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Modelling Elastic and Thermoelastic Thick Multilayered
Composites by a New Constrained Discrete Layer Approach

M. Blanc and M. Touratier
Université d’Orléans, ENSAM, Paris, France

A new layer by layer/discrete layer model is presented for the
linearly elastic and thermoelastic responses of multilayered com-
posite plates. The transverse variation of the displacement field is
defined in terms of a one-dimensional finite element representation,
using quadratic Lagrangian interpolations. The laminate thick-
ness is subdivided into a series of one-dimensional finite elements
(i.e., thickness subdivisions) whose nodes correspond to planes of
constant transverse normal coordinates in the undeformed config-
uration of the laminate. Each of the displacements and loads is
expanded in a double Fourier series in the cartesian surface co-
ordinates. Interface and boundary conditions are exactly verified
and exploited to reduce the number of independent generalized dis-
placements, before solving the boundary value problem from the
standard variational principle for displacements. This leads to a
new model, whose size 3N in 3D, is less than the classic layer by
layer approach requiring 3(2N + 1), also in 3D.

In addition, this model allows satisfying exactly all the inter-
face and boundary conditions. Numerical evaluations and compar-
isons with exact 3D elasticity solutions confirm the efficacy of the
proposed approach. Finally, the proposed modelling has been ex-
tended to the thermoelastic response of laminates and the results
are compared with the exact 3D solutions. Temperature distribu-
tions required for the thermoelastic analysis are determined from
the constrained discrete layer approach previously applied to heat
conduction.

1. INTRODUCTION
Composite laminates are being increasingly used in struc-

tural applications and they require efficient analysis tools for
their optimal design and reliability study. This field has been
very extensively studied for several decades and is still a subject
of research interest, as it is extremely difficult to find efficient
modelling methods for multilayered structures with many lay-
ers and thickness zones due to the coupling between mechanics,
heat transfer and moisture, and containing localized regions of
complex loading or geometric or material discontinuities. Thus,

Address correspondence to M. Touratier, LMSP UMR 8106 CNRS-
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several approaches have been developed, based mainly on either
equivalent single layer or layer by layer descriptions, depending
on the accuracy required for numerical simulations [1]. Unlike
the equivalent single layer theories, the layer by layer theories
assume separate displacement field expansions within each ma-
terial layer, thus providing a kinematically correct representation
of the strains in discrete layer laminates, and allowing more accu-
rate ply-level stresses to be determined. Therefore, only layer by
layer models can lead to consistent descriptions of localized ef-
fects. Extensive recent reviews on modelling multilayered plates
and shells may be found in Reddy [1], Reddy and Arciniega [2],
and Carrera [3–5].

In this paper, our interest concerns layer by layer descrip-
tions along the thickness of the laminate based on quadratic
Lagrangian interpolation functions. The transverse variation of
the three components of the displacement field is thus defined
in terms of one-dimensional finite element representations. The
laminate thickness dimension is subdivided into a series of M
one-dimensional quadratic finite elements (i.e., thickness sub-
divisions) at least equal to the number of layers. The proposed
modelling incorporates the transverse normal strain, to be able
to accurately determine interlaminar stresses by satisfying ex-
actly all interface plus top and bottom boundary conditions
from standard variational formulations, not using 3D equilib-
rium equations for transverse stress distribution determinations,
as, for example, in Robbins and Reddy [6]. Pioneer work in
layer by layer approximations such as one-dimensional finite
element representation along the thickness of the laminate was
published by Reddy [7], and it is termed the “layerwise” theory.
Applications of the layerwise theory to piezoelectric laminates
can be found in Saravanos et al. [8], Garcia Lage et al. [9], and
Semedo Garção et al. [10], and for heat conduction see Blanc
and Touratier [11]. Several different layer by layer approaches,
not using one-dimensional finite element representation through
thickness of laminates, are of course available in the litera-
ture (see Carrera [3]). A fully coupled thermoelastopiezoelec-
tric three-dimensional solution has been presented by Xu et al.
[12], using a mixed variational theorem for temperature, normal
heat flux, displacements, normal transverse and transverse shear
stresses, electric potential and normal electric displacements.
Finally, exact three-dimensional solution for thermoelastic
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analysis of laminates is given in Tungikar and Rao [13],
while Savoia and Reddy [14] carried out a three-dimensional
thermomechanical analysis for laminated composite plates. In
Matsunaga [15], comparisons between 2D single layer and 3D
layerwise theories are presented for computing interlaminar
stresses in laminates subjected to thermal loadings.

The objective of the present paper is to explain a new layer
by layer (or discrete layer) description in which interface con-
tinuity and top and bottom boundary conditions are exploited
to satisfy exactly all these conditions, and to drastically re-
duce model size, compared to any existing layer by layer ap-
proaches based on classic or mixed variational theorems. Thus,
using quadratic Lagrangian approximation throughout thick-
ness of laminate including N layers, the new approach of so
called “Constrained Discrete Layer” modelling, requires, for
3D problems, choosing for example only one subdivision per
layer, 3N independent generalized displacements, while stan-
dard layer by layer descriptions require 3(2N + 1) unknowns,
and 6(2N + 1) in a mixed modified approach if normal and
shear transverse stresses are not eliminated. Note that in this
last case, these stresses are quadratic too, which, of course,
is not the case when using a classic variational formulation
and quadratic approximation throughout the layer thickness
for displacement. Specifically, the objective of this paper is to
present analytic three-dimensional, doubly periodic solutions
for the static response of laminated composites, consisting of
a number of perfectly bonded linearly elastic/thermoelastic and
fiber-reinforced layers. The solutions are periodic in the surface
coordinates x1 and x2, and, as explained above, of quadratic
variation along the thickness coordinate x3 = z of the lam-
inate. Periodicity for displacement and load along in-plane
coordinates, allows satisfying exactly all the interface and
boundary conditions within the classic displacement variational
theorem. See for example Touratier [16], concerning difficulties
solving the boundary value problem associated with thick lam-

FIG. 1. The composite laminate configuration.

inates, when using a given approximate displacement field to
find closed solutions. Any desired degree of displacement vari-
ation through the thickness is easily obtained by adding more
one-dimensional subdivisions through the thickness. The Con-
strained Discrete Layer modelling is then compared with ex-
act elasticity calculations from Pagano [17, 18]. It is confirmed
that this new approach gives good results for both displacement
and stress distributions through the thickness of the laminate,
and allows significantly reducing the size of the problem to be
solved.

Responses in thermoelasticity for a rectangular laminate have
been analyzed and compared with exact three-dimensional cal-
culations from Tungikar and Rao [13]. Once again, the present
constrained discrete layer modelling gives accurate distributions
for temperatures, displacements and thermal stresses through the
thickness of a simply supported square sandwich plate, submit-
ted to both thermal and mechanical loading.

2. FORMULATION OF THE BOUNDARY VALUE
PROBLEM IN LINEAR ELASTICITY

2.1. Expansions for Displacement Field and Traction
Components Along Mid-Plane Coordinates

A laminated plate occupying the parallelepipedic domain V
of lateral edge �e, constituted by N homogeneous anisotropic
layers V(i) is considered, see Figure 1. The plate is referred to
an orthogonal coordinate system � = {O/xα, x3 = z}, where
the xα (α = 1, 2) axes lie in reference plane A of the plate and
x3 = z is in the transverse direction. The top and bottom faces
of the plate and the layer interfaces, located at x3 = x3t, x3b and
x3i (i = 1, N-1), are denoted by �t , �b and �i, respectively. The
plate has combinations of homogeneous cross-ply orthotropic
layers of constant thickness, L1 and L2 are the side lengths
in the x1 and x2 directions and h is the total thickness of the
plate.
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The traction components Fi (i = 1 to 3) at the top and
bottom surfaces of the plate, are functions of the x1 and
x2, i.e.:

{
Ft

i = Ft
i(x1, x2)

Fb
i = Fb

i (x1, x2)
(1)

where the superscripts t and b refer to the top and bottom sur-
faces, respectively.

For laminates consisting of cross-ply layers, each of the dis-
placement components ui is expressed as the sum of products
of trigonometric functions in the Cartesian surface coordinates.
The trigonometric functions are chosen so that the response
quantities are periodic in x1 and x2 with periods 2L1 and 2L2,
as:

u =
∞∑

r=0

∞∑
s=0

T (rs)(x1, x2)U (rs)(z)

with U (rs)
T(z) = {

U1 (rs)(z), U2 (rs)(z), U3 (rs)(z)
}

T (rs) =

 cos arx1 sin bsx2 0 0

0 sin arx1 cos bsx2 0
0 0 sin arx1 sin bsx2



(2)

and where ar = rπ
L1

, bs = sπ
L2

; r and s being integers. Therefore,
the following displacement conditions are satisfied by Eq. (2)
as:

{
x1 = 0, L1; u2 = u3 = 0

x2 = 0, L2; u1 = u3 = 0
(3)

FIG. 2. Thickness subdivisions of the laminate and generalized displacements.

The traction components at the top and bottom surfaces in Eq. (1)
are also expanded in double Fourier series as follows




Fb = ∑
r

∑
s T (rs) Fb

rs

Ft = ∑
r

∑
s T (rs) Ft

rs

F qT
(rs) = {

Fq
1(rs) Fq

2(rs) Fq
3(rs)

}
; q = b, t

(4)

2.2. Discrete Layer Approach Along the Thickness of
the Laminate

The laminate being subdivided into N discrete layers, see
Figure 2, from Eq. (2) a continuous displacement field per layer
is then written in the thickness direction by

{
U (rs) = ∑N

j=1 χ]zj−1,zj[ U (j)
(rs)

χ]zj−1,zj[ = 1 if z ∈]zj−1, zj[, 0 elsewhere
(5)

Introducing the non-dimensionalized thickness coordinate ξi for
each layer V(j) as in Figure 2, the generalized displacements U(j)

i(rs)
per layer are approximated along the thickness of the layer by
quadratic Lagrange polynomia ljk as




U (j)
(rs) = ∑

k∈{b,m,t} ljkU (j)k
(rs) =

(
ljbU (j)b

(rs) + ljmU (j)m
(rs) + ljtU

(j)t
(rs)

)
j = 1, . . . , N

ljk = ljk(ξj)
(6)

where U(j)k
i(rs) are constants and where




−1 ≤ ξj ≤ 1

ξj = (2z−(zj−1+zj))
(zj−zj−1)

b: bottom; m: medium; t: top

(7)
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It is directly deduced from the above equations that the con-
tinuity of the displacement field at the layer interfaces is then
automatically satisfied, and we obtain

U (j)
(rs) = ljbU (j)b

(rs) + ljmU (j)m
(rs) + ljtU

(j+1)b
(rs) (8)

Thus, the displacement field at any point of the laminate is finally
written from Eqs. (2), (5) and (8) as

u =
N∑

j=1

∞∑
r=0

∞∑
s=0

χ]zj−1,zj[T (rs)

(
ljbU (j)b

(rs) + ljmU (j)m
(rs) + ljtU

(j+1)b
(rs)

)
(9)

2.3. The New So-Called “Constrained Discrete Layer”
Approach: Interface and Top and Bottom
Conditions for Stresses; Constraints and Final
Displacement Field

The novelty of the present approach called “constrained dis-
crete layer” is in taking into exactly account both interface con-
tinuity, and traction on the top and bottom conditions of a lam-
inate. Hereafter, these conditions are exactly verified to reduce
the number of unknowns (number of independent generalized
displacements U(j)k

i(rs)). Denoting σ
(l)
ij the stresses per layer, the

above conditions on stresses, respectively at interfaces and at
bottom and top surfaces, yield

σ
(j)
3i (x1, x2, zj) = σ

(j+1)
3i (x1, x2, zj)

j = 1, . . . , N − 1; i ∈ {1, 2, 3} (10)

σ
(1 or N)
3i (x1, x2, 0 or h) = δi3Fb or t

3

δi3 Kronecker’s symbol
(11)

Introducing the orthotropic elastic constitutive law per j th layer,
one obtains the stresses per layer as following




σ
(j)
11

σ
(j)
22

σ
(j)
33

σ
(j)
23

σ
(j)
31

σ
(j)
12




=




C (j)
1111 C (j)

1122 C (j)
1133 0 0 0

C (j)
1122 C (j)

2222 C (j)
2233 0 0 0

C (j)
1133 C (j)

2233 C (j)
3333 0 0 0

0 0 0 C (j)
2323 0 0

0 0 0 0 C (j)
3131 0

0 0 0 0 0 C (j)
1212







u(j)
1,1

u(j)
2,2

u(j)
3,3

u(j)
2,3+u(j)

3,2

u(j)
1,3 + u(j)

3,1

u(j)
1,2 + u(j)

2,1




(12)

where C(j)
lnpq are the elastic constants of the material of the

j th-layer; u(j)
i are components per layer of the displacement

field which, from Eq. (9), reduces to

u (j)
(rs) = T (rs)

(
ljbU (j)b

(rs) + ljmU (j)m
(rs) + ljtU

(j+1)b
(rs)

)
(13)

Using expressions for stresses in j th-layer deduced from
Eqs. (12) and (13), into Eq. (10), gives interface conditions,
and bottom and top boundary conditions

– at interfaces

Ĉ
(j)T
(rs)i3U (j)b

(rs) + Ĉ (j+1)T
(rs)i3 U (j+1)b

(rs) − Ĉ (j+2)T
(rs)i3 U (j+2)b

(rs)

= −B̂ (j)T
(rs)i3 U (j)m

(rs) + B̂ (j+1)T
(rs)i3 U (j+1)m

(rs)

i = 1, 2, 3; j = 1, 2, . . . , N − 1 (14)

– at bottom and top surfaces

Ĉ (b1or tN)T
(rs)i3 U (1 or N)b

(rs) + Ĉ (b2or tN+1)T
(rs)i3 U (2 or N+1)b

(rs)

= δi3 Fb or t
3 − B̂

(b1or tN)T
(rs)i3 U (1 or N)m

(rs)

i = 1, 2, 3 (15)

Coefficients of submatrices Ĉ
(l)
(rs)i3 and B̂

(n)
(rs)i3 are given in Ap-

pendix. These Eqs. (14) and (15) allow us to eliminate all the
generalized displacements U (j)b

(rs),U
(j+1)b
(rs) . Therefore, all the con-

ditions expressed by Eqs. (14) and (15) can be written under the
following algebraic system in U b

(rs):

Ĉ (rs)U
b
(rs) = B̂ (rs) U m

(rs) + F 3(rs) (16)

In this last algebraic system, coefficients of matrices Ĉ (rs) and
B̂ (rs) are extracted from Eqs. (14) and (15). In addition, we have
established:

U bT
(rs) =

{
U (1)bT

(rs) U (2)bT
(rs) · · · U (N+1)bT

(rs)

}
U mT

(rs) =
{

U (1)mT
(rs) U (2)mT

(rs) · · · U (N)mT
(rs)

}
(17)

FT
3(rs) =

{
0 0Fb

3(rs)0 · · · 00 0Ft
3(rs)

}

Then, the system given by Eq. (16) is solved in respect to
U b

(rs). This leads to a final displacement field of the following
form:

u =
N∑

j=1

∞∑
r=0

∞∑
s=0

χ]zj−1,zj[ T (rs)
(
ljb

(
Ĉ −1

(rs)

(
B̂ (rs)U

m
(rs) + F3(rs)

))
jthrow

+ ljmU (j)m
(rs) + ljt

(
Ĉ −1

(rs)

(
B̂ (rs)U

m
(rs) + F3(rs)

))
j+1th

row

)
(18)

Remark. At this stage, and adopting quadratic polynomial
approximations for displacements in each layer, it is important
to observe that this constrained discrete layer model based upon
Eq. (18), leads only to 3N generalized displacements to be de-
termined for three-dimensional laminates having N layers. In
comparison, the standard discrete layer theory (based on dis-
placement variational theorem) requires 3(2N + 1) unknowns,
while the discrete layer modelling based on modified Reissner’s
mixed variational theorem involves 6(2N + 1) unknowns, but
transverse (both normal and shear) stresses are quadratic [19]. It
is of course possible to improve accuracy either by discretizing
layers in sub-layers, keeping the same quadratic approxima-
tion for each, or employing higher order polynomia along the
thickness.
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2.4. Governing Equations
The equilibrium equations and natural boundary conditions

on the edge of the laminate are derived in classic manner via the
standard displacement variational theorem as:

0 =
∫

V

(
Cijkl

∂2ul

∂xj∂xk
+ (fi = 0)

)
δui +

∫
V

(
Fe

i − σijnj
)
δui;

∀δui in V, and ∀δui on �e (19)

where ul are components of u in Eq.(18), Fe
i are components of

prescribed traction on the lateral edge �e of V, σij are stresses
computed from Eq. (12) in each layer, nj are components of the
unitary normal outward to the edge �e, δui is the variation op-
erator (differential operator) of ui. Developing Eq. (19) for each
pair (r, s) of harmonics in Eq. (18), and performing integra-
tion throughout the thickness of the laminate, involves solving a
linear algebraic system having 3N unknowns Um

i(rs). Correspond-
ing symbolic calculations are carried out using the Mathematica
system [20].

3. EXTENSION TO THE THERMOELASTIC RESPONSE
OF LAMINATES

The above formulation of the boundary value problem is now
extended to thermoelastic analyses from the constrained discrete
layer approach. The described method for linearly elastic com-
posite laminates is modified as follows to reach corresponding
linearly thermoelastic responses:

Step-i: Start by expanding temperature T(x1, x2, z) as the
component u3 in Eq. (2), i.e.: T = �r≥0�s≥0sin arx1 sinbsx2

T(rs) (z). Then, pursue this by exchanging u3 with T until sat-
isfying Eq. (9). Replacing Eq. (12) by Fourier’s law available
for heat conduction, and inserting it in interface and top and
bottom conditions for normal heat flux similarly to Eqs. (10)
and (11), we deduce the final temperature field in the following
form:

T(x1, x2, z) = �N
j=1�

∞
r=0�

∞
s=0χ]zj−1,zj[ sin arx1sin bsx2

× {
�N

i=1

[
L (i)

m (ξj, κ(1), . . . κ(N))T(i)m
(rs)

]
+ (

L(1)
b (ξj, κ(1), . . . κ(N))T(1)b

(rs)

+ (
L(N+1)

b (ξj, κ(1), . . . κ(N))T(N+1)b
(rs)

}
(20)

where coefficients L(n)
k depend on Lagrange polynomial, and

also, both on their first derivative and on κ(j) = k(j)
3 /(zj+1 – zj), k(j)

3
being thermal conductivities in the z-direction for an orthotropic
material. In fact, coefficients L(n)

k are nothing else than quadratic
B-splines.

Step-ii: Solve the heat conduction boundary value prob-
lem by using the constrained discrete layer modelling as de-
scribed above in elasticity (Section 2), or from [11]. In any
case, the appropriated classic variational form to be used is

expressed as:

∀ δT such that δT = 0 on �T, ∀ τ:∫ τ

0

∫
V

ρCVT,tδTdVdt =
∫ τ

0

∫
V

qiδT,idVdt+
∫ τ

0

∫
V

ρwδTdVdt

+
∫ τ

0

∫
�Q

(Q� + q.n)δTd�dt (21)

where Q� is the heat quantity prescribed (natural boundary con-
ditions) on the part �Q of the boundary surface � = �t ∪�b ∪�e

of the volume V of the laminate, q is the heat flux, n the unit
normal outward from the boundary surface �, Cv is the specific
heat at constant volume, ρ is the mass density, ρw is an internal
source of heat, and δT is the variation of the temperature T, at
any specific time t ∈ [0, τ]. Finally, �T is the complementary
part of �Q, where temperatures are prescribed (essential bound-
ary conditions). The solution of the heat problem is therefore
deduced from Eq. (19), by incorporating Eq. (20).

Step-iii: Modify the constitutive law Eq. (12) by superim-
posing the standard thermal contribution in stresses for an or-
thotropic behaviour. This requires adding the following vector
to the second member of Eq. (12):




−
{
α

(j)
1 C(j)

1111 + α
(j)
2 C(j)

1122 + α
(j)
3 C(j)

1133

} (
T(j) − T(j)

0

)
−

{
α

(j)
1 C(j)

1122 + α
(j)
2 C(j)

2222 + α
(j)
3 C(j)

2233

} (
T(j) − T(j)

0

)
−

{
α

(j)
1 C(j)

1133 + α
(j)
2 C(j)

2233 + α
(j)
3 C(j)

3333

} (
T(j) − T(j)

0

)
0
0
0




(22)

where T(j) (x1, x2, z) is the temperature in j th layer computed at
the above iith-step, T(j)

0 is the reference temperature for the j th
layer, while α

(j)
i are coefficients of thermal expansion in the j th

layer;
Step-iv: Interface, and bottom and top surfaces conditions,

respectively given by Eqs. (14) and (15), must incorporate the
thermal contribution into stresses by adding the following terms
to the second member of these equations:

∗to be added to Eq. (14): δi3

(
Â(j)

(rs)i3 − Â(j+1)
(rs)i3

)
, at z = zj (23)

∗to be added to Eq. (15): δi3 Â(b1 or tN)
(rs)i3 , at z = z1 or zN (24)

where coefficients Â(k)
(rs)i3 are expressed as:

Â(k)
(rs)i3 = �3

p=1 α(k)
p C(k)

pp33

(
T(k)

(rs) − T(k)
0(rs)

)
;

k ∈ {j, j+1, b1 or tN} (25)

while temperatures per layer T(k)
(rs) being computed from

Eqs. (20)-(21); and δi3 is Kronecker’s symbol;
Step-v: This results in a new vector F3(rs) in Eq. (16);
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Step-vi: The final displacement field for linearly thermoe-
lastic responses is then deduced from Eq. (18), using the new
expression of F3(rs) obtained at the preceding vth-step;

Step-vii: Finally, corresponding equilibrium equations
and natural boundary conditions are still computed from
Eq. (19).

4. NUMERICAL STUDIES
To assess the accuracy of the present model, the following

problems for which an exact three-dimensional solution exists
(which has been implemented here) from Pagano [17, 18], have
been examined: first, the cylindrical bending of a simply sup-
ported plate and, second, the bending of a simply supported rect-
angular plate, being submitted respectively to single and double
sinusoı̈dal loading at the top of the plate. Hence, in Eqs. (2)
and (4), integers r and s are kept as r = s = 1; and then, sim-
ply supported conditions verify Eq. (3); while in Eq. (4) we
retain Fb

i(11) = 0, i = 1, 2, 3, and Ft
1(11) = Ft

2(11) = 0, Ft
3(11) =

(p sin(πx1/L1) sin(πx2/L2) for rectangular and square plates; and
p sin(πx1/L1) in cylindrical bending. We also present results for
a square sandwich plate (Problem 3), and for the cylindrical
bending of a bi-layer laminate (Problem 4). Finally, a thermoe-
lastic analysis is produced for a bi-layer submitted to both ther-
mal and mechanical loadings (cylindrical bending for Problem
5 and three-dimensional plate in Problem 6). A comparison with
exact calculations is also given.

Otherwise, linearly elastic material properties are those given
in Pagano [17], and are:

EL/ET = 25; GLT/ET = 0.5; GTT/ET = 0.2;

νLT = νTT = 0.25; ET = 6.909 GPa

where L and T are the parallel and normal directions to the fibres,
E is Young’s modulus, G is the shear modulus, and ν is Poisson’s
ratio.

All the symbolic and numerical computations for both our
new model and the exact solutions were performed by using the
Mathematica system [20].

4.1. Problem 1. Cylindrical Bending of a Simply
Supported Three-Layer 90◦/0◦/90◦ Symmetric
Laminate under a Sinusoidal Load

Results solving Eq. (19) are reported in Tables 1 and 2 for two
thickness ratios (4 and 10), under the following dimensionalized
form [17]:


S = L1

h z̄ = z
h

ū1 = ETu1(0,z)
ph u3 = 100ETu3

(
L1
2 ,z

)
phS4

(σ̄11, σ̄33, σ̄13) = 1
p

(
σ11

(L1
2 , z

)
, σ33

(L1
2 , z

)
, σ13(0, z)

) (26)

The layers have equal thickness, the fibers are oriented
along the x2-direction for the outer layers (90◦), and along the

TABLE 1
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (26). Problem 1: S = 4; cylindrical bending

of a three-layer laminate

Elasticity CDL1 CDL2 CDL3

ū1(0) 0,9212 1,0010 0,9339 0,9259
ū1(1/3) −0,2018 −0,3086 −0,2054 −0,2039
ū1(2/3) 0,2509 0,3621 0,2547 0,2531
ū1(1) −0,9457 −1,0332 −0,9594 −0,9508
ū3(1/2) 2,8901 2,7380 2,8860 2,8893
σ̄11(0) −18,087 −19,655 −18,336 −18,180
σ̄11(1/3) 4,0400 6,1219 4,1119 4,0806
σ̄11(2/3) −4,7555 −6,9234 −4,8316 −4,7984
σ̄11(1) 18,819 20,536 19,087 18,919
σ̄13(1/2) 1,4319 1,5034 1,4435 1,4289

x1-direction for the inner layer (0◦). In Tables 1 and 2, CDLn
means with “Constrained Discrete Layer” using n sub-layers
for each plate’s layer (see Ray and Reddy [21, 22] for con-
strained layer damping). We show in Figures 3 and 4, corre-
sponding thickness distributions for displacements and stresses,
using n = 3 subdivisions per layer. These are compared with
the exact solution from Pagano, and a good agreement can be
observed on these thickness distributions, satisfying exactly all
the interface and boundary conditions.

Tables 1 and 2 show that convergence with respect to the
number n of sub-layers for CDLn modelling is very fast between
CDL1 (only one subdivision per layer) and CDL2 (two subdi-
visions per layer), towards exact calculations. It appears that 3
subdivisions in each layer may suffice to reach exact values at
studied points in these tables.

TABLE 2
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (26). Problem 1: S = 10; cylindrical

bending of a three-layer laminate

Elasticity CDL1 CDL2 CDL3

ū1(0) 9,37 9,49 9,39 9,38
ū1(1/3) 1,389 1,240 1,382 1,386
ū1(2/3) −1,326 −1,178 −1,320 −1,324
ū1(1) −9,35 −9,46 −9,36 −9,35
ū3(1/2) 0,933 0,929 0,933 0,933
σ̄11(0) −73,61 −74,52 −73,71 −73,65
σ̄11(1/3) −10,84 −9,69 −10,79 −10,82
σ̄11(2/3) 10,60 9,45 10,55 10,58
σ̄11(1) 73,66 74,57 73,76 73,69
σ̄13(1/2) 4,239 4,386 4,245 4,235

6
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4.2. Problem 2. Simply Supported Laminated 0◦/90◦/0◦

Symmetric Rectangular Plate under Doubly
Sinusoidal Load

Material data are same as those given for Problem 1 [18],
while geometric data are such that L2 = 3 L1. Two thickness ra-
tios are again considered for thick laminates: 4 and 10. The layers
have equal thickness, with fibers in the outer layers oriented in
the x1-direction (0◦) and those in the inner layer oriented in the
x2-direction (90◦). The plate is subjected to the doubly sinusoı̈dal
distribution transverse loading expressed above. Tables 3 and
4 present non-dimensionalized displacements and stresses
such as:




S = L1
h z̄ = z

h

ū1 = ETu1

(
0,

L2
2 ,z

)
phS3 ū2 = ETu2

(
L1
2 ,0,z

)
phS3 ū3 = 100ETu3

(
L1
2 ,

L2
2 ,z

)
phS4

(σ̄11, σ̄22, σ̄12) = 1
pS2

(
σ11

( L1
2 , L2

2 , z
)
, σ22

( L1
2 , L2

2 , z
)
, σ12 (0, 0, z)

)
(σ̄13, σ̄23) = 1

pS

(
σ13

(
0, L2

2 , z
)
, σ23

( L1
2 , 0, z

))
σ̄33 = 1

p σ33
( L1

2 , L2
2 , z

)
(27)

Results are also presented in Figures 5 and 6 for two thickness
ratios (4 and 10). These three-dimensional computations show

TABLE 3
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (27). Problem 2: S = 4; sandwich

rectangular plate L2/L1 = 3

Elasticity CDL1 CDL2 CDL3

ū1(0) 0,0139 0,0152 0,0141 0,0140
ū1(1/3) −0,0031 −0,0048 −0,0032 −0,0032
ū1(2/3) 0,0039 0,0056 0,0040 0,0040
ū1(1) −0,0142 −0,0156 −0,0145 −0,0143
ū2(0) 0,0132 0,0126 0,0132 0,0132
ū2(1/3) 0,0049 0,0047 0,0049 0,0049
ū2(2/3) −0,0037 −0,0036 −0,0037 −0,0038
ū2(1) −0,0124 −0,0117 −0,0124 −0,0124
ū3(1/2) 2,821 2,675 2,817 2,820
σ̄11(0) −1,099 −1,197 −1,115 −1,105
σ̄11(1/3) 0,252 0,379 0,256 0,254
σ̄11(2/3) −0,294 −0,427 −0,299 −0,297
σ̄11(1) 1,144 1,251 1,161 1,150
σ̄22(0) −0,0248 −0,0252 −0,0250 −0,0249
σ̄22(1/3) −0,1193 −0,1147 −0,1191 −0,1193
σ̄22(2/3) 0,1088 0,1041 0,1086 0,1088
σ̄22(1) 0,0400 0,0404 0,0402 0,0401
σ̄23(1/2) 0,0334 0,0257 0,0358 0,0330
σ̄13(1/2) 0,3511 0,5444 0,3477 0,3503
σ̄12(0) 0,0281 0,0277 0,0282 0,0281
σ̄12(1/3) 0,0060 0,0049 0,0060 0,0060
σ̄12(2/3) −0,0038 −0,0027 −0,0038 −0,0038
σ̄12(1) −0,0269 −0,0437 −0,0270 −0,0269

TABLE 4
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (27). Problem 2: S = 10; sandwich

rectangular plate L2/L1 = 3

Elasticity CDL1 CDL2 CDL3

ū1(0) 0,00920 0,00931 0,00921 0,00920
ū1(1/3) 0,00135 0,00120 0,00134 0,00135
ū1(2/3) −0,00128 −0,00113 −0,00128 −0,00128
ū1(1) −0,00917 −0,00928 −0,00918 −0,00917
ū2(0) 0,00475 0,00473 0,00475 0,00475
ū2(1/3) 0,00165 0,00165 0,00165 0,00165
ū2(2/3) −0,00147 −0,00146 −0,00147 −0,00147
ū2(1) −0,00457 −0,00455 −0,00457 −0,00457
ū3(1/2) 0,919 0,915 0,919 0,919
σ̄11(0) −0,725 −0,734 −0,726 −0,726
σ̄11(1/3) −0,106 −0,094 −0,105 −0,106
σ̄11(2/3) 0,104 0,092 0,103 0,103
σ̄11(1) 0,726 0,735 0,727 0,726
σ̄22(0) −0,0122 −0,0123 −0,0122 −0,0122
σ̄22(1/3) −0,0435 −0,0435 −0,0435 −0,0435
σ̄22(2/3) 0,0418 0,0418 0,0418 0,0418
σ̄22(1) 0,0145 0,0146 0,0146 0,0145
σ̄23(1/2) 0,0152 0,0125 0,0162 0,0151
σ̄13(1/2) 0,420 0,435 0,419 0,420
σ̄12(0) 0,0123 0,0123 0,0123 0,0123
σ̄12(1/3) 0,0033 0,0032 0,0033 0,0033
σ̄12(2/3) −0,0030 −0,0029 −0,0030 −0,0030
σ̄12(1) −0,0120 −0,0120 −0,0120 −0,0120

that the trend is identical to that in the two-dimensional case: very
fast convergence properties for CDLn models between n = 1
and 2, optimal subdivisions for accurate calculations along the
thickness being reached as soon as n = 3, two subdivisions
in each layer may suffice among points reported in Tables 3
and 4.

As for Problem 1, Problem 2 shows the efficiency of the pro-
posed “Constrained Discrete Layer (CDL)” model to accurately
compute displacements and stresses for thick laminates, keep-
ing at most 27 unknowns in Eq. (19) for the above (Problem 2)
3D problem with n = 3 discretizations in each layer. Note that
CDL1 and CDL2 require, in Eq. (19), for the above 3D problem,
9 (n = 1) and 18 (n = 2) unknowns, respectively. Using clas-
sic discrete layer modelling (i.e., not satisfying Eqs. (14) and
(15)) based on quadratic Lagrangian approximation throughout
thickness of the laminate as in this paper, we need 21; 39 or
57 unknowns, respectively for the above 3D problem, in adopt-
ing 1, 2 or 3 subdivisions per layer, as in Problem 2 for CDL
modelling. The reader may refer to Reddy [1, 7] about classic
layerwise modelling based on Lagrangian discretization along
the thickness of laminates.
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4.3. Problem 3. Simply Supported Laminated 0◦/90◦/0◦

Symmetric Square Plate under Sinusoidal Load
Material data are same as those given for Problem 2 above

[18], while geometric data are such that L2 = L1. Two thickness
ratios are again considered for thick laminates: 4 and 10. The
layers have equal thickness, with fibers in the outer layers ori-
ented in the x1-direction (0◦) and those in the inner layer oriented
in the x2-direction (90◦). The plate is subjected to the doubly si-
nusoı̈dal distribution transverse loading expressed above. Tables
5 and 6 present non-dimensionalized displacements and stresses
as in above Eq. (27).

Results are also presented in Figures 7 and 8 for two thickness
ratios (S = 4 and 10). These three-dimensional computations for
square sandwich laminate show that the trend is identical to that
in the two-dimensional case: very fast convergence properties
for CDLn models between n = 1 and 2, optimal subdivisions
for accurate calculations along the thickness being reached as
soon as n = 3, two subdivisions in each layer may suffice at
several points reported in Tables 5 and 6.

As for above Problems 1 and 2, the efficiency of the pro-
posed “Constrained Discrete Layer (CDL)” model is estab-

TABLE 5
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (27). Problem 3: S = 4; sandwich

square plate

Elasticity CDL1 CDL2 CDL3

ū1(0) 0,00936 0,01028 0,00950 0,00941
ū1(1/3) −0,00242 −0,00356 −0,00245 −0,00244
ū1(2/3) 0,00317 0,00438 0,00321 0,00319
ū1(1) −0,00969 −0,01073 −0,00985 −0,00975
ū2(0) 0,0228 0,0210 0,0228 0,0228
ū2(1/3) 0,0072 0,0077 0,0072 0,0072
ū2(2/3) −0,0066 −0,0071 −0,0067 −0,0067
ū2(1) −0,0228 −0,0210 −0,0228 −0,0228
ū3(1/2) 2,006 1,900 2,003 2,005
σ̄11(0) −0,755 −0,826 −0,766 −0,759
σ̄11(1/3) 0,190 0,279 0,193 0,192
σ̄11(2/3) −0,230 −0,324 −0,233 −0,232
σ̄11(1) 0,801 0,881 0,813 0,805
σ̄22(0) −0,079 −0,074 −0,079 −0,079
σ̄22(1/3) −0,556 −0,597 −0,562 −0,559
σ̄22(2/3) 0,534 0,574 0,540 0,537
σ̄22(1) 0,095 0,091 0,095 0,095
σ̄23(1/2) 0,217 0,122 0,249 0,215
σ̄13(1/2) 0,256 0,267 0,254 0,255
σ̄12(0) 0,051 0,049 0,051 0,051
σ̄12(1/3) 0,0074 0,0064 0,0075 0,0075
σ̄12(2/3) −0,0055 −0,0043 −0,0055 −0,0055
σ̄12(1) −0,0511 −0,0499 −0,0513 −0,0512

TABLE 6
Convergence of the CDLn model with respect to the number

n = 1, 2, 3 of subdivisions in each layer. Calculations are
extracted from Eq. (27). Problem 3: S = 10; sandwich

square plate

Elasticity CDL1 CDL2 CDL3

ū1(0) 0,00936 0,01028 0,00950 0,00941
ū1(1/3) −0,00242 −0,00356 −0,00245 −0,00244
ū1(2/3) 0,00317 0,00438 0,00321 0,00319
ū1(1) −0,00969 −0,01073 −0,00985 −0,00975
ū2(0) 0,0228 0,0210 0,0228 0,0228
ū2(1/3) 0,0072 0,0077 0,0072 0,0072
ū2(2/3) −0,0066 −0,0071 −0,0067 −0,0067
ū2(1) −0,0228 −0,0210 −0,0228 −0,0228
ū3(1/2) 2,006 1,900 2,003 2,005
σ̄11(0) −0,755 −0,826 −0,766 −0,759
σ̄11(1/3) 0,190 0,279 0,193 0,192
σ̄11(2/3) −0,230 −0,324 −0,233 −0,232
σ̄11(1) 0,801 0,881 0,813 0,805
σ̄22(0) −0,079 −0,074 −0,079 −0,079
σ̄22(1/3) −0,556 −0,597 −0,562 −0,559
σ̄22(2/3) 0,534 0,574 0,540 0,537
σ̄22(1) 0,095 0,091 0,095 0,095
σ̄23(1/2) 0,217 0,122 0,249 0,215
σ̄13(1/2) 0,256 0,267 0,254 0,255
σ̄12(0) 0,051 0,049 0,051 0,051
σ̄12(1/3) 0,0074 0,0064 0,0075 0,0075
σ̄12(2/3) −0,0055 −0,0043 −0,0055 −0,0055
σ̄12(1) −0,0511 −0,0499 −0,0513 −0,0512

lished to accurately compute displacements and stresses for thick
laminates.

4.4. Problem 4. Cylindrical Bending of a Simply
Supported Two-Layers 90◦/0◦ Laminate under
a Sinusoidal Load

In this problem (see [18]), a bi-directional two layer laminate
is considered with the T = 90◦ and L = 0◦ directions aligned
parallel to the x1–axis in the top and bottom layers, respec-
tively, the layers being of equal thickness. Material properties
and loading conditions are the same as those in Problem 1. Only
the thickness ratio L1/h = 4 is tested in this Problem. Results
are presented in Figure 9. Comparisons are shown between exact
calculations and our CDL solution, by using either one, three,
or four subdivisions in each layer. It is established for this dif-
ficult problem as well, that the proposed constrained discrete
layer model converges towards the exact calculations, for thick
laminates. But this problem as is known appears very difficult,
because the convergence of stresses is slower than in the above
problems.
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4.5. Problem 5. Thermoelastic Response of a
Bi-Directional Two-Layer 90◦/0◦ Laminate
Subjected to Both Sinusoidal Thermal and
Mechanical Loadings

To evaluate our approach in thermoelasticity, we again
consider the bi-layer analyzed in elasticity in the above
Problem 4, but boundary conditions are now expressed as
follows:

– mechanical boundary conditions:

{
σ13(x1, 0) = 0 u3(x1, 0) = 0

σ13(x1, h) = 0 σ33(x1, h) = p Sin
(

πx1
L1

) (28)

– thermal boundary conditions :

{
T (x1, 0) = −T0 Sin

(
πx1
L1

)
T (x1, h) = T0 Sin

(
πx1
L1

) (29)

where T(L1/2, h)/T0 = 1.
Mechanical properties have been given at the top of Section

4. From [13], thermal properties are: kL = 36.42 Wm−1◦C−1;
kT = 0.96 Wm−1◦C−1; αL = 0.57 10−6◦C−1; αT = 35.6
10−6◦C−1. For this kind of supported antisymmetric bi-layer
(90◦/0◦) laminated composite subjected to the above thermal
and mechanical loadings, we determine an exact thermoelas-
tic solution from [13] by using the Mathematica package, and a
constrained discrete layer solution from the calculations summa-
rized above in Eqs. (20) and (21) (also see [11]). Corresponding
temperature distributions computed from Eqs. (20) and (21), are
then shown in Figure 10. Results from the present constrained
discrete layer modelling for linearly thermoelastic analysis are
now compared with exact calculations for displacement and ther-
mal stress distributions through the thickness of the bi-layer lam-
inate as depicted in Figure 11. It is concluded again on good con-
vergence properties for the constrained discrete layer approach,
as soon as the number of subdivisions in each layer increases up
to 6, having only one independent generalized temperature per

FIG. 10. Temperature distribution along the thickness of the bi-directional bi-layer laminate in Problem 5, at its mid-length.

subdivision, and two independent generalized displacements per
subdivision.

4.6. Problem 6. Thermoelastic Response of a
Three-dimensional Two-Layer 90◦/0◦ Laminate
Subjected to Both Doubly Sinusoı̈dal Thermal and
Mechanical Loads

In this section, we consider the above laminate as a three-
dimensional medium. Boundary conditions are as follows.

– mechanical boundary conditions:




σ13(x1, x2, 0) = σ13(x1, x2, h) = σ23(x1, x2, 0) = σ23(x1, x2, h) = 0

u1(x1, 0, 0) = u1(x1, L2, 0) = u2(0, x2, 0) = u2(L1, x2, 0) = 0

u3(x1, x2, 0) = 0 and σ33(x1, x2, h) = pSin
(

πx1
L1

)
Sin

(
πx2
L2

)
(30)

– thermal boundary conditions:




T(0, x2, x3) = T(L1, x2, x3) = T(x1, 0, x3) = T(x1, L2, x3) = 0

T(x1, x2, 0) = −T0Sin
(

πx1
L1

)
Sin

(
πx2
L2

)
T(x1, x2, h) = T0Sin

(
πx1
L1

)
Sin

(
πx2
L2

)
(31)

The temperature distribution for this problem has been ob-
tained from Eqs. (20) and (21), and is shown in Figure 12. The
thermoelastic analysis corresponding to this present problem is
shown in Figure 13. Results from our CDL modelling are com-
pared both with exact calculations and the standard layerwise
model, called here the DL model (see [1, 6]). It is concluded that
the CDL model is better than the DL on stress distributions, for
a reduced computational model size. Finally, the proposed con-
strained discrete layer modelling allows reducing the size prob-
lem for laminates without any loss of accuracy, and gives very
good thickness distributions for both displacements, stresses,
temperatures, as both interface and top and bottom boundary
conditions are exactly satisfied. The capability of this modelling
in capturing particular transverse shear stress distributions for
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FIG. 12. Temperature distribution along the thickness of the three-dimensional bi-layer laminate in Problem 6, at its center.

FIG. 13. Transverse distributions for non-dimensionalized thermo-elastic displacements and stresses extracted from Eq. (27), for the laminate associated with
Problem 6; S = 4.
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very thick laminates must be remarked (here, thickness ratio 4),
see Figures 3 to 13.

5. CONCLUSIONS
Discrete layer solutions are presented for static responses

of linearly elastic and thermoelastic multilayered composite
plates, and have been found in good agreement with exact three-
dimensional solutions.

The proposed constrained discrete layer modelling is new,
and allows satisfying exactly all the interface and boundary con-
ditions for temperature, heat flux, displacements and stresses.
Using thickness subdivisions along the thickness of the lam-
inate from quadratic Lagrangian interpolations in the manner
of quadratic one-dimensional finite elements through the thick-
ness, interface and boundary conditions are exploited to reduce
the number of independent generalized temperatures and in-
dependent generalized displacements. The result is that inde-
pendent generalized temperatures and displacements are only
those at the medium node of the subdivision. The boundary
value problem is then solved from standard variational theo-
rems (for thermal and mechanical analyses), assuming double
Fourier series expansions for both temperature, displacement
and loads, in respect to the surface coordinates. Adopting for
example one subdivision per layer in a laminate having N lay-
ers, and quadratic Lagrangian interpolation along the thickness
of this laminate, the constrained discrete layer modelling leads to
N independent generalized temperatures, 3N independent gen-
eralized displacements, while the standard discrete-layer mod-
elling requires 2N − 1 independent generalized temperatures
and 3(2N + 1) independent generalized displacements. This is
the main advantage of the constrained discrete layer approach,
in addition to the exact satisfaction of interface and bound-
ary conditions. Finally, the constrained discrete layer mod-
elling has been successfully extended to thermoelastic analy-
sis of laminates, by computing temperature distributions fol-
lowed by a thermomechanical response, using the same method
of discretisation, and comparing it with exact thermoelastic
calculations.
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APPENDIX

TT
(rs)i is the line i (i = 1, 2, 3) in T (rs)

Ĉ (j)T
(rs)i3 =

( ∑
α=1,2

C(j)
αα33T T

(rs)α,αljb + C(j)
3333T T

(rs)3lj
′

b

)
z=zj

Ĉ
(j+1)T
(rs)i3 =

( ∑
α=1,2

C(j)
αα33T T

(rs)α,αljt + C(j)
3333T T

(rs)3lj
′

t

−
∑

α=1,2

C(j+1)
αα33T T

(rs)α,αlj+1
b − C(j+1)

3333 T T
(rs)3lj+1′

t

)
z=zj
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Ĉ (j+2)T
(rs)i3 =

( ∑
α=1,2

C(j+1)
αα33T T

(rs)α,αlj+1
t + C(j+1)

3333 T T
(rs)3lj+1′

t

)
z=zj

B̂ (j)T
(rs)33 =

( ∑
α=1,2

C(j)
αα33T T

(rs)α,αljm + C(j)
3333T T

(rs)3lj
′

m

)
z=zj

B̂ (j+1)T
(rs)33 =

(∑
α=1,2

C(j)
αα33T T

(rs)α,αlj+1
m + C(j)

3333T T
(rs)3lj+1′

m

)
z=zj

Ĉ (j)T
(rs)α3 = C(j)

α3α3

(
T T

(rs)αlj
′

b + T T
(rs)3,αljb

)
z=zj

Ĉ (j+1)T
(rs)α3 = (

C(j)
α3α3lj

′
t − C(j+1)

α3α3lj
′

b

)
z=zj

T T
(rs)α

+(
C(j)

α3α3ljt − C(j+1)
α3α3lj+1

b

)
z=zj

T T
(rs)3,α

Ĉ (j+2)T
(rs)α3 = C(j+1)

α3α3

(
T T

(rs)αlj+1′
t + T T

(rs)3,αlj+1
t

)
z=zj

B̂ (j)T
(rs)α3 = C(j)

α3α3

(
T T

(rs)αlj
′

m + T T
(rs)3,αljm

)
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B̂ (j+1)T
(rs)α3 = C(j+1)

α3α3

(
T T

(rs)αlj+1′
m + T T

(rs)3,αlj+1
m

)
z=zj

α = 1, 2; T T
(rs)3,α=∂T T

(rs)3

∂xα

, lj
′

k=
dljk
dz

Ĉ (b1 or tN)
(rs)33 =

( ∑
α=1,2

C(1 or N)
αα33 T T
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)
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)
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