robustness of our approach. Numerous geometric
problems have been specified and resolved using our
system, including kinematics inversion under uncer-
tainties, robot calibration, parts’ pose and shape cali-
bration, as well as robotic workcell design. An example
of this experimentation is presented in this paper.

This paper is organized as follows. We first report
related work. In Section 3, we present our specification
methodology, and show how to obtain an optimization
problem. In Section 4, we describe our numerical res-
olution method. We present an example to illustrate
our approach in Section 5, and give some conclusions
and perspectives in Section 6.

2 RELATED WORK

Geometric uncertainties representation and han-
dling is a central issue in the fields of robotics and me-
chanical assembly. Since the precursor work of Taylor
[Taylor, 1976], in which geometric uncertainties were
taken into account in the robot manipulators planning
process, numerous approaches have been proposed to
model these uncertainties explicitly.

Methods modeling the environment using “cer-
tainty grids” [Moravec, 1988] and those using uncer-
tain models of motion [Alami and Simeon, 1994] have
been extensively used, especially in mobile robotics.

Gaussian models to represent geometric uncertain-
ties and to approximate their propagation have been



proposed in manipulators programming [Puget, 1989]
as well as in assembly [Sanderson, 1997]. These meth-
ods have the advantage of commodity of the compu-
tation they require. However, they are only applicable
when a linearization of the model is possible. Another
limitation of these methods is their inability to take
inequality constraints into account.

Geometric constraint-based ap-
proaches [Taylor, 1976, Owen, 1996] using constraint
solvers have been used in robotic task-level program-
ming systems. Most of these methods do not repre-
sent uncertainties explicitly. They handle uncertain-
ties using a least-squares criterion when the solved
constraints systems are over-determined. In the cases
where uncertainties are explicitly taken into account
(as is the case in Taylor’s system), they are solely
described as inequality constraints one possible vari-
ations.

3 PROBABILISTIC GEOMETRIC
CONSTRAINTS SPECIFICATION

In this section, we describe our methodology by giv-
ing some concepts and definitions necessary for proba-
bilistic geometric constraints specification. We further
show how to obtain an objective function to maximize
from the original geometric problem.

3.1 PROBABILISTIC
GRAPH

KINEMATIC

A geometric problem is described as a “probabilis-
tic kinematic graph”, which we define as the directed
graph having a set of n frames S = {S1,---,S,} as
vertices and a set of m edges A = {Ai,;,, -, Ai,jm |
where A;, j, denotes an edge between the parent ver-
tex S;, and its child S;, and represents a probabilistic
constraint on the corresponding relative pose. We call
these edges “probabilistic kinematic links”. A given
edge may describe:

e a modeling constraint (a piece of knowledge) on
the relative pose between the parent frame and
the child one,

e a sensor measurement on the pose of a given en-
tity,

e or a constraint we wish to satisfy to solve the
problem (an objective value with a given preci-
sion, for example).

Each edge A;, j, is labeled by:

1. a probability distribution p(Qi,;,) where @, ;.
is the relative pose vector (6-vector) Qi j, =
(tmtytzrzryrz)T The first three parameters of
this 6-vector represent the translation, while the
remaining three represent the rotation.

2. possible equality /inequality constraints
(Er(Qirin) = 0, Cr(Qiyj,) < 0). These con-
straints represent possible geometric relation-
ships between the two geometric entities at-
tached to these two frames. Their shapes de-
pend on the type of the geometric relationship.
We implement several relationships between ge-
ometric entities in this work, such as points,
polygonal faces, edges, spheres and cylinders.
The details on equality /inequality constraints in-
duced by these relationships can be found in
[Mekhnacha, 1999].

3. a “status” 6-vector describing for each parameter
of Qi,j,., its role (nature) in the problem. A
status can take one of the 3 following values:

e Unknown (denoted X) for parameters rep-
resenting the unknown variables of the
problem and whose values must be found
to solve the problem.

e ['ree (denoted L) for parameters whose val-
ues are only known with a probability dis-
tribution.

e Fized (denoted F') for parameters having
known fixed values that cannot be changed.

In the general case, the kinematic graph may con-
tain a set of cycles. The presence of a cycle represents
the existence of more than one path between two ver-
tices (frames) of the graph. To ensure the geometric
coherence of the model, the computation of the rel-
ative pose between these two frames using all paths
must give the same value. For each cycle containing &
edges, we must have:

L Si i+l Sil it2 Sk—1 k
Ty = Ty *Tigy s » -+ Ty *
Sk 1 81 2 Si—1 4
Tph Ty T
= I, (1)

where T}; is the 4 x 4 homogeneous matrix correspond-
ing to the pose vector @);;, I4 is the 4 x 4 identity
matrix and s;; € {—1,1} is the direction in which
the edge A;; has been used. We call these additional
equality constraints the “cycle-closing constraints”.
They are global constraints involving, for each cycle,
all parameters it contains. The minimal number of
cycles allowing coverage of a connected graph hav-
ing n vertices and m edges is p = m —n + 1 (see
[Gondran and Minoux, 1990]). Consequently, we ob-
tain p cycle-closing constraints for a given problem.

3.2 OBJECTIVE FUNCTION

Given a probabilistic kinematic graph, we are inter-
ested in constructing a marginal distribution over the
unknown parameters of the problem. Maximizing this
distribution will give a solution to the problem.



To do so, we define the following sets of proposi-
tions:

e A set of p propositions {K;}¥_; such as:
i = “cycle ¢; is closed”.

e A set of m propositions {H}7-, such as:
Hi = “Ci(Qiyj) < 0 and Eg(Qiyj,) = 0.

If we denote the unknown parameters of the prob-
lem by X, a solution to a problem is a value of X that
maximizes the distribution

PXHy - HKy - KCy).

For each edge A;j;, if we denote by L;; the set of
parameters having the L status, and by X;; the pa-
rameters having the X status, we can write, using the
probability calculus and the p cycle-closing constraints
(Eq. 1), the following general form:

P(X|Hi- - HnKy - Kp) x p(X)I(X),

I(X) = /dL
P(Liyjy )p(Ha| Xy 4, Liy gy )

p(Lim,fpjm,fp )p(Hm_p|Xim,7pj7n—pL7:m,fpjm,fp)
po, (F1(X, L))p(Hm—p+1|F1(X, L))

po, (Fp(X, L))p(Hm|Fp(X, L)). (2)

For each cycle ¢;, i = 1---p, O; denotes a pose
vector pertaining to ¢; and F; is the function allowing
computation of the value of this pose vector using the
values of all other pose vectors pertaining to ¢; (using
Eq. 1). po, denotes the distribution over O;, while L
is the concatenation of L;, ;,,---, L

im—pJm—p"

4 RESOLUTION METHOD

We described in the previous section how to obtain
an integration/optimization problem from a kinematic
graph:

X* :m}z}x[p(X|H1---Hm/C1---ICP)]. (3)

In this section, we will present the practical meth-
ods we use to approach these problems.

4.1 NUMERICAL
METHOD

INTEGRATION

in real-world applications where integrands may
have complex shapes and integration spaces may

have very high dimensionality. Domain subdivision-
based methods (such as trapezoidal or Simpson meth-
ods) are often used for numerical integration in low-
dimensional spaces. However, these techniques are
poorly adapted for high-dimensional cases.

Using the Trapeze method for example to estimate
a one-dimensional integral using n points, we can
demonstrate that the variance of this estimator vary
as # In the case of a d-dimensional space, if we as-
sume that the number of subdivision steps is n for each
dimension, the variance will vary as #

4.1.1 MONTE CARLO METHODS FOR
NUMERICAL ESTIMATION

Monte Carlo methods (MC) are powerful stochastic
simulation techniques that may be applied to solve op-
timization and numerical integration problems in large
dimensional spaces. Since their introduction in the
physics literature in the 1950s, Monte Carlo meth-
ods have been at the origin of the recent Bayesian
revolution in applied statistics and related fields, in-
cluding econometrics (see [Geweke, 1996] for exam-
ple) and biometrics. Their application in other fields
such as image synthesis (see [Keller, 1996]) and mobile
robotics (see [Dellaert et al., 1999]) is more recent.

Principles
The principle of using Monte Carlo methods for nu-
merical integration is to approximate the integral

1= [ pigle) ' 4)

by estimating the expectation of the function g(x) un-
der the distribution p(z)

= / p(2)9(x) diz = (g(x)). (5)

Suppose we are able to get a set of samples {z(V} ¥ |
(d-vectors) from the distribution p(x), we can use these
samples to get the estimator

F= 5> g, (6

Clearly, if the vectors {z() 1}, are generated from
p(z), the variance of the estimator I = + 3, g(z(¥)
0_2

will decrease as % where o? is the variance of ¢:

o = / p(2)(g(z) — §)? dix, (7)

and § is the expectation of g.

This result is one of the important properties of
Monte Carlo methods:

The accuracy of Monte Carlo estimates is in-
dependent of the dimensionality of the integra-
tion space.



4.1.2 USING MC METHODS FOR OUR
APPLICATION

Using an MC method to estimate the integral (2)
requires:

1. To sample a set of N points {LM}Y, from
the prior distribution p(L) such that the sam-
pled points respect local equality /inequality con-
straints (i.e. {H;};~;" have the value true).

2. To estimate the integral I(X) using the set
{LW}IN | of points as follows:

i(x) -
1 N
v

PO, (FL(X, LO))p(Hin—p1 | Fi (X, LV))

PO, (Fp(X, LD))p(Hn| Fp (X, LD)).

Points sampling
The set of N points used to estimate the integral may
be sampled in various ways.

Since parameters pertaining to different kinematic
links are independent, we decompose the “state vec-
tor” L (concatenation of L, j,,- -+, Li,,_ 4, ,) tom—p
components {L;, ;. }r—, and apply a local sampling
algorithm (see [Geweke, 1996]). Updating the state
vector L

Lo — (L(.t) LM

i1j17 Ti2j2”

R A SO )

ik gk’ ? irrL—pjnL—p

requires to update only one component L;, ;,

t+1) _(r® 7@ 0 @D 0 p (@)

L )= (thl’Lizjz’ ’Likjk- ’ ’Lim—pjm—p)'

N iterations of this procedure gve us the set
{LW}N | that will be used for estimating the integral.

To update a component L;,;, (a set of parameters
pertaining to the same pose vector @Q;,, ), we have to
take into account possible dependencies between these
parameters.

Consequently, to update a component L
have to face two problems.

injrr W€

e Candidate point sampling
A candidate L7, ;, is drawn from the distribution
p(Li,j,.)- Two cases are possible:

— We dispose of a direct sampling method
from p(L;,;, ). It is the case of uniform and
Gaussian distributions for example.

— We do not dispose of a direct sampling
method from p(L;, ;). Therefore, an indi-
rect sampling method has to be used. In
this work, we choose to use a Metropolis
sampling algorithm (see [Geweke, 1996]).

Figure 1: Principle of categorical rejection sampling:
the candidate point is rejected because it does not re-
spect the Face-On-Face constraint.

e Candidate validity checking
Suppose we have a geometric relationship be-
tween to geometric entities F; and Ej;. A ge-
ometrical calculus depending on the type of
this relationship allows checking the constraint
Cr(Qiyj,) < 0. If this constraint is respected
(i-e. p(Hk|XLiyj,) = 1), the candidate L ;, is

accepted, otherwise it is rejected .

Figure 1 shows a Face-On-Face relationship ex-
ample.

4.2 OPTIMIZATION METHOD

The optimization method to be chosen for our ap-
plication must satisfy a set of criteria in relation to
the shape and nature of the function to optimize. The
method must:

1. be global, because the function to optimize is
often multimodal,

2. allow multiprecision computation of the objec-
tive function. Its estimation with high accuracy
may require long computation times,

3. allow parallel implementation to improve effi-
ciency.

For our application, we chose a genetic algorithm
that satisfies these criteria. First, we present the gen-
eral principles of these algorithms. Then, we discuss
the practical problems we faced when using genetic
algorithms in our application, and give the required
improvements.

4.2.1 PRINCIPLES OF GENETIC AL-
GORITHMS

Genetic algorithms (abbreviated GA) are stochas-
tic optimization techniques inspired by the biologi-
cal evolution of species. Since their introduction by
Holland [Holland, 1975] in the seventies, these tech-
niques have been used for numerous global optimiza-
tion problems, thanks to their ease of implementation
and their independence of application fields. They are
widely used in a large variety of domains including
artificial intelligence [Grefenstette, 1988] and robotics
[Mazer et al., 1998].

The goal of a GA is to find a global optimum of a
given function F' over a search space S.



During an initialization phase, a set of points (in-
dividuals) are drawn at random from the search space
S that is discretized with a given resolution. This set
of points is called a population.

Each individual I is coded by a string of bits. It
represents a solution of the problem and its adequacy
is measured by a value F'(I).

The fundamental principle of genetic algorithms is:
“the better the adequacy of an individual, the larger is
the probability of selecting it for reproduction”. “Ge-
netic operators” are applied to the selected individ-
uals to generate new ones. For a given size of pop-
ulation, better individuals obtained by reproduction
replace initial ones. This process is iterated until a
convergence criterion is reached.

The standard sequential genetic algorithm can be
described as follows. First, an initial population is
drawn at random from the search space, and the fol-
lowing cycle is then performed.

1. Selection: Using the function F, pairs of indi-
viduals are selected. The probability of selecting
an individual I grows with the value of F(I) for
this individual.

2. Reproduction: Genetic operators are applied
to the selected individuals to produce new ones.

3. Evaluation: The values of F' are computed for
the new individuals.

4. Replacement: Individuals in the current pop-
ulation are replaced by better new individuals.

Many genetic operators are available. However, the
more commonly used are “mutation” and “cross-over”.
For a given pair of individuals, the cross-over opera-
tor consists of first cutting the two strings of bits in
a randomly chosen place, and then building two new
individuals by interchanging the cut parts of the start-
ing strings. The mutation operator consists of flipping
some randomly chosen bits of an individual.

In the following, we will use G(X) to denote the
objective function p(X|Hq - Hm K1 - - Kp).

4.2.2 NARROWNESS OF THE OB-
JECTIVE FUNCTION - CON-
STRAINT RELAXATION

In our applications, the objective function G(X)
may have a narrow support (the region where the value
is not null) for very constrained problems. The initial-
ization of the population with random individuals from
the search space may give null values of the function
G(X) for most individuals. This will make the evolu-
tion of the algorithm very slow and its behavior will
be similar to random exploration.

To deal with this problem, a concept inspired from
classical simulated annealing algorithms consists of in-
troducing a notion of “temperature”. The principle

is to first widen the support of the function by chang-
ing the original function to obtain non-null values even
for configurations that are not permitted. To do so, we
introduce an additional parameter we call T' (for tem-
perature) for the objective function G(X). Our goal
is to obtain another function GT'(X) that is smoother
and has wider support, with
. T
%111%6' (X) = G(X).

To widen the support of G(X), all elementary terms

(distributions) of this later are widened, namely:

e distributions po, (F;(X, L)), where i =1---p.

e inequality constraints p(H;|F;(X, L)), where j =
m—p+1---m.

For example:

e for a Gaussian distribution:

1 _1@-w?

f@ = gt
(z—p)?
ffz) = N ¢ I

V2ro(1+T)

e for an inequality constraint over the interval

[a, b]:
1 fa<ax<bd
flz) = {0 else
1 fa<ax<b
a:faz
fT(x) = e’Eb—a;T ifr<a

_(z=b)? .
e =T  otherwise

In the general case, inequality constraints may be
more complex. Figure 2 shows the case of a Point-On-
Face inequality constraint for a square face.

4.2.3 ACCURACY
OF THE ESTIMATES — MULTI-
PRECISION COMPUTING

The second problem we must face is that only an
approximation G(X) of G(X) is available, of unknown
accuracy. Using a large number of points to obtain
sufficient accuracy may be very expensive in compu-
tation time, so that use of a large number of points in
the whole optimization process is inappropriate.

Since the accuracy of the estimate G(X) of the ob-
jective function depends on the number of points N
used for the estimation, we introduce N as an addi-
tional parameter to define a new function Gy (X).

Suppose we initialize and run for some cycles a ge-
netic algorithm with G, (X) as evaluation function.
The population of this GA is a good initialization for
another GA having Gy,(X) as evaluation function
with Ny > Nj.



Figure 2: The distribution corresponding to inequality constraints induced by a Point-On-Face relationship for a
square face at different values of temperature. The left figure shows the original constraints (7" = 0), while the middle
and the right ones show these constraints relaxed at (7' = 50) and (T = 100) respectively.

4.2.4 GENERAL OPTIMIZATION AL-
GORITHM

In the following, we label the evaluation function
(the objective function) by the temperature T" and the
number N of points used for estimation. It will be
denoted by G (X).

Our optimization algorithm may be described by
the following three phases.

1. Initialization and initial temperature determina-
tion.

2. Reduction of temperature to recreate the original
objective function.

3. Augmentation of the number of points to in-
crease the accuracy of the estimates.

Initialization: The population of the GA is initial-
ized at random from the search space. To minimize
computing time in this initialization phase, we use a
small number Ny of points to estimate integrals. We
propose the following algorithm as an automatic ini-
tialization procedure for the initial temperature Tp,
able to adapt to the complexity of the problem.

INITIALIZATION(AG)
BEGIN
FOR each population[i] € AG’s population DO
REPEAT
population[i] = random(S)
value[i] = GII\}U (populationli])
if (value[i] == 0.0)
T=T+ AT
UNTIL (value[i]> 0.0)
FEND
Re-evaluate(population)
END
where AT is a small increment value.

Temperature reduction: To obtain the original
objective function (7" = 0.0), a possible scheduling pro-
cedure consists of multiplying the temperature, after
running the GA for a given number of cycles ncy, by a
factor @ (0 < @ < 1). In this work, the value of « has
been experimentally fixed to 0.8. We can summarize
the proposed algorithm as follows.

TEMP_REDUCTION(AG)
BEGIN
WHILE (T > T.) DO
FOR i=1 TO nc; DO

Run(AG)
FEND
T=T%*a«
WEND
T =0.0

Re-evaluate(population)
END
where T is a small threshold value.

Augmenting the number of points: At the end of
the temperature reduction phase, the population may
contain several possible solutions for the problem. To
decide between these solutions, we must increase the
accuracy of the estimates. One approach is to multiply
N, after running the GA for a given number of cycles
nce, by a factor 8 (8 > 1) so that the variance of the
estimate is divided by :

Var(GY,y (X)) = %Varw?v(X))

We can describe this phase by the following algo-
rithm.

N_POINTS_AUGMENTATION(AG)
BEGIN
WHILE (N < Npmaz) DO
FOR i=1 TO nce DO

Run(AG)
FEND
N=N*g

WEND
END
where Nz is the number of points that allows convergence
of the estimates G’?V (X) for all individuals of the population.

5 EXAMPLE

In this section, we describe how to use our CAD
system for concrete problems. We present in detail a
calibration problem.

5.1 PROBLEM DESCRIPTION

The purpose of this example is to calibrate the pose
and the size of a 3-D part. More precisely, we are
interested in identifying the parameters of the pose of



Figure 3: A parallelepiped pose and dimensions cali-
bration problem using contact relationships.

Figure 4: The set of contacts to use for calibration.

a parallelepiped on a table, and the 3 dimensions of
this parallelepiped (see Figure 3).

The experimental protocol is as follows. For each
measurement, a 6 DOF arm is moved to a configura-
tion that allows obtaining a contact between a touch
sensor mounted on on the end effector of the arm, and
a face of the parallelepiped. A set of N contacts be-
tween the touch sensor and the faces will give the set
of N measurements (configurations that allow contact)
we will use for calibration (see Figure 4).

The used arm is a 6 DOF Stubli Rx90 manipulator.
It is modeled as a set of parts attached to each other
using probabilistic links. We especially suppose that
we have significant uncertainties on zero positions.

We suppose that the parallelepiped lies on the ta-
ble. Consequently, we have to identify only the x and y
position parameters and the o orientation parameter.
For the size of the parallelepiped, we have to identify
the parameters sz, sy and sz representing distances
between each pair of parallel faces. We used for this
example a set of 10 contacts. For each face (except for
the inferior face which lies in the table), two measure-
ments have been taken. Figure 5 shows the contact
points and the corresponding faces to put back in con-
tact to solve this calibration problem, while Figure 6
gives the kinematic graph corresponding to this prob-
lem.

5.2 RESULTS

We summarize the problem complexity and the sys-
tem performances for this problem using a PowerPC

Figure 5: Contact points and parallelepiped faces to
put back in contact to solve the calibration problem.

Figure 6: The kinematic graph for the calibration
problem.

G3/400 machine in Table 1.

The simulated contacts have been taken at non-null
distances between the touch sensor and parallelepiped
faces. Table 2 gives error values for the 10 measure-
ments. We have to underline that all these contact
errors have positive values because the touch sensor
cannot overlap the parallelepiped.

Table 3 gives simulation values of the parameters to
calibrate and the values obtained after calibration.

5.3 DISCUSSION

This example presents an application of our method
for parameter identification problems. We show espe-
cially that using this method allows:

e to take into account prior information on the pa-
rameters to estimate.

e to take into account, for each measurement (con-
tact), the accuracy of this later by propagating
the uncertainties of the arm model. This allows
an implicit weighting of these measurements (the
more accurate the measurement, the more im-
portance it has in the calibration process).

e to take into account prior information on the
used measurement tool. In this particular ex-
ample where measurements are contact relation-



|| Contact 1 | Contact 2 | Contact 3 | Contact 4 | Contact 5

Simulated errors (mm) || 0.677 |

0.567

[ 0303 | 0792 | 0.724

|| Contact 6 | Contact 7 | Contact 8 | Contact 9 | Contact 10

Simulated errors (mm) || 0.791 |

0.883

0.111

| 0858 | 0383 |

Table 2: Error values used when simulating contacts.

[ a(rad) | sz(mm) [ sy(mm) | sz(mm) |

| Simulation values

[ 900.000 | -900.000 | 0.7854 | 300.000 | 300.000 | 300.000 |

[ Calibration results || 900.105 | -900.000 | 0.7853 | 299.238 | 299.238 | 209.238 |

Table 3: Initial values (simulation values) of the parameters to calibrate and calibration results.

Integration space dimension 30
Optimization space dimension 6
Number of cycles 10
Number of frames i
Inequality constraints number 40
Computation time (seconds) 23

Table 1: Some parameters summarizing the problem
complexity and the system performances for this cali-
bration problem.

ships, we have expressed the non-overlap phe-
nomenon using a non-symmetrical distribution

2
Iz

2 7% 2 .
e 2% ift,>0
p(tz) = Vana.
0 else

where o. was 0.5mm.

6 CONCLUSION

We have presented a generic approach for geometric
problem specification and resolution using a Bayesian
framework. We have shown how a given problem is
first represented as a probabilistic kinematic graph,
and then expressed as an integration/optimization
problem. Appropriate numerical algorithms used to
apply this methodology are also described. For gener-
ality, no assumptions have been made on the shapes
of distributions or on the amplitudes of uncertainties.

Experimental results made on our system have
demonstrated the effectiveness and the robustness of
our approach. However, additional studies are re-
quired to improve both integration and optimization
algorithms.

For the integration problem, numerical integration
can be avoided when the integrand is a product of
generalized normals (Dirac’s delta functions and Gaus-
sians) and when the model is linear or can be linearized
(errors are small enough). The optimization algorithm

may also be improved by using a local derivative-based
method after the convergence of our genetic algorithm.
Future work will aim at allowing the use of high-level
sensors such as vision-based ones. We are also consid-
ering extending our system so that it can include non-
geometrical parameters (inertial parameters for exam-
ple) in problem specification.
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