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0 Introduction

This paper proposes and studies a generalization of a conjecture made by Beauville
in [{]. Recall that Beauville and the author proved the following result in [f]:

Theorem 0.1 Let S be an algebraic K3 surface. Then there exists a degree 1 0-cycle
o on S satisfying the property that for any line bundle L on S, one has

c1(L)? = [e1(L)]?0 in CHy(S).
Furthermore, we have ca2(Tg) = 24o.

(In this paper, Chern classes will be Chern classes in the Chow ring tensored by Q,
and we will denote by [¢;] the corresponding rational cohomology classes.)
This result can be rephrased by saying that any polynomial relation

P([ea(Li)]) =0in H*(S,Q), L; € Pic S,

already holds in CH(S).
In [B], Beauville conjectured that a similar result holds for algebraic hyper-Kahler
varieties:

Conjecture 0.2 (Beauville) Let Y be an algebraic hyper-Kdahler variety. Then any
polynomial cohomological relation

P([e1(Ly)]) =0in H*(Y,Q), L; € PicY
already holds at the level of Chow groups :
P(e1(L;)) =0in CH(Y).

He proved in [B]] this conjecture in the case of the second and third punctual Hilbert
scheme of an algebraic K3 surface.

In this paper, we observe that the results of [f] can lead to a more general
conjecture concerning the Chow ring of an algebraic hyper-Kéhler variety. Namely,
the full statement of Theorem P.]] can be interpreted by saying that any polynomial
relation between [co(Ts)], [c1(L;)] in H*(S,Q), already holds between c2(Ts), ¢1(L;)
in CH(S). The purpose of this paper is to study the following conjecture:



Conjecture 0.3 Let Y be an algebraic hyper-Kdahler variety. Then any polynomial
cohomological relation

P([er (L)), [ei(Ty))]) = 0 in H*(Y,Q), L; € PicY
already holds at the level of Chow groups :
P(c1(Lj), ci(Ty)) = 0 in CH*(Y).
We shall prove the following results:

Theorem 0.4 1) Conjecture [0.3 holds for Y = S, for n < 2by(S)s+4 and any k,
where S is the Hilbert scheme of length n subschemes of an algebraic K3 surface
S.

2) Congecture is true for any k when Y 1is the Fano variety of lines of a cubic
fourfold.

In 1), b2(S)s = b2(S) — p is the rank of the transcendental lattice of S.
Concerning point 2), recall from [ that the variety of lines F of a cubic fourfold
X is a deformation of S©I, for S an algebraic K3 surface, but that for general X, it
has Pic F' = Z and thus it is not a Hilbert scheme. Even when p(F') > 2 it is not
necessarily the case that F is a S, In Bl, Beauville asked whether his conjecture
0.9 holds true for the variety of lines of a cubic fourfold.
Finally, we also prove the following.

Theorem 0.5 Conjecture holds for Y = S, and k = 2n — 2, 2n — 1, 2n, for
any S as above and any n.

The cohomology ring of the Hilbert scheme of a K3 surface has been computed
in [4], [Ld]. For the subring generated by H?, on can use the result of Verbitsky [[§],
M. The question of understanding more precisely the Chow ring is rather delicate
and we are dealing here only with a small part of it.

We prove in section 1 part 1) of Theorem [.4 and Theorem P.J . The proof
involves particular cases of the following statement :

Conjecture 0.6 Let S be an algebraic K3 surface. For any integer m, let P €
CH(S™) be a polynomial expression in

prici(Ls), Ls € PicS, prio, priyAs.
Then if [P] =0, we have P = 0.

We also prove that Conjecture .6 for S and any m’ < m implies Conjecture for
Y = stml,

In section 2 we deal with the case of the variety of lines of the cubic fourfold
(Theorem p.4, 2)).

It is a pleasure to dedicate this paper to Fedya Bogomolov, who greatly con-
tributed in the papers [}, [§, [|] to the study of hyper-Kéhler manifolds.



1 Case of the Hilbert scheme of a K3 surface

Let S be an algebraic K3 surface, and S be the Hilbert scheme of length n sub-
schemes of S. For any line bundle L on 5, there is an induced line bundle, which
we still denote by L on S which is the pull-back via the Hilbert-Chow morphism
of the line bundle on S corresponding to the &,-invariant line bundle LX...X L
on S”.

There are furthermore two natural vector bundles on S, namely Oy, which is
defined as R%p,Os, , where

S, C S xS p=pr:8,—8M

is the incidence scheme, and the tangent bundle 7),. It is not clear that the Chern
classes of O, can be expressed as polynomials in 01((9[”]) and the Chern classes of
T,. The following result may thus be stronger than Theorem .4, 1):

Theorem 1.1 Let n < 2by(S)y + 4, and let P € CH(S™) be any polynomial
expression in the variables

c1(L), L € PicS C PicS™, ¢;(Oy,), ¢;(T,,) € CH(SM).

Then if P is cohomologous to 0, we have P = 0 in CH(S™).

This implies Theorem D.4 for the n-th Hilbert scheme of K3 surface S with
n < 2b2(S)ir + 4, because we have ¢1(Oj,)) = —0, where 2§ = F is the class of the
exceptional divisor of the resolution S — S and it is well-known that Pic S
is generated by Pic.S and 9.

To start the proof of this theorem, we establish first the following Proposition
[[.3, which gives particular cases of Conjecture D.§. Let o € CH?(S) be the cycle
introduced in the introduction. Let m be an integer.

Proposition 1.2 Let P € CH(S™) be a polynomial expression in the variables

pr; (ﬁCQ(T)) = prio, prici(Ls), Ls € PicS, priyAg, k # 1,

where Ag C S x S is the diagonal. Assume that one of the following assumptions is
satisfied:

1. m < 2b5(9)y + 1.

2. P is invariant under the action of the symmetric group S&,,—o acting on the
m — 2 first indices.

Then if P is cohomologous to 0, it is equal to 0 in CH(S™).

Using the results of [{], this proposition is a consequence of the following lemma:

Lemma 1.3 The polynomial relations [P] = 0 in the cohomology ring H*(S™),
satisfying one of the above assumptions on m, P, are all generated (as elements
of the ring of all polynomial expressions in the variables above) by the following
polynomial relations, the list of which will be denoted by (*) :



1. [pri(ei(L)) -prio] =0, L € PicS, [prf(o) - pri(o)] = 0.
2. [pri(ci(L)? —[er(L)]?0)] =0, L € PicS.

3. [pri;(As.pio — (0,0))] = 0, where p1 here is the first projection of S x S to S,
and (0,0) = pjo - p5o.

4. [pri;j(As.pici(L) —ci(L) x o—oxc1(L))] =0, L € PicS, where py here is the
first projection of S x S to S, and c¢1(L) x o = pici1(L) - p5o.

5. [priip(As — piaAg - pjo — pio - pisAg — pisAg - p5o + pis(0,0) + pis(0,0) +
pis(0,0))] = 0.

6. [pr;‘jAS]Q = 24pr;‘j(o, 0) =24prio- prio.

In [, As is the small diagonal of 53 and the p;, p;; are the various projections from
S3 to S, S x S respectively. Note that Ag can be expressed as pisAg - pisAg.
Furthermore we have

Prij © Pl = PTis PTijk © P12 = PTijs PTijk © P = DTy -
Thus all the relations in (*) are actually polynomial expressions in the variables
[pricl, [prjei(L)], L € PicS, [priyAs], k # 1.

Assuming this Lemma, we conclude that for m < 2b9(S)s + 1, all polynomial
relations [P] = 0 in the variables pro, pr;fcl(L), L € PicS, pri;As, k # | which
hold in H*(S™) also hold in CH(S™), because we know from [H] that the relations
listed in (*) hold in CH(S™). In fact, (apart from the relations [l and [] which
obviously hold in CH(S™)), these relations are pulled-back, via the maps pr;, resp.
Prij, Tesp. priji, from relations in CH(S), resp. CH(S?), resp. CH(S®), which are
established in [f.

Similarly, for any m, the same conclusion holds for polynomial relations invariant
under &, _s.

This concludes the proof of Proposition [L.3. [ |

Proof of Lemma [1.3. Let B be a basis of PicS. It is clear that modulo the
relations generated by (*), any polynomial in the variables

[p?“;(jAs], [przcl([’)]v L e B, [p?“iko], (1'1)

can be written as a combination of monomials having the property that an index
i € {1,...,n} appears only once. Indeed, these relations express any product with a
repeated index as a combination of monomials with no repeated index. Furthermore,
if we start from a polynomial which is invariant under the action of &,,_s, as the set
of relations (*) is stable under this action, it is clear that replacing systematically
each repeated index by the corresponding combination with no repeated index using
(*), we will end with a polynomial expression invariant under the action of &,,_».

We claim now that if m < 2b9(S)s- + 1, no non zero combination of monomials
with no repeated index vanishes in H*(S™). Furthermore, for any m, no non zero
combination of monomials with no repeated index which is invariant under &,,_o
vanishes in H*(S™).



To prove the claim, consider the transcendental part of H2(S,Q),
H(S,Q)yr = NS(S)".
We have the direct sum decomposition
H*(8,Q) = H*(S,Q)r & H* (S, Qaig, (1.2)
where H*(S,Q)q4 is generated by
H(S,Q), NS(S)g, H(S, Q).
The decomposition ([[.2) induces for any m a direct sum decomposition of
H*(S™ Q) = H*(S,Q)®™ = priH*(S,Q) ® ... ®@ pri, H*(S, Q).
Let [Ag]s be the projection of [Ag] in the direct summand

H2(Sa @)tr’ & H2(S, Q)tr
of H4(S x S,Q). Then we have [Ag]s # 0 and

[As] = [As]er + pilo] + p3lo] + Y aipiler(La)] - pilen(Ly)].
ijeB

It is then clear that it suffices to prove the claim with pry; [Ag] replaced by pri; [Ag]er
in the set of variables ([L.1]).

Let M be a monomial of the form above, and let Iy C {1,...,m} be the set of
indices ¢ appearing in M via a diagonal, i.e. for some [ # i, the variable pr}[Ag]s
appears in M. Then I is also the unique index set for which the projection of M
in

® H*(Sa @)alg ® ® H2(57 Q)tr
igIn 1€lpy

is non zero. Hence it follows that a relation

Z OCMM =0
M
implies for each fixed I C {1,...,m} (of even cardinality), by projection onto
®p7"2*H*(S7 Q)alg & ®p7nz*H2(S7 Q)tT’a
idl il

a relation of the form

> auM =0 (1.3)

M, Iy=I

Now note that we can further decompose each term @), priH* (S, Q)ay using
the basis of H*(S,Q)qq4 given by H*(S,Q), H°(S,Q) and the basis B. Then the

relation ([.J) decomposes into a sum of relations of the form

(@jgrpria;) @ (Y ahyM'), (1.4)
Iyy=I

5



for any given I and given set (o) ¢r of chosen elements in the basis
H'(S,Q), H(S,Q), B

of H*(S,Q)ag- Here each M’ is a monomial in the pri; [As|tr, and Ipp = I means
that only indices i, j € I appear in the monomial M’, and each index | € I appears
exactly once.

Of course, ([L4) is equivalent to the relation

> oM =0, (1.5)
Iy=I

which has to hold in H?$(S™,Q) or equivalently in H?(ST,Q). (Here 2s is the
cardinality of I, and S’ is the product of the copies of S indexed by I. Thus clearly
([3) is pulled-back via the projection S™ — S! from the corresponding relation in
ST

Now observe that if we started with a polynomial relation invariant under the
action of &,, 2, each relation we get in ([L.5) is invariant under the symmetric group

' permuting the elements of I which are < m — 2.

In conclusion, we are reduced to prove that for each I C {1,...,m} of cardinality
2s, and thus satisfying 2s < m < 2by(S)s + 1, there are no relations in H?$(Sy)
between monomials of the form

[1eriilAs), (1.6)

where each index i, j € I appears exactly once. Furthermore, for any m, there are
no &’-invariant relations in H2*(S;) between monomials of the form above.

For the statement concerning &’-invariant relations, this is obvious, as the sym-
metric group &) acts with at most two distinct orbits on the set of monomials of
degree s in the variables pr;‘j [Asler, 4, j € I, with no repeated indices, namely, in
the case where m — 1, m € I, those monomials containing p;, ; ,,[As]y and those
not containing it. Assume that m — 1, m € I, as otherwise the action is transitive
and the result is still simpler.

Then the only possible non zero &’-invariant relation would be of the form:

BY M=a) M, (1.7)

Mee& MeF
where £ is the set of monomials not containing pry, ; ,,,[Asle, and F is the set of
monomials containing pry, ., [Asli. We identify I with {1,...,2s} in such a way

that m — 1 is identified with 2s — 1 and m with 2s. Then this gives an identification
of ST with S* x S* and we can consider each M as above as a self-correspondence
of S%. Let p1, po be the two projections of S?* to S°. Then each monomial M as
above induces a map

IV H2S’O(SS) N st’O(SS),

given by

Y (n) = pr«(M - p3n). (1.8)



Now we have vjp; = 0 when the monomial M has the property that for two indices
i, j <s, pr;kj [Ag]i divides M, because w? = 0 on S. In particular, we have vy = 0
for M € F. Thus ([.7) gives

BY "y =0. (1.9)

Me&

On the other hand, when the monomial M has the property that for any indices
1# 7 <s, pri; [Agli does not divide M, M is of the form

Hiﬁsp’r;s—l—a(i) [AS]“’
for some permutation o of {1,...,s}. In that case, we have
YM(Priw - ... Prow) = proqyw ... Pryw =plw - ... - pw. (1.10)
Thus we get by ([.9) and ([.10)

B ym = BsTdpzeo(ss) = 0,
Meé&
which implies that 3 = 0, and that if a # 0, the relation reduces to >, M = 0.
But elements of F are of the form

p;kn—l,m [AS]tT‘ : Ml?

where M’ € F' are the monomials with no repeated indices in the pT’;‘j [Asler, i, § <
m — 1,14, j € I. The relation ;.- M = 0 thus provides Y, .~ M' = 0, which
has just been proved to be impossible.

In the case where 2s < m < 2by(S)y + 1, we have s < bo(S)s-. The intersection
form on H?(S,C)s is non degenerate. Thus we can choose an orthonormal basis
a;, 1 <i < bo(S)y, of HX(S,C)yy. Let

* *
N i=pPrioy ... pryog.

For each monomial M, consider now vy : H?*(S%,C) — H?$(S%,C), defined as in
(L.9). Aswe have < ;, a; >= 0for i # j, we find that if there are two indices 7, j > s
such that pj; [Ag]sr appears in M, we have y57(n) = 0, and that the remaining M’s
are in one-to-one correspondence with permutations o of {1, ..., s}. Then, as before,
we have for such M:

v (n) = p:,(l)al . -p;(s)as = P1Q—1(1) " - PsQg—1(s)-

As the tensors priag-1x1) ... priags-i.), 0 € Gy are linearly independent in
H?(S,C)y, we conclude from these two facts that a relation > v oM = 0 implies
apy = 0 for all those M such that for no indices ¢, j > s, pT’;‘j [Asli appears in M.

To show that the other coefficients a3 must be also 0, we introduce maps similar
to the 7,7, defined by choosing any subset Iy = {i1,...,is}, i1 < ... < ig of I.
Denoting by I the complementary set, we define 'yﬁ as pryx © (M - py,), where py,
(resp. py,) is the projection from S; = S%5 to S determined by the (ordered) set
Iy (resp. I3). For any M, there is a choice of I; such that for no indices ¢, j € Iy,
pri; [Ag]i appears in M, and then we conclude as before that a; must also be 0.

Thus Lemma and also Proposition are proved.

|



We come now to the geometry of S, Let us introduce the following notation:
let

M:{Ml"'wNM}’m:m(ﬂ)’Z|Mi |:’I’L
)

be a partition of {1,...,n}. Such a partition determines a partial diagonal
S, =8mcs",
defined by the conditions
x=(21,...,%p) € Sy & x; =x; if i, j € yy, for some I.
Consider the quotient map
qu:S™==2S, — S,
and denote by E, the following fibered product:
E, =5, Xgw S c 5™ x s,

We view £, as a correspondence between S™ and S ] and we will denote as usual

by E;: CH(S") — CH(S™) the map

a = pri(pry(a) - Ey).

Let us denote by &, the subgroup of &,,, permuting only the indices 7, j for which
the cardinalities of p;, p; are equal. The group &, can be seen as the quotient of
the global stabilizer of S, in S™ by its pointwise stabilizer. In this way the action
of &, on S, = 5™ is induced by the action of &,, on S".

We have the following result:

Proposition 1.4 Let P € CH(S™) be a polynomial expression in ci(Opy)s ¢ (Th)-
Then for any i as above, E;(P) € CH(S™) is a polynomial expression in prio, prjAs.
Furthermore, E}(P) is invariant under the group &,,.

Note that the last statement is obvious, since &, leaves invariant the correspondence
E,cS, xS ],

We postpone the proof of this proposition and conclude the proofs of the theo-
rems.

Proof of Theorem [L.1. From the work of De Cataldo-Migliorini [[L1], it follows
that the map
(B} uepare({1,..n}) : CH(S™) — II,CH(S™)

is injective. Let now P € CH(S™) be a polynomial expression in ¢;(L), L €
PicS c PicS", ci(Opy), ¢j(Ty) € CH(S™). Note first that for L € PicS, and
for each p, the restriction of priL to K, C 5, X S is a pull-back pri‘LwEu, where
L, € PicS, = PicS™ is equal to Lelml g . X L®lkml This follows from the fact
that L is the pull-back of a line bundle on S(™. Note that L, is invariant under &,,.

Thus it follows from Proposition [[.4 and the projection formula that for each
partition u, Ej(P) is a polynomial expression in priei(L), pryo, pry, A which is
invariant under the group &,,.



Now, if P is cohomologous to 0, each E;(P) is cohomologous to 0. Let us
now verify that the assumptions of Proposition [[.9 are satisfied. Recall that we
assume n < 2b3(S)y + 4. If m(u) < 2b2(S) + 1, Proposition [[.7 applies. Otherwise,
m(p) > 2b2(S) + 2 and, as n < 2ba(S)s + 4, it follows that the partition p contains
at most two sets of cardinality > 2. Thus the group &, contains in this case a
group conjugate to &,;,(,)—2. Proposition thus applies, and gives EZ(P) =0in
CH(S,), for all p.

It follows that P = 0 by the result of De Cataldo-Migliorini. This concludes the
proof of Theorem [L.1. [ ]

Proof of Theorem 0.5. Let P € CH*(S), with k > 2n — 2 be a polynomial
expression in ¢, (L), L € PicS C Pic S, ci(Opy), ¢i(Th) € CH(S™), and assume
that [P] = 0. Notice that because k > 2n—2, we have £, P = 0 if the image of £}, in
S has codimension > 2. This is the case once m(u) < n—2. On the other hand, if
m(p) > m — 2, the partition p has at most two sets p; of cardinality > 2. Hence for
m(u) > 2, the group &, contains a group conjugate to &,(,)—2. As [E};P] =0, and
E* P is a 6 -invariant polynomial expression in pr;c; (L), pro, prfjAg, Proposition
thus applies, and gives Ej;(P) = 0 in CH(S,) for m(u) > n — 2. As we also
have E};(P) = 0in CH(S,) for m(u) < n — 2, the theorem of De Cataldo-Migliorini
shows that P = 0. |

To conclude, let us notice that Proposition and the end of the proof of
Theorem [L.1] prove the following:

Proposition 1.5 Conjecture [0.4 for S, and any m < n, implies Conjecture [0.3 for
Sl

It remains to prove Proposition [[.4. For the proof, we use the formulas proved in
[13], which allow induction on n. As in [[[J], in order to get the result by induction,
we will need to introduce a more general induction statement, which is the following;:
For each integer [, we can also consider the correspondence

EMJ = E“ X Asl

betweeen S, x S' and Sl x 8! where Ag is the diagonal of S'. On S x S,
we have the natural classes prj;cs(Z,,), where Z,, is the ideal sheaf of the universal
subscheme %, C S x S, and pry; is the projection onto the product of the first
factor S and the i-th factor of S'. We shall denote pro the projection onto the
first factor S, and pr; the projection onto the i-th factor of S*.

The induction statement, which will be proved by induction on n, is the following
generalization of Proposition (which is the | = 0 case):

Proposition 1.6 Let P € CH(S" x SY) be a polynomial expression in
procr(Op), procs(Tn), proics(Zn), 1 <i <1
Then for any p as above,
" (P) € CH(S™ x 8') = CH(S™)

is a polynomial expression in the pr;o, priA i g,k <m 41



Proof. Consider the smooth variety S"~1 parameterizing pairs (z,2") of sub-
schemes of S, of length n and n — 1 respectively, such that 2’ C z.

S admits a natural map p to S, which to (z,2') associates the residual
point of 2’ in z. Together with the two natural projections ¢ to S/ and ¢ to S~
respectively, this gives two maps:

g Sl gl = (g, p) - Sl g1l g,

o is birational; in fact it is the blow-up of S"~ x S along the incidence subscheme
Y1 € S % S, We shall denote by £ the line bundle O(—E) on S*"~1 where
FE is the exceptional divisor of . Thus we have

Im (O-*Infl — Os[n,nfl]) - O(_E).

n,n—1]

The map 1) has degree n, and (¢, p) is a birational map from S [ to the incidence

subscheme %,, ¢ S x .
Let now 1 = {p1,- .., m} be a partition of {1,...,n}, and S, = 5™ C S" be as
above. Consider the fibered product

SM X g(n) S[n,n—l]’

which is also equal to
EM XS[”] S[n,n—l}.

It obviously has exactly m components dominating S,, according to the choice
of the residual point. Let us choose one component, say the one where over the
generic point (z1,...,2,) € Sy, the residual point is z,,. Let p’ be the partition of
{1,...,n — 1} deduced from p by putting

pi = piy i 0 piy i = i\ {n}, if n € ;.

Let us denote by E,, ,, C S, x S [n=1] the underlying reduced variety of the com-
ponent defined above, and note that via the projection 7 from S, to S, (forgetting
the n-th factor), and the map o, we get a natural map

X = (W’U)‘Eu,/ﬂ : E%M' — EM' x S.
On the other hand, we have the natural map

Xp = ([dsz/J)\EW/ c By — By
Now, observe that the following diagram is commutative:

Xp Xp!

E/J — E#’#/ — E“/ X S
Pu l l (pu’vld),
SN L S,LL’ x S

where p,, is the restriction to £, C S, x § 7] of the first projection, and similarly
for p,s, and where n’ : S, — S,y x S is given by (ﬂ,prn‘su). Note also that both x,
and X, are generically finite of degree 1. Thus we have the following equalities :

E; yoy* = Ey: CH(SM) — CH(S,),

10



mo B} 00" = (Ey x Ag)* : CH(S"™V x ) — CH(S,y x S).
Similarly, for any integer [, we can consider the induced correspondence
By 1= B X Agr
between S, x St and S""—1] x S!. Then we have the formulas
Ey =E, 0@, Id)* : CH(S™ x §') — CH(S, x §'), (1.11)
By = 10 By o (0, 1d)" : CH(S™ 1 x §'1) = CH(S, x S, (112)
Here, Id; denotes the identity of S*, and ) is defined by
m = (7', 1d}) : S, x S' — S, x ST,
Furthermore, for any v € CH (S x §'), one has
T 0 B i(0) = Bl 1y (0, 1d1).7). (1.13)

Indeed, this follows from the fact that the correspondences E, ,, C S, X Slnn—1]
and E,y x Ag C S,y x S x Sn=1] % S satisfy the relation:

(', Idgnn—)s(Byw) = (Ids ,,0,1ds)" (Ey x Ag) (1.14)

in CH(S,s x S x Smn=11) and similarly with I > 0. From ([:14), we deduce that for
v € CH(S™"=1]), one has

T 0 By () = (95, x8) (7', Idgnn—1)s (Eppr) - Poinn-17)

= (ps, xs)+((Ids,,, 0, 1ds) (B X Ag) - Pyimn17)
= (ps, xs)x o (Ids,,,0,1dg)«((Ids,, ,0,1ds)" (Ey X Ag) - pginn-17)
= (ps,ix5)«((Byw x Ag) - (Ids,,, 0, 1dg)+«(Pgin.n-17))
= (s, x5)«((Ew X Ag) * Pgn-11, 5(0+7))
= E} 1(047),

which proves ([.13) for [ = 0. One argues similarly for [ > 0.
From ([[.13), using the projection formula, one deduces that for any

ae CH(S 1 % §Y, ge cH(SI x g1y,
one has :

w0 By (0,1d)"8) = By 1oy (0, Idp)wcr - B). (1.15)

The key point is now the following formulas proved by Ellingsrud, Gottsche,
Lehn in [[J]: here we work on the K groups (the varieties considered are smooth
and projective). The morphism ¢' : Ko(Y) — Ko(X) for a morphism ¢ : X — Y
between smooth varieties is induced by the morphism ¢* on vector bundles. The
morphism M +— MV is induced by the morphism E +— E* on vector bundles, and
the product - is induced by the tensor product between vector bundles. Then we
have (here we use for simplicity the fact that Kg is trivial) :
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Theorem 1.7 ([I3], Lemma 2.1 and Proposition 2.3) We have in Ko(SM"=11)

YT, = ¢ T 1+ L-0'T) = p'(1—Ts). (1.16)

'Oy = ¢' O] + L. (1.17)
Furthermore, we have in Ko(SI"=1 x §):
(1, 1ds)'Tn = (6, Ids) Ty — pr(£) @ (p, 1ds) On. (1.18)

Another very important property is

Lemma 1.8 ([13], Lemma 1.1) In CH(S" Y x S), we have the relation
ox(cr(£)) = (=1)'ci(~Tn-1)-

Theorem [[.7 can be translated into statements concerning the Chern classes of the
considered sheaves (or elements of the K groups). Namely we conclude from ([[.16)
that the Chern classes ¢;(T,) satisfy the property that ¢*c;(7),) can be expressed as
polynomials in

gb*cj(Tn*l)’ Cl(‘c)’ O-*CS(In*I)’ p*CQ(Ts) = 24/)*0'

Similarly, we get from ([L17) that the Chern classes ci(Ofy)) satisfy the property
that ¢*Cz‘(0[n}) can be expressed as polynomials in

¢*ci(Op—1y); c1(L).

Finally, from ([[.L1§) we conclude that the Chern classes of Z,, satisfy the property
that (1, Idg)*c;(Z,) € CH(S™"=1 x §) can be expressed as polynomials in

(¢, Ids)*cj(Zn-1), proci(L), (p,Ids)*cs(Ong).
Note that because Ky is trivial, the Chern classes of Oa 4 reduce to
c2(0ag) = —Ag € CH2(S x S)

and ¢4(Oag), which is proportional to (0,0) as c2(Ts) is proportional to o.
Let now P € CH(S[ x S') be a polynomial expression in

PTSCr(O[n]), procs(Tn), proce(Zn), 1 <i <1
as in Proposition [L.§. Applying ([L.11]), we get
EL(P)=E} 0, 1d)*(P). (1.19)

As just explained above, (1, 1d;)*(P) € CH(S™"~1 x S') can be expressed as a
polynomial in

(¢, pri) ct(Tn-1), proci(L), (¢ o pro) cr(Opm-1), (¢ © pro) cs(Th-1),

(pri40 (o,1d;))*Ag, (prio (o,Id;)))*0, 1 <i<l+1.
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Observing that
¢ oprg: S x gt glh=1]

is equal to prg o (o, Id;), the variables above can all be expressed as pull-back via
(0, 1d;) of the following variables in CH (S~ x 1)

priAs, prio, 1 <i <141, (1.20)
proict(Zn-1), procr(Opm-1))s procs(Tn-1),
except for pric(£). Thus we have in CH(S7=1 x §h):

(. 1d)*(P) =Y proei (L) (o, 1)) Qi (1.21)
where Q; € CH(S [n—1) S!*1) is a polynomial expression in the variables ([[:20).
From ([[.21) and ([.19), applying (.1§), we deduce that

T (B (P) = 1 (B} o (1, Id)*(P)) = (1.22)
Wf*(Eu,w,z)*(ZPTSCl(ﬁ)i(@ Id)*Q;) = EZI,1+1(Z Qi+ (o, Idy)«(prier(£)")).

Using Lemma [[.§, we find that (o, Id;).(prici(£)?)) is a polynomial expression in
the prg;cs(Zn—1), and thus

Z Qi+ (o, Idy)s(prer (L))

is a polynomial expression in the variables ([.20). Applying induction on n and
the projection formula to the right hand side, we conclude that *(EZI(P)) is a
polynomial expression in the variables

pT;O, pr;‘kkAS7 i7 ja ka S l + m.

There are finally two cases to consider here, according to whether | u(n) |= 1
or | u(n) |> 2, where pu(n) is the element of the partition u to which n belongs (so
| 1(n) | is the multiplicity of n in the diagonal S,). In the first case, we have

ﬂ':SM%SM/xS,

while in the second case, we have 7 : S, = S,, and 7’ is the embedding of S, = 5™
in Sy xS = S™+1 which is given by the diagonal on the last factor. In the first case,
7' being an isomorphism, we proved that E;yl(P) is a polynomial in the variables
pr;*jAS, prio. In the second case, we get that pr, o7’ is an isomorphism from S,
to S,s, and applying (pr, Id;) to both sides of (L:23), we get the same conclusion.

This proves Proposition [[.6], and thus also Proposition [I.4. [ |

Remark 1.9 [t is presumably the case that Proposition |1.4 could be obtained as a
consequence of the Bridgeland-King-Reid-Haiman equivalence of categories between
the derived category of S and the derived category of &,-equivariant coherent
sheaves on S™ (see [1Q], [[3]), combined with results on equivariant K -theory of
Vistoli [24], and Riemann-Roch type theorems by Toen [19].

Howewver, the explicit computation of the equivariant complex associated to a
given sheaf on S is rather complicated. It is done in 7] for Oy, but not for
Ty, and the computation is more difficult than the method of [13], that we have been
using here.
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2 Case of the variety of lines of a cubic fourfold

We shall use the following notations: the cubic fourfold will be denoted by X and
its Fano variety of lines by F. F' is contained in the Grassmannian G := G(2,6) of
lines in P?, and we shall denote by

l € CHY(F,Z), c € CH*(F,7Z)
the Chern classes of the rank 2 quotient bundle £ induced on F. Thus if

P % x
P l (2.23)
F

is the incidence diagram, P is a P'-bundle over F, and & = R%p,q*(Ox(1)).

We shall denote by H € CH'(X) the class ¢;(Ox (1)) and by h its pull-back to
P, h=qH.

Let I C F x F be the incidence subvariety, which is the codimension 2 subset of
F x F defined as

I=(p,p)(q,9) " (Ax), (2.24)

where Ax is the diagonal of X. Thus I is the set of pairs (,d") of intersecting lines.
We shall denote by the same letter I the class of I in CH?(F x F).

We start the proof with a few remarks concerning the Chern classes of F'. As
it is known that F' is symplectic holomorphic, one has Tp = Qp, and thus only
the even Chern classes of F' can be non zero. We shall denote them by co, c4. It
is immediate to compute that co and c4 can be written as polynomials in ¢ and [.
Indeed F C G is defined as the zero set of a section of the vector bundle S3Ex on
G, and thus the normal bundle of F in G is isomorphic to S2£. The normal bundle
exact sequence then shows that the Chern classes of F' are polynomials in [, ¢ and
in the Chern classes of G restricted to F'. But the later are also polynomials in ¢
and [, as are the restrictions of all cycles on the Grassmannian.

Thus, in this case, Theorem [0.4, 2) is equivalent to the following :

Theorem 2.1 Any polynomial expression in D € CHY(F) and ¢ € CH*(F) which
vanishes in cohomology, vanishes in CH(F').

We observe first that there is no cohomological relation in degree 4 of the form
above. Indeed, as F is a deformation of a S/2, one knows that

HY(F,Q) = S°H*(F, Q).
Thus there is only one cohomological relation of the form
[ca(F)] = P,

where P € S?H?(F,Q). But this P is non degenerate because its kernel is a sub-
Hodge structure of H?(F,Q)*, which must be trivial because it is stable under
deformation of F', and in particular under a deformation for which N.S(F') becomes
trivial. Thus there cannot be any relation of the form

[ca(F)] = @,
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where Q € S?(NS(F)), because NS(F) never generates H?(F,Q).

Thus we only have to study relations in H® and H®. We first deal with the
relations between [ and ¢ in degree 8. There are obviously two such relations, as
I, ¢2, I?c are all proportional in H®(F,Q). Let us prove:

Lemma 2.2 There exists a 0-cycle o € CH*(F), which is of degree 1, and such that

are multiples of o in CH*(F).

Proof. We observe first that for generic X, there is one surface X of class ¢ which
is a singular rational surface (namely, its desingularization is rational). Indeed,
surfaces in the class ¢ are surfaces of lines of hyperplane sections of X. When an
hyperplane section Y acquires a node z, its surface of lines becomes birationally
equivalent to a symmetric product S?E,, where E, is the curve of lines in Y (or
X) passing through z (see [[[J]). This curve of lines has genus 4, and imposing four
“independent” supplementary nodes to Y creates four nodes on the curve E,, which
remains irreducible, so that the normalization of F, becomes rational. In that case,
the desingularization of the surface of lines of Y is rational. Now, for generic X it
is easy to see that there exists such an hyperplane section Y with five independent
nodes (which means that the associated vanishing cycles are independent).

Of course, all points of ¥ are rationally equivalent in F'. For some particular X,
it might be that the surface ¥ degenerates to a non rational surface, but it still will
remain true that all the points of the degenerate surface X are rationally equivalent
in F.

We shall denote by o € CH*(F) this degree 1 0-cycle. As ¢? is supported on ¥,
c? is a multiple of o in CH*(F). Similarly c-I? is supported on ¥, hence it has to
be a multiple of 0 in CH*(F).

Next, with the same notations as above, we note that the curve E, is contained
in Y. Thus we have a relation in CH*(X):

l-E; = po, (2.25)

for some coeflicient p equal to the degree of [ - E,. The class of E, is computed as
follows: As CHy(X) = Z, this class does not depend on z, and in fact we have :

3EJ: = p*h47

because 3z is rationally equivalent to H* in X. Now we have the relation defining
Chern classes:

(p*l —h)h =p*c
in C H?(P), which gives

h2:p*l-h—p*c, h3:p*l-(p*l-h—p*c)—h-p*c:p*(ZQ—c)-h—p*(l-c),

ht = p*(l2 —¢)-(pl-h—pc)—p*(l-c)-h= p*(l3 —2lc)-h —p*((l2 —c)c).

Thus we have

3E, =13 = 2lcin CH?(F). (2.26)
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Equation (R.2§) thus gives a relation
31(13 — 2lc) = po,

and thus [* is also a multiple of o.
|

We now introduce a relation in the Chow ring of F' x F' which generalizes the
results obtained in [RZ] (which concerned the Chow ring of the surface of conics of a
Fano threefold). This relation will be essential to understand the group CH;(F).

Proposition 2.3 There is a quadratic relation in CH*(F x F)
IP=aAp+T-T4T, (2.27)

where a # 0, and 1" is a codimension 2 cycle of F' x F' which is a degree 2 polynomial
m
ll = pTL l2 - p;lv

and I is a codimension 4 cycle which is a degree 2 weighted polynomial in ly, la, pic, piec.

Proof. We first prove the existence of a relation of the above form, and we will
show later on that the coefficient « is not 0.
To get such a relation, it suffices to show the existence of a relation

RB=T Iy+T"in CHYF x F\ Ap), (2.28)

where T', TV are as above and Ij is the restriction of I to F' x F\ Ap.
Note that I is the image in F' x F' via the map (p,p) of

= (q,9)" ' (Ax).
Furthermore, over a point (4,¢') € F x F, the fiber of the map
p = (p,p)ﬁ: I —-FxF

identifies schematically to the intersection of the corresponding lines L, L' in X.
Thus, away from the diagonal, this fibre is a reduced point, and the restriction pj,
of p' to Iy :=1\ ()" (Ap) is an isomorphism onto Io.

Furthermore, as 170 is a local complete intersection, and (p, p) is a submersion, I
is also a local complete intersection, and thus 12 is equal to j.(ca(Ny,)), where Ny,
is the normal bundle of Iy in F' x F'\ Ar and j is the inclusion of Iy in F' x F'\ Ap.
On the other hand, as p{, is an isomorphism onto Iy, the normal bundle of fo in
P x P fits into a normal sequence

0= Tpup/pxrf, = Niypup = (P0)*Niypxp — 0. (2.29)

We deduce from this that p{"ca(Ny, JFx r) can be expressed as a polynomial in
the Chern classes c¢q, co of the normal bundle and in the Chern classes of
Tpxp/FxF|f,-

The later ones are polynomials in hy, lj, he, I}, where

NTO/PxP

hi = prih, I =pri(p*l),i=1, 2,
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and pr; are the two projections of P x P onto P. Next we observe that, as I=
(¢,9)"1(Ax), we have the equalities

¢i(Nj, pyp) = q0¢i(Tx),

where qo : Iy — X is the restriction of (g, q) to Ip. But ¢;(Tx) are polynomials in
H. Thus we conclude that we have a relation:

1§ = p (P'oc2(Npy ypxcp)
:p{)*(P(hiv l;))7
for some degree 2 polynomial P in h;, lglfo (in fact hy = hg on fo) This can also be

written as

1§ = (p,p)«(P(hi, [}) - 1) | pxp\ A -

Let us now write the quadratic polynomial P as
P:h1A+hQB+Q,

where A, B are linear in h;, [}, and @ is quadratic in [{, 5. We have by the projection
formula, noting that I} = (p,p)*l;,

(P.p)«(Q) - 1) =Q(l:) - I,

which is of the form I - I.
At this point we proved

Ig =T"-To+ (p,p)+((MA+haB) - D) pupap (2.30)
Finally, we observe that the diagonal of X admits a Kiinneth type decomposition:
Ax = A1+ Ao,
where A; can be written as a sum

Al = ZO&ZH{ . H;l_l
%

and Ay has the property that
Hy-Aog=0, Hy-Ag=0in CH%(X x X). (2.31)

Here H; = priH, i = 1, 2, and pr; are the two projections on X x X. We obtain this
decomposition as follows: we choose the «; in such a way that we have the following
equalities between intersection numbers:

Ax-Hi-Hy ' =A;-HL-HF fori=0,...,4.
Then the cycle Ay = Ax — Ay is such that its image under each inclusion

i XXX P xX,jo: X x X — X xP°
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is rationally equivalent to 0, because j1.Ax = Aps|ps, x. This implies (:31) because
Jiojie =3Hi, j3o0j2 =3Hs-.
From the decomposition above, and recalling that

I=(q,9)" (Ax) = (¢,9)"Ax, hi = (¢,9)" H;

we conclude that

hA-T=A-(q,9)"(Hi-Ax) = A-(q,q)*(H1A,).

But as H1A; is a polynomial in Hy, Hs, it is then clear that (p,p).(h1A - 1) is a

cycle of the form I'” as in the Proposition. Similarly for (p,p).(heB-I). Thus, using

(B:30), the existence of a quadratic relation (2.27) is proven.
We now show that a # 0. Mimicking the arguments in [R3], one sees that there

exist an hypersurface W C F and a non zero coefficient v € Z such that for each
6 € F, there is a relation
6 = S% 4 2,

where z is a 0-cycle supported on W. Here Ss is the surface of lines of X meeting

§, so that S5 = I*§ in CH?(F) and

5% =~6 — 2z = (I?)*§ in CHY(F). (2.32)
We have an equality

I’=aAp+T-T4+T in CHYF x F),

from which we deduce that (I?)* acts as multiplication by o on H*?(F) # 0. On
the other hand, (R.39) together with the generalized Mumford theorem (cf [J],
Proposition 10.24 ), shows that (I?)* acts as multiplication by v on H*?(F). Thus

a=vy#0.
|

We have the following corollary of Proposition P.3.

Corollary 2.4 Let z € CH{(F) = CH3(F) be a 1-cycle. Assume that z is ratio-
nally equivalent to a combination of rational curves C; C F,

z= g n; C;,
i

that z is cohomologous to 0, and that one (or equivalently any) point z; of C; is
rationally equivalent to o in F. Then z =0 in CH3(F).

Proof. Indeed, observe that since
z = Z niCi,
i
with C; rational, we have

Apoz =3 ni(z; x C;+ C; x x;) in CH(F x F), (2.33)

)
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where z; is any point of C;. Now I? is the restriction of I x I to the diagonal Apyp
of F' x F. Thus we have

(122 = (I < I)* (Apa2))jay-
From (2-33), we conclude that

(I*)'z2=2> nI*C;-I"x;. (2.34)

By assumption, we have I*z; = I*o in CH?(F), thus (.34) is equal to

2I0 - n*C;=2I"0-I"z. (2.35)
i

But z is homologous to 0, so I*z € CH'(F) is also homologous to 0, hence it is
rationally equivalent to 0. Thus (I?)*z = 0 in CH3(F).
Now we apply Proposition .3 which gives a relation

az = (I?)z2— ([ - I)*z —T"z.
As (I?)*z = 0, the right hand side is equal to
—(T-1)*z—T"z.

But we know that both I*z and [ - z are rationally equivalent to 0 : for the first,
this was noticed just before, and for the second, this is because it is a multiple of o
and homologous to 0. Hence it follows that —(I'- I)*z — "z = 0 and, as « # 0, we
conclude that z = 0. [ |

As a consequence, we can start the computation of relations in C H3(F) by show-
ing the following Lemma R.5: Notice that [I3] and [l¢] are proportional in HS(F, Q).
Let this relation be

(el — vI®] =0 in HY(F,Q), p#0,v # 0.

Lemma 2.5 We have the equality
pel —vl® =0
in CH3(F).

Proof. Indeed, it suffices to prove this relation for generic X. In that case, we
proved that the cycles I3 and lc are supported on a rational surface of class ¢, all
points of which are rationally equivalent to o in F. Thus the cycle z = pcl — vI3
satisfies the assumptions of Corollary P.4. [ |

In conclusion, we proved in Lemma P.J and Lemma P.§ that all polynomial
cohomological relations between [ and ¢ hold in CH (F).
Let us decompose now CH'(F) as

CHY(F) =< 1> @CH'(F),
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where CHY(F)o = pxq*CH?*(X)prim. Recall the following from [, 9.3.4. Let
Z € CH*(X)prim == {Z € CH*(F), [Z] € HY(X,Q)prim }. Write

q*7Z = hp*D +p*7'.

Then from
H-Z=0in CH}X),

(see 23], 9.3.4), we get, using h? = hp*l — p*c,
h2p*D + hp*Z' = 0 = hp*(ID + Z') — p*(cD).
Thus we have D = p,q*Z, and
Z'=—ID, ¢D =0 in CH(F). (2.36)
In particular
¢*Z = (h—p*)p*D. (2.37)
Let us deduce from this the following:
Lemma 2.6 For any D € CH'(F)o, we have the relations:
I’D* = Cq([D))o,
ID? = C'q([D)) Ey,

where q is the Beauville-Bogomolov quadratic form on H*(F), C, C' are constants,
and E, = p.q*x was already introduced and shown to be proportional to 13 and cl in
CH3(F).

Proof. Note that since X is Fano, we have C H*(X) = Q and thus

7’ =<7Z,Z>zx (2.38)
for any x € X. Using (R.37), we get
7*(2%) = (h - p 1) (D?). (2:39)

Next we use the relations cD = 0, h? = hp*l — p*c, and (R.38) to rewrite (R.39) as
< Z,7Z > q*z = hp*lp* D? — 2hp*lp* D? + p*(I>D?)
— b (D) + 5 (2D

Note now that < Z, Z >= —C"q(|D]) for some constant C’, as proved in [, so that
pushing forward via p the above expression, we get

C'q(|D))E, = ID?.
Finally, applying [ to this, we get
I12D? = C'q(D)I - E, = Cq(D)o,

with C' = C'deg (I - E;;). (We use (R.2§) and Lemma P.J to get the last equality.) m
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Summing-up what we have done up to now, we get:
Proposition 2.7 Any polynomial relation
[P] =0 in H(F,Q) or in H®(F,Q),

in the variables I, ¢, D € CH'(F)g, which is of degree <2 in D, is already satisfied
in CH3(F), resp. CH*(F).

Proof. Indeed, consider first the case of H®. The polynomial expression P is then
of the form

P=cQ+12Q + clA+ BA + ac® + Bcl® + ~14,
where Q, Q' € S?CHY(F)q, A, A’ € CH'(F)o and «, 3, v are constants. But we
know (cf (2.36))) that
c@Q =0, cA=0,
and that 12Q’, 2, cl?, yI* are all multiples of o (cf Lemma P.3, Lemma P.6). On
the other hand, as we proved that the cycle [? is rationally equivalent to a cycle
supported on a rational surface in the class ¢, and all points of ¥ are rationally
equivalent to o, it follows that [3A’ is also a multiple of 0. Thus P is a multiple of
o in CH*(F), and as it is cohomologous to 0, it must be 0.
Next we consider the case of degree 6. Then P can be written as

P=1Q+ cA+1?PA + ol® + Bdl,

where Q € S2CH'(F)q, A, A’ € CH'(F)q and «, 3 are constants.
We know that cA = 0 and we proved already that the cycles

1Q, 13,

are all proportional in CH?3(F) (cf Lemma R.5, Lemma P.6). Using these propor-
tionality relations, we get an equality in C'H (F):

P =12(A" 4+ A1),

where the number ~ depends on @, «, 3 and involves the constants u, v, C’ of
Lemma P.§, Lemma P.6. But we know that [P] = 0, and thus the hard Lefschetz
theorem implies that [A’ + ~I] = 0. Thus, as we are in CHY(F) C H?*(F,Q), we
have A’ +~l =0 and P =0. ]

We now turn to polynomials of degree at most 3 in D. Let us first consider the
case of polynomials of degree 4, that is P € CH*(F).

Lemma 2.8 Any polynomial expression P € CH*(F) inl, ¢, D € CH'(F)q which
is of degree at most 3 in D is a multiple of o. Thus, if [P] = 0 in H3(F,Q), then
P=0.

Proof. Indeed this was already proved for polynomial expressions of degree at most
2 in D (cf Proposition R.7), and thus, we only have to consider expressions of the
form
P=IT,

where T € S3CH!(F)y. Now Lemma P.§ says that for D € CHY(F)o, ID? is
proportional to 3 in CH?(F). Hence ID? is proportional to I°D in CH*(F). But
by Proposition R.7, we know that /2D is a multiple of o in CH*(F), as is any
polynomial expression of degree < 2 in D. [ |
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We turn now to the cubic polynomial relations in C H3(F). First of all we have
the following lemma:

Lemma 2.9 For any D € CHY(F)o), one has

D] = ﬁqqmw?m. (2.40)

Proof. Recall from [[[§], [f] that, in the complex cohomology algebra H*(F,C), one
has the relations
d° =0

for ' € H?(F,C) such that ¢(d') = 0.
It follows that we have more generally a relation of the form

d” = q(d)A(d),

where A(d') € HS(F,C) is a linear function of d’. We apply this to d' = d + A[l],
where A € C, d = [D], D € CH'(F)o. Then we get, recalling that q(d, [l]) = 0,

A3+ 3N (1] 4 3N2A[1)? + N3[1)? = (q(d) + N2q([1)A(d) in HO(F,C).  (2.41)
Write A(d") = a(d)N + AM. Then we get by taking the 0-th order term in A:
d® = q(d)a(d)N.

The order 2 term in A gives now

from which we conclude that

3
d® = ——q(d)I*d

q([1])
|

We will show the following proposition.

Proposition 2.10 For any D € CH'(F)g, we have the relation
3

3= ——q([D))I?D in CH?(F). (2.42)

q([)

Postponing the proof of Proposition .10, we conclude now the proof of Theorem
R, or equivalently of Theorem P.4, 2).

Proof of Theorem P.1]. Let us first treat the case of a polynomial expression
P € CH3(F), which has to be of degree at most 3 in Pic Fy. So assume [P] = 0,
where P = T + 1Q + I?’L + ¢L' + C, is the decomposition of P into elements of
Sym CH'(F)g of degree 3, 2, 1 and 0 respectively, whose coefficients are polynomials
in ¢, I. We know from (R.3d) that cL’ = 0. We also know from Lemma P.q and
Lemma R.§ that IQ and C are proportional to [ in CH3(F). Thus we have

1Q 4+ C =~I? in CH3(F).
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Finally, it follows from Proposition that T is equal in C H3(F) to 12D for some
D € PicFy.
Thus we have P = [2(D + L) +~I3 in CH?(F) and the relation [P] = 0 implies

[I?][D + L +~1] =0 in H5(F,Q).

But the hard Lefschetz theorem implies then that [D+ L+~I] = 0. Thus D+ L+~l =
0 and P = 0.

To conclude the proof of the theorem, we now have to consider the case of a
polynomial P € CH*(F) of degree 4 in D € CH'(F)y. But Proposition shows
that, for any D € CH'(F)o, we have the relation

to 3 (D)iED? i CHY(F)
q([1]) '
We proved in Lemma P.g that 12D? is proportional to o in CH*(F). Thus D* is
a multiple of 0 and so is any quartic homogeneous polynomial expression in D €
Pic FQ .

By Lemma P.§, the same is true of any polynomial expression of degree < 3 in D,
with coefficients which are polynomials in [, c. Thus any polynomial expression P
of degree 4 in D, with coefficients in [, ¢ is a multiple of 0 in CH*(F). In particular,
if [P] =0, we have P = 0.

|

Proof of Proposition [2.10. We first prove the result under the assumption
that X contains no plane. We will show later on how to deduce the result when X
contains planes.

Let us introduce the following object:

15:{(51,52) € F X F, HP%]P’QC]Pﬁ’PﬂX:Q(Sl _|_52}.

Because we made the assumption that X does not contain any plane, Fis irreducible,
and is the graph of the rational map ¢ : F' --» F described in [R1]. We shall denote
by

TIﬁ—)F,gZBZﬁHF,

the restrictions to F of the two projections. Thus 7 is birational and ¢ = (ﬁo 1

Note that F may be singular, which may imply that the groups C’Hl(ﬁ) and
CH 4_i(ﬁ ) differ, and cause troubles because on one hand we compute relations in
CH,(F), and on the other hand, we use intersection product on CH(F'). However,
there is a desingularization of F which is obtained by a sequence of blow-ups starting
from F'. We leave to the reader to adapt the following arguments using this smooth
model, and in the sequel, we do as if F were smooth.

We will prove the following two Lemmas:

Lemma 2.11 For D € CHY(F)y, we have ¢*D = —2r*D in CH(F).
Lemma 2.12 Let I C F x F be the incidence subscheme defined in [2.24. Then

(¢, Id)* T = —2(1, Id)*I + Z (2.43)
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in C’Hz(ﬁ x F), where Z is a cycle of the form
Z=ZxF+D xl+FxZ, (2.44)

with Zy C F a codimension 2 cycle, D' C F a codimension 1 cycle, Zs C F a
codimension 2 cycle.

Assuming these lemmas, let us show how to conclude the proof: First of all, from
Lemma R.11], we deduce that for D € Pic Fy, we have

¢* D3 = —87* D3 in CH(F). (2.45)
Next, from lemma .13, we deduce that
(¢, 1d)*I? = (1, 1d)*I* — 4Z - (1, Id)* I + Z2. (2.46)

Note now that by definition of ¢* :

Tx © QNS* = ¢*a
acting on CH(F'). Furthermore we have, applying 7., (7, Id) to (.49), (R.46):
¢*D3 = —8D3, (2.47)
(¢, Id)*I? = 41> —41 - 7' + 7", (2.48)

where

7 = (r,1d).Z, Z" = (1,1d). Z>.
Observe now that
¢*((I*)*(2)) = (¢, Id)* (I*))*(2), V= € CH1(F).

Combining this with (-4§) and the quadratic relation (R-27) given in Proposition
R.3, we get, for any z € CH;(F):

o (az 4+ (T -I) 24 (I")2) =4(I*)* 2 — 4T - Z')* 2+ (Z2")*2 (2.49)
=4(az+ (T - D2+ T)%2) -4 - Z)) 2+ (Z2")*=.

Applying this to z = D? and using (R-47), we finally get

—8aD3 + ¢*((I'- 1)* D3 + (I")*D?) (2.50)
= 4aD? +4((L - 1)*D? + (I'V*D3 — (I - Z')*D3) + (Z")*D3.
In conclusion, we proved that
12aD3 = ¢*((0-1)* D3+ (") D3) —4((D-1)* D3+ (I")*D*) — (I - Z')* D*) — (2")* D*.
We claim now that (I")*D3, ¢*((I")*D3) and (Z”)*D3? are all multiples of 3 (or
equivalently cl).

In the case of (IV)* D3, this is a consequence of the fact that IV € CH*(F x F) is
a polynomial in pr¥l, pril, pric, pric, and of lemma R.§. This implies also the claim
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for ¢*((I'")*D3), as one shows easily (using Lemma P.§) that ¢*I3 is a multiple of {3.
As for (Z")*D3, we observe that we have for any z € CH;(F),
(Z2")"z = 7((Z%)"2),
and using formula (R.44) for Z, this gives
(2" z = 21.(Z1D")deg (1 - 2). (2.51)

Hence it suffices to show that 7.(Z;D’) is a multiple of [3. Now we have by (R.51))
applied to [3:

(Z")1® = 21,(Z, D" )deg 1.
Thus it suffices to show that (Z”)*I3 is a multiple of [3. This follows now from (p.49)
applied to z = 13, and from the fact that

¢*l3, (F . I)*l?’, (F/)*l?’, (I Z/)*l3

are all multiples of 3. For the first three, this follows easily from the definition of
¢ and from the form of I, T"; for the last one, this follows from the fact that, for
any z € CHy(F), (I-Z')*z is a linear combination of 7.(Z1) - I*(z) and 7.D"- I*(12).
Then the result is a consequence of the fact that

'3, 1'i*, 7.(2,), n.D'

are polynomial expressions in [ and ¢, which is proved using (2.43) and the definitions
of F and I.

Next recall that the codimension 2-cycle T is a linear combination of I3, 13, I11s
on F'x F. Thus (I'-1)* D3 is a combination of [21*(D?) and of I1*(1D3). Next, for the
same reason, (I-Z')*D3? is a linear combination of 7,(Z;) - I*(D3) and 7.D’- I*(1D3),
that is of

2. 1*(D%), c- I*(D%), 1 - I*(ID?).

Thus our relation (R.5() becomes:

12aD3 = ¢* (ul*T*(D3) + vII*(1D?))
+ WP (D3) + V1 (ID3) 4 peI* (D) + 13, (2.52)
Recall from Lemma P.§ that [D? is proportional to o. Thus (I*(ID?) is propor-
tional to I, which is a multiple of I and ¢l in C H3(F). Furthermore, we mentioned

already that ¢*(I?) is also proportional to I3.
Next we have

Lemma 2.13 For some constant 3, and for any D € CH(F)g, one has
I*(D%) = Bq([D))D.

Proof. Indeed, as we are in CH'(F), it suffices to show this in H?(F,Q). But we
know that [D3] = %q(D)[FD]. Thus it suffices to show that for some constant /',
and for any [D] € H?(F,Q)o,

([P [(p))] = B'1D).

This is immediate because the left hand side is a morphism of Hodge structure from
H?(F,Q)o to H?(F,Q) which is defined for general X, hence has to be a multiple
of the identity, because the Hodge structure on H?(F,Q)q for general X is simple
with h%0 = 1, while H?(F,Q) = H?(F,Q)o + Q[I]. n
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From this lemma, we get in particular that cI*(D?) = 0, and we deduce from

(R.52) a relation:
12aD% = 6" (ug(ID))i2D) + g (DD + V1.

Furthermore, we recall that by Lemma

¢*D = =27*D.
Hence it follows that
¢*(I2D) = 1,(=27*D$*1%) = —2D¢*I2.
It is easy to verify that ¢*I? is a combination of I2 and c. As ¢D = 0, we conclude
that ¢*(I2D) is a multiple of I2D. Thus we finally proved that we have a relation
12aD? = (" q([D))I2D + VI3 (2.53)
On the other hand, we know that we have the cohomological relation

3 _i 2
[D°] = q(l)q([D])[l D].

Using the hard Lefschetz theorem, and comparing with the cohomological relation
12a[D%] = p"q([D))[I* D] + v"[1%]

deduced from (R.53), we conclude that v’ = 0, and that

2

W3

120 q(l)

This concludes the proof of Proposition when X contains no plane.

It remains to see how to do when X contains a plane. Let D := Dy for some
primitive class [Z] € H*(X,Q). In that case, either [Z] is a multiple of the primitive
component [H]? — 3[P] of the cohomology class of a plane P C X, or it is not. In
the later case, one can show by deformation theory that a generic deformation of
X preserving the class Z does not preserve any plane contained in X. Then we
know that (R.49) is satisfied by D; € PicF; for the generic member of a family of
deformations of the pair (D, F'). Thus it is also satisfied by (D, F').

Thus it remains only to consider the case where D = Dy, [Z] = [H]?—3[P]. Thus
D = [—3Dp, where Dp is the divisor of lines meeting P. But this case is easy because
away from the dual plane P* C F, Dp is isomorphic via p to D= ¢'P)C P. It
follows that the restriction (D]p)‘ Dy identifies away from P* as det ¢*Np/x —1Tp/ Fip

that is to the restriction of a combination of h and [ to D. From this, one deduces
easily that (2.42) is satisfied in F \ P*, and as it is satisfied in cohomology, while

CHy(P*) = Hy(P*,Z) = Z C H*(F,Q),

it follows that it is satisfied as well on F'.

Thus Proposition is proved, modulo Lemmas and R.132.
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Proof of Lemma [2.11. Note that 7 : F — F is the contraction of a ruled
divisor F to the surface T of points [ € F having the property that there is a
IP’? C P> which is everywhere tangent to the corresponding line A; € X. (One
verifies that T is always a surface, and the fiber of 7 over | € T identifies to the P!
parameterizing planes P? contained in ]P’? and containing 4A;, because X contains no
plane.)

Thus for any divisor D € CH!(F), there must be a relation

¢*D=7"D'+  oE; in CHs(F),
i

where the E; are the irreducible components of E. Here the «; are computed as
D . (;;(Eu), where E;; is the fiber of E; over I € T;. (Here T; is the irreducible
component of T corresponding to F;.) However, the curve (]3(Ezl) is the family of
lines contained in a cubic surface S in X which is singular along the line A;. Thus
the surface in X swept out by the lines parameterized by (]3(E”) is the cubic surface

S, and for D = Dy, with Z C X a cycle with primitive cohomology class, one has
a;=—D-¢(E;)) =< Z,8 >=0.

Thus we have
¢*D =D’ in CHs(F),
and clearly D' = ¢*D € CH'(F). But the action of ¢* on CH'(F)j is the restriction
of the action of ¢* on H?(F,Q)g := p.q* H*(X, Q)prim- This action is multiplication
by —2, because it is multiplication by —2 on H?°(F) (cf [R1]]), and for general X the
Hodge structure on H?(F, Q) is simple. Thus D’ = —2D and the lemma is proven.
|

Proof of Lemma 2.13. We observe first that it suffices to prove the lemma
for generic F, because the family of F' parameterized by the set U € P(H(Ops(3)))
corresponding to smooth cubic hypersurfaces which do not contain a plane is flat.

Next we note that because Pic’F = 0, (which implies that divisors on any
product K x F' are rationally equivalent to sum of pull-backs of divisors on each
factor,), and Pic F' = Z, which implies that divisors on F' are rationally equivalent
to a multiple of [, any codimension 2 cycle in F' x F' which is supported on D x F'
is of the form

Zyx F+D' xl,

where Z1, D’ have respectively codimension 2 and 1 in F.
We use now the fact that for L € F, the points L and ¢(L) of F' parameterize
lines

Az, Ag(r)
in X which satisfy the property
QAL + A¢(L) = H3 in CH?’(X)

Thus we also have
211, + Iyr) = C in CH*(F),

where C' = p,q*H? is a constant. We then apply the Bloch-Srinivas argument [l
([B9],10.3.1), to conclude that 2(7, Id)*I + (¢, Id)*I is rationally equivalent to the
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sum of a cycle of the form FxC and of a cycle W supported (via the first projection)
on a divisor of F. We can thus apply the remark above, which gives

27, Id)*I + (¢, 1d) I = F x C+ Z; x F+ D' x 1,

that is formula (R.44) with Z, = C.
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