Obstacle Avoidance and Proscriptive Bayesian Programming

Carla Koike 1 Cédric Pradalier 1 Pierre Bessiere 1 Emmanuel Mazer 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : Unexpected events and not modeled properties of the robot environment are some of the challenges presented by situated robotics research field. Collision avoidance is a basic security requirement and this paper proposes a probabilistic approach called Bayesian Programming, which aims to deal with uncertainty, imprecision and incompleteness of the information handled to solve the obstacle avoidance problem. Some examples illustrate the process of embodying the programmer preliminary knowledge into a Bayesian program and experimental results of these examples implementation in an electrical vehicule are described and commented.
Type de document :
Communication dans un congrès
--, 2003, France. 2003
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00019258
Contributeur : Pierre Bessiere <>
Soumis le : vendredi 10 mars 2006 - 11:56:48
Dernière modification le : mercredi 11 avril 2018 - 01:51:55
Document(s) archivé(s) le : samedi 3 avril 2010 - 22:29:51

Fichier

Identifiants

  • HAL Id : hal-00019258, version 1

Collections

INRIA | UGA | IMAG

Citation

Carla Koike, Cédric Pradalier, Pierre Bessiere, Emmanuel Mazer. Obstacle Avoidance and Proscriptive Bayesian Programming. --, 2003, France. 2003. 〈hal-00019258〉

Partager

Métriques

Consultations de la notice

373

Téléchargements de fichiers

236