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Abstract

We present a detailed and complete analysis of a birdcage coil designed

for MRI experiment through an equivalent circuit model. We derive an-

alytic equations which can be used to predict a priori the full mutual

inductances between conductors and the complete resonant spectrum for

unshielded coils with high accuracy. The equations are valid for lowpass,

highpass, and bandpass structures. We show that the approximation of a

sinusoidal current pattern–which is usually used in the literature–is jus-

tified. Moreover, we reduce Neumann formula to the computation of two

integrals and present an accurate algorithm to compute them. We also

compute the magnetic field pattern of a birdcage coil. Our model is vali-

dated through numerical simulations which are compared to experimental

results.
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1 Introduction

Since their introduction over two decades ago, birdcage coils ([1, 2]) are often
used in MRI experiments since they generate an adequate homogeneous ra-
diofrequency magnetic field. Since then several studies have used the equivalent
circuit method to predict the mutual inductances between conductors and the
resonant spectrum. Hayes and al. ([1]) showed that a N leg coil has N/2 + 1
distinct resonant modes but didn’t compare their results to effective experiment
neither got numerical results. Tropp ([2, 3]) showed that couplings between
near-neighbor meshes are dominant and neglected remote neighbors. Leifer
([4]) showed that another resonant mode, called the Helmholtz mode, exists.
Thus a N leg coil has N/2+2 distinct resonant modes, including the Helmholtz
mode.

Analytic formulas for the resonant modes are presented in [4, 5, 6], where
mutual inductance formulas are the one studied in [7].

All the above mentioned articles are using the equivalent circuit presented
in [1]. In particular they neglect the electric resistance of conductors and don’t
discuss tension sources. We also find papers where the authors are introducing
more sophisticated models, but still based on the circuit approach, see [8]. Let
us mention other models based on the Time-Domain Finite-Difference method
([9]) to calculate the radiofrequency field generated by the coil. With this ap-
proach we can only handle rough approximations of the complete device since
we need to use a structured mesh of the domain, usually arcs and rings of the
antenna are modelled by wires on edges of elements. Moreover we have no hope
to get analytic formulas for the resonant modes and we shortcut the mutual in-
ductance computation, which are precisely our two main goals with comparison
to experimental data.

In our paper we are introducing a model close to the ones of [1] and [8]. We
add the electric resistance of the conductors and the tension sources. By using
the classical electrical network theory we get a system of ordinary differential
equations which is solved explicitly when introducing resonant modes. Numer-
ical simulations validate our model, justify the usual stationary approach (see
[1]) and lead to a method giving a precise cartography of the B1 field inside the
birdcage.

More precisely the content and the organisation of the paper are the follow-
ing.

Section 2 is devoted to the circuit analysis of the birdcage coil. First in
section 2.1 we derive the general system of equations satisfied by the current
of the endrings (see Eq. [10]). Since the different matrices introduced are all
circulant matrices we can solve explicitly this system in the two configurations
considered in section 2.2 which are the ones actually used in practice. Moreover
we give the expression of the different resonant pulsations (see Eq. [15], Eq.
[27], and Eq. [30]), which are the same as [1].

To have numerical values of these pulsations it is necessary to calculate
mutual inductances. As usual we use Neumann formula (see Eq. [36]). We
show in section 3.1 that this formula reduces to a simple integral which is well
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computed by classical quadrature formulas. Then we are able to compare our
resonant frequencies to experimental data. We consider three cases in section
3.2: two lowpass and one highpass structures. In section 3.3 we show that the
hypotheses necessary to establish and solve Eq. [10] are satisfied in practical
situations. To conclude we justify in section 3.4 the sinusoidal approach. We
show that the transient state can be neglected in comparison with the stationary
state.

Section 4 is devoted to numerical simulations of the radiofrequency field of
the birdcage coil. We show numerically properties of the field corresponding to
several resonant pulsations. Clearly the first mode is the only appropriate one
for applications in MRI.

2 Birdcage Coil Circuit analysis

2.1 The equations

We consider a N leg bandpass birdcage coil with capacitors in both endrings
and legs (see Fig. 1).

−→ez

−→ey

−→ex

Figure 1: Bandpass birdcage coil

Our electric equivalent circuit is based on electrical network theory. We
model each conductor as an inductance and a resistance. Thus the bandpass
birdcage coil is described as the repetition of the electric network segment shown
in Fig. 2, with left and right-most ends connected together.

In Fig. 2, Lb represents the self-inductance of a single leg, La the self-
inductance of a single endring arc, Ca the capacitance of the capacitor between
two legs and Cb represents the capacitance of the capacitor between two opposite
endring arcs. This model includes the lowpass and highpass coils as special cases
when 1/Ca or 1/Cb is set to zero. We also take into account mutual inductances:
we note Lb

n,k the mutual inductance between the n-th and the k-th leg, La
n,k

the mutual inductance between the n-th and the k-th endring segment in the
same endring and La

n,k the mutual inductance between the n-th and the k-th

endring segment in opposite endring. For convenience, we define Lb
1,1 = Lb and
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La
1,1 = La. We note Ib

n the current in the n-th leg, In the current in the n-th
arc of the top endring and Jn the current in the n-th arc of the bottom endring
where n takes integer values. All over the paper the indices are taken modulo
N so that, for example, IN+n = In. Contrarily to what is usually assumed in
the previous papers, here the currents In and Jn are general functions of the
time t, not necessarily sinusoidal or equal.

Ca Ca Ca

Cb Cb Cb

Ca Ca Ca

La La La

La La La

Lb Lb Lb

Ra Ra Ra

Rb Rb Rb

Ra Ra Ra

In−1 In In+1

Ib
n Ib

n+1 Ib
n+2

Jn−1 Jn Jn+1

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

Vn−1 Vn Vn+1

En En+1 En+2Wn−1 Wn Wn+1

A• B•

C
•

D
•

Figure 2: A section of the birdcage equivalent circuit

By applying the Kirchhoff law at the points A and D, we obtain:
{

∀ 1 6 n 6 N, Ib
n = In−1 − In,

∀ 1 6 n 6 N, Jn = J1 − I1 + In.
(1)

The Kirchhoff law on the mesh ABCD gives the system of coupled equations

∀ 1 6 n 6 N,

N∑

k=1

La
n,k

e2Ik

et2
−

N∑

k=1

La
n,k

e2Jk

et2
+ Ra eIn

et
+

In

Ca
− eVn

et

−
[

N∑

k=1

Lb
n,k

e2Ib
k

et2
+ Rb eIb

n

et
+

Ib
n

Cb
+

eEn

et

]

+

N∑

k=1

La
n,k

e2Jk

et2
−

N∑

k=1

La
n,k

e2Ik

et2
+ Ra eJn

et
+

Jn

Ca
− eWn

et

+

N∑

k=1

Lb
n+1−k

e2Ib
k

et2
+ Rb eIb

n+1

et
+

Ib
n+1

Cb
+

eEn+1

et
= 0.

(2)

The Kirchhoff law on the top endring mesh and on the bottom one leads to

N∑

n=1

[
N∑

k=1

La
n,k

e2Ik

et2
−

N∑

k=1

La
n,k

e2Jk

et2
+ Ra eIn

et
+

In

Ca
− eVn

et

]
= 0, (3)

3



N∑

n=1

[
N∑

k=1

La
n,k

e2Jk

et2
−

N∑

k=1

La
n,k

e2Ik

et2
+ Ra eJn

et
+

Jn

Ca
− eWn

et

]
= 0. (4)

We easily verify that Eq. [4] is a consequence of Eq. [2] and Eq. [3]. Thus we
have obtained N +1 equations for the 3N unknowns In, Jn, and Ib

n, 1 6 n 6 N .
Using Eq. [1], we substitute the unknowns In and J1 to the unknowns J2,

..., JN and Ib
n in Eq. [2] and Eq. [3] to get:

∀ 1 6 n 6 N, 2

N∑

k=1

(La
n,k − La

n,k)
e2Ik

et2
+ 2

[
Ra e

et
+

1

Ca

]
In

−e(Vn + Wn)

et
+

[
N∑

k=1

(La
n,k − La

n,k)
e2

et2
+ Ra e

et
+

1

Ca

]
(J1 − I1)

+

N∑

k=1

(Lb
n+1,k − Lb

n,k)
e2(Ik−1 − Ik)

et2

+

[
Rb e

et
+

1

Cb

]
(2In − In−1 − In+1) −

e(En − En+1)

et
= 0

(5)

and

N∑

n=1

(
N∑

k=1

(
La

n,k − La
n,k

)) e2Ik

et2
−
[

N∑

n=1

N∑

k=1

La
n,k

]
e2(J1 − I1)

et2

+

(
Ra e

et
+

1

Ca

) N∑

n=1

In −
N∑

n=1

eVn

et
= 0.

(6)

Since the indices are taken modulo N ,

N∑

k=1

(Lb
n+1,k − Lb

n,k)Ik−1 =

N∑

k=1

(Lb
n+1,k+1 − Lb

n,k+1)Ik.
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Finally In, 1 6 n 6 N , and J1 are solutions of the system





∀ 16 n 6 N,
N∑

k=1

[
Lb

n,k − Lb
n+1,k − Lb

n,k+1 + Lb
n+1,k+1 + 2(La

n,k − La
n,k)

]e2Ik

et2

+ 2(Ra + Rb)
eIn

et
− Rb e(In−1 + In+1)

et
− 1

Cb
(In−1 + In+1)

+ 2

(
1

Ca
+

1

Cb

)
In +

[
N∑

k=1

(La
n,k − La

n,k)
e2

et2
+ Ra e

et
+

1

Ca

]
(J1 − I1)

= −e(En+1 − En)

et
+

e(Vn + Wn)

et
,

N∑

n=1

(
N∑

k=1

(
La

n,k − La
n,k

)) e2Ik

et2
−
[

N∑

n=1

N∑

k=1

La
n,k

]
e2(J1 − I1)

et2

+

(
Ra e

et
+

1

Ca

) N∑

n=1

In =

N∑

n=1

eVn

et
.

(7)
Since legs are all identical, Neumann formula in Eq. [36] shows that the mutual
inductance between two legs depends only on their relative position, that is:






∀ 1 6 n, k 6 N, Lb
n,k = Lb

k,n,

∀ 1 6 n, k, j 6 N, Lb
n,k = Lb

n+j,k+j ,

∀ 1 6 n, k 6 N, Lb
n,n+k = Lb

n,n−k.

(8)

We suppose that all endring segments are identical so we have the same formulas
for La

n,k and La
n,k.

We deduce from Eq. [8] that

∀ 1 6 n 6 N,

N∑

k=1

La
n,k =

N∑

k=1

La
k,n =

N∑

k=1

La
1,k. (9)

In order to obtain an equation for the only unknown J1 − I1, we sum the first
N lines of Eq. [7] and subtract two times the last one:

N

[
N∑

k=1

(La
1,k + La

1,k)
e2

et2
+ Ra e

et
+

1

Ca

]
(J1 − I1) = − e

et

N∑

n=1

(Vn − Wn).
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Finally we get the following system of ordinary differential equations:





L
e2

et2




I1

...
IN


+ R

e

et




I1

...
IN


+ C




I1

...
IN




+

[
N∑

k=1

(La
1,k − La

1,k)
e2

et2
+ Ra e

et
+

1

Ca

]


J1 − I1

...
J1 − I1




= − e

et




E2 − E1

...
E1 − EN


+

e

et




V1 + W1

...
VN + WN


 ,

N

[
N∑

k=1

(La
1,k + La

1,k)
e2

et2
+ Ra e

et
+

1

Ca

]
(J1 − I1) = − e

et

N∑

n=1

(Vn − Wn),

(10)
where L, R and C are N × N square matrices whose elements are given by:

Ln,k = Lb
n,k − Lb

n+1,k − Lb
n,k+1 + Lb

n+1,k+1 + 2
(
La

n,k − La
n,k

)
, (11)

Rn,k = 2
(
Ra + Rb

)
δn,k − δn+1,kRb − δn,k+1R

b, (12)

Cn,k = 2

(
1

Ca
+

1

Cb

)
δn,k − δn+1,k

Cb
− δn,k+1

Cb
, (13)

where δn,k is the Kronecker symbol, defined as: δn,k = 1 for n = k and δn,k = 0
for n 6= k.

2.2 Resolution of the system of ordinary differential equa-

tions

We only consider the two cases:

• ∀ 1 6 n 6 N, Vn = Wn,

• ∀ 1 6 n 6 N, Vn = −Wn,

which cover the essential features encountered in the applications.

In the first case, the last line of Eq. [10] is

e2y

et2
+

1

τCR

ey

et
+ ω2

CR y = 0, (14)

where y = J1 − I1,

ωCR =





√√√√Ca

N∑

k=1

(La
1,k + La

1,k)




−1

, (15)
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and

τCR =
1

Ra

N∑

k=1

(La
1,k + La

1,k) is assumed to be strictly positive. (16)

If 1/Ca = 0, that is in lowpass mode, the solutions of Eq. [14] are:

y(t) = Ae−t/τCR + B with A, B ∈ C.

In the case 1/Ca 6= 0, we suppose moreover that

∆CR =
1

τ2
CR

− 4ω2
CR < 0. (17)

The solutions of Eq. [14] are then:

y(t) = e−t/2τCR(A cos(ωa
CRt) + B sin(ωa

CRt)) where A, B ∈ C and

ωa
CR = ωCR

√
1 − 1

4ω2
CRτ2

CR

.

In both cases, the unique solution of the differential equation Eq. [14] with
initial conditions y(0) = y′(0) = 0 is y(t) = 0, that is J1 = I1. Using Eq. [1]
we obtain In = Jn, the usual assumption found in the literature (see [1], [4]).
Then the system in Eq. [10] reduces to:





L
e2

et2




I1

...
IN


+ R

e

et




I1

...
IN


+ C




I1

...
IN


 = − e

et




E2 − E1 − 2V1

...
E1 − EN − 2VN


 ,

J1 = I1,
∀ 1 6 n 6 N, Vn = Wn.

(18)
We see from Eq. [12] and Eq. [13] that matrices R and C are circulant, that

is Ri+1,j+1 = Ri,j . By using Eq. [8], we can show that L is also a circulant
matrix. So, they are codiagonalisable in the basis composed of the columns of
F ∗ with

F ∗

i,j =
1√
N

(
exp

(
2iπ

N

))(i−1)(j−1)

. (19)

Let ιj , j = 0, ..., N − 1, be the components of (I1, ..., IN )T in this basis and sj ,
j = 0, ..., N − 1, those of (−(E2 − E1) + 2V1, ...,−(E1 − EN ) + 2VN )T . The
matrices L, R, and C are circulant, so we have the analytic expression of their
eigenvalues (see [10]):

λL
k =

N−1∑

m=0

L1,m+1 exp

(
2ikmπ

N

)
, (20)

λR
k = 2

(
Ra + Rb

[
1 − cos

(
2kπ

N

)])
> 0, (21)

λC
k = 2

(
1

Ca
+

1

Cb

[
1 − cos

(
2kπ

N

)])
> 0. (22)
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In this new framework, the differential system in Eq. [18] reduces to the N
equations

∀ 0 6 j 6 N − 1, λL
j

e2ιj+1

et2
+ λR

j

eιj+1

et
+ λC

j ιj+1 =
esj+1

et
. (23)

We suppose that:
∀ 0 6 j 6 N − 1, λL

j > 0, (24)

∀ 0 6 j 6 N − 1, ∆j =
1

τ2
j

− 4ω2
j < 0. (25)

Then, we can write Eq. [23] under the form:

∀ 0 6 j 6 N − 1,
e2ιj+1

et2
+

1

τj

eιj+1

et
+ ω2

j ιj+1 =
1

λL
j

esj+1

et
, (26)

where τj = λL
j /λR

j > 0 and the resonant frequencies of birdcage coil ωj are given
by

ωj =

√
λC

j

λL
j

=

√
2

λL
j

(
1

Ca
+

1

Cb

[
1 − cos

(
2jπ

N

)])
. (27)

Indeed, Eq. [26] is the classical differential equation of an RLC network and we
know that there is a resonant phenomenon for ιj+1 at the pulsation ωj.

Moreover, if sj+1(t) = Sj+1 cos(ωt) + Tj+1 sin(ωt), we can explicitly solve
Eq. [26]. The solution which satisfies the initial condition ιj+1(0) = ι′j+1(0) is:

ιj+1(t) = e−t/2τj (A cos(ωa
j t) + B sin(ωa

j t)) + C cos(ωt) + D sin(ωt), (28)

where

ωa
j = ωj

√
1 − 1

4ω2
j τ2

j

,

(
A
B

)
=




−C

− 1

ωa
j

(
C

2τj
+ Dω

)

 ,

(
C
D

)
=

ω

λL
j

(
(
ω2 − ω2

j

)2
+

ω2

τ2
j

)




−
(
ω2 − ω2

j

)
Tj+1 +

ω

τj
Sj+1

ω

τj
Tj+1 +

(
ω2 − ω2

j

)
Sj+1


 .

We notice that this solution is composed of an oscillating term at the pulsation
ω imposed by the source sj+1 and a transient term exponentially decreasing.

Let us consider now the second case, where Vn = −Wn. By summing the
first N equations in Eq. [10] and using Eq. [8] and Eq. [9], we obtain:

e2y

et2
+

1

τAR

ey

et
+ ω2

AR y = 0, (29)

8



where, by analogy with the first case, we have set

y =
N∑

n=1

(In + Jn) ,

ωAR =

√√√√√√

1

Ca

N∑

k=1

(La
1,k − La

1,k)

, (30)

and we suppose:

τAR =
1

Ra

N∑

k=1

(La
1,k − La

1,k) > 0, (31)

∆AR =
1

τ2
AR

− 4 ω2
AR < 0. (32)

The unique solution of Eq. [29] which satisfies the initial condition y(0) =
y′(0) = 0 is the null function, that is Eq. [7] reduces to:





L̃
e2

et2




I1

...
IN


+ R̃

e

et




I1

...
IN


+ C̃




I1

...
IN


 = − e

et




E2 − E1

...
E1 − EN


 ,

[
N∑

n=1

(La
n,k + La

n,k)
e2

et2
+ Ra e

et
+

1

Ca

]
N∑

n=1

In =
e

et

N∑

n=1

Vn,

J1 = I1 −
2

N

N∑

n=1

In,

∀ 1 6 n 6 N, Vn = −Wn,
(33)

where






∀ 1 6 j, k 6 N, L̃j,k = Lj,k − 2

N

N∑

n=1

(La
n,k − La

n,k),

∀ 1 6 j, k 6 N, R̃j,k = Rj,k − 2
Ra

N
,

∀ 1 6 j, k 6 N, C̃j,k = Cj,k − 2

NCa
.

As in the first case we work in the basis composed of the columns of F ∗ (see
Eq. [19]) and we note ιj , j = 0, ..., N − 1, the components of (I1, ..., IN )T in

this basis. By using
∑N

n=1 In =
√

Nι1, we show that the first N equations of
the system in Eq. [33] are equivalent to:

∀ 0 6 j 6 N − 1, λ
eL
j

e2ιj+1

et2
+ λ

eR
j

eιj+1

et
+ λ

eC
j ιj+1 =

esj+1

et
, (34)

9



where (v1, ..., vN )T are the components of (V1, ..., VN )T and (s1, ..., sN )T those
of −M(E1, ..., EN )T with:

Mn,k = δn,k − δn+1,k − δn,k+1.

Since the first eigenvalue of M is zero, Eq. [34] with j = 0 reduces to 0 = 0.
The N − 1 other ones are the same as in the first case. The last equation of
system in Eq. [33] is

[
N∑

n=1

(La
n,k + La

n,k)
e2

et2
+ Ra e

et
+

1

Ca

]
ι1 =

ev1

et
. (35)

The analysis of this equation is similar to the one of Eq. [26]: we observe a
resonant phenomenon at pulsation ωCR with characteristic time 2τCR.

3 Numerical simulations of the resonant modes

3.1 Calculation of birdcage inductances

The methods usually presented in the literature to compute mutual inductances
are based on formulas given in [7]. The goal of this section is to show how
to reduce the mutual inductance formula to a double integral, which can be
computed then by quadrature rules.

The mutual inductance between two conductors V1 and V2 fed with a current
density J1 and J2 is expressed by the following Neumann formula :

M1,2 =
µ0

4πI1I2

∫

V1

∫

V2

−→
J1(r).

−→
J2(r

′)

|r − r′| dvdv′, (36)

where µ0 is the vacuum permeability, Ij the total current in the conductor Vj .
Assuming the strip thickness negligible and the current uniformly distributed,

that is J1 = I1
−→ez/wb, J2 = I2

−→ez/wb, with wb the strip width, then the mutual
inductance Lb

n,k reduces to:

Lb
n,k =

µ0

4π

R2

w2
b

h∫

0

θn+wb/R∫

θn

h∫

0

θk+wb/R∫

θk

dθdθ′dzdz′√
2R2(1 − cos(θ − θ′)) + (z − z′)2

(37)

where θk = 2(k − 1)π/N and h represents the leg length.
By integration by parts in z and z′, the previous expression reduces to the

double integral:

Lb
n,k =

µ0

4π

R2

w2
b

θn+wb/R∫

θn

θk+wb/R∫

θk

[
− 2
√

2R2(1 − cos(θ − θ′)) + h2

+2
√

2R2(1 − cos(θ − θ′)) + h ln
(
h +

√
2R2(1 − cos(θ − θ′)) + h2

)

−h ln
(
−h +

√
2R2(1 − cos(θ − θ′)) + h2

) ]
dθdθ′.

(38)
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Using a similar method we obtain for the mutual inductance concerning the
endring the following expression:

La,a
n,k =

µ0

4π

R2

w2
a

∫ 2nπ/N

2(n−1)π/N

∫ 2kπ/N

2(k−1)π/N

cos(θ − θ′)

[
2
√

2R2(1 − cos(θ − θ′)) + Z2

−
√

2R2(1 − cos(θ − θ′)) + (Z + wa)2 −
√

2R2(1 − cos(θ − θ′)) + (Z − wa)2

−2Z ln
(
Z +

√
2R2(1 − cos(θ − θ′)) + Z2

)

+(Z + wa) ln
(
Z + wa +

√
2R2(1 − cos(θ − θ′)) + (Z + wa)2

)

+(Z − wa) ln
(
Z − wa +

√
2R2(1 − cos(θ − θ′)) + (Z − wa)2

)]
dθdθ′,

(39)
where wa is the width of the arc, Z = 0 for La

n,k, and Z = L − wa for La
n,k.

To evaluate the integrals in Eq. [38] and Eq. [39] we use the Gauss quadra-
ture rule exact for polynomials of degree up to seven. Indeed, Gauss formulas
don’t need the interval extremities and the singularity θ = θ′ = 2π/N when
Z = 0 is avoided. To circumvent the singularities when θ = θ′ and Z = 0, the
subdivisions associated to θ and θ′ are shifted: if β is the number of subdivisions
associated to the first integral in θ, γ = β + 1 is the number associated to the
second.

3.2 Comparison to measurements

In our mutual inductance comparisons, we have used two birdcage coils. The
first one is a 16 leg birdcage coil with a diameter of 8.9 cm and a length of
12.8 cm. The width of the strip is 1 cm for the ring and 0.635 cm for the legs.
Strip conductors are fixed at 35 µm. Fig. 3 shows how the strips were sized for
mutual inductance calculation. A capacitor Ca = 180 pF is used in each leg to
form a highpass structure. The second structure is the same with Ca = 0 and

Figure 3: 3D view of birdcage coil

Cb = 150 pF to form a lowpass structure. We see in Fig. 3 that the leg length is
h = L−wa. In our numerical simulation we have also used h = L− 2wa. As we
can see on tables 1 and 2, results are better in the second case. In the first case
we take into account two times the inductance where leg and endring segments

11



Inductance Measured Measured h = L − wa h = L − 2wa [4]
(lowpass, nH) (highpass, nH) (nH) (nH) (nH)

L1,1 117 115 124.802 114.847 122
L1,2 -36.4 -34.9 -39.286 -35.641 -38.1
L1,3 -5.3 -5.3 -5.847 -5.218 -6.1
L1,4 -2.3 -2.3 -2.354 -2.085 -2.3
L1,5 -1.4 -1.3 -1.394 -1.238 -1.4
L1,6 -0.9 -0.8 -1.013 -0.908 -1.0
L1,7 -0.9 -0.8 -0.836 -0.758 -0.8
L1,8 -0.7 -0.8 -0.730 -0.689 -0.8
L1,9 -0.8 -0.8 -0.754 -0.669 -0.7

Table 1: Computed and Measured Inductance

Inductance Measured (lowpass) L − wa h = L − 2wa [4]
(nH) (%) (%) (%)

L1,1 117 6.668 1.840 4.273
L1,2 -36.4 7.930 2.084 4.670
L1,3 -5.3 10.321 1.551 15.094
L1,4 -2.3 2.366 9.363 0.0
L1,5 -1.4 0.424 11.536 0.0
L1,6 -0.9 12.515 -0.950 11.111
L1,7 -0.9 7.126 15.783 11.111
L1,8 -0.7 7.739 1.565 14.286
L1,9 -0.8 8.737 16.395 12.500

Table 2: Relative error

are superposed. Since the thickness of the superposition is still negligible it is
reasonable to take into account only once this inductance.

We also compare our method with respect to results obtained by [6]. The
characteristics of the lowpass birdcage coil are:






L = 12 cm, R = 6.7 cm, N = 8,
wa = wb = 1 cm,
Cb = 2 nF, Ca = 0 nF.

(40)

We collect in table 3 our results of resonant frequencies, those obtained in the
references [6] and [11], and the measured values. For each mode we have reported
the relative error between calculated value and measured value.

3.3 Justification of assumptions

Our goal now is to justify the hypotheses of section 2.2: Eq. [16], Eq. [17], Eq.
[24], Eq. [25], Eq. [31], and Eq. [32]. For this, we need to compute the coefficient
of the matrix L, that is the mutual inductance. As the analytic expressions
of the mutual inductance and of the eigenvalues of L are cumbersome, it is

12



Mode Measured L − 2wa Error [6] Error [11] Error
(MHz) (MHz) (%) (MHz) (%) (MHz) (%)

1 8.081 8.095 0.178 8.259 2.203 9.290 14.961
2 12.075 12.187 0.928 12.044 0.257 12.383 2.551
3 13.875 14.036 1.161 13.695 1.297 13.718 1.131
4 14.475 14.574 0.686 14.174 2.079 14.475 2.501

Table 3: Birdcage (40) : frequencies

impossible to prove mathematically these assumptions. Nevertheless we have
checked numerically their correctness. The method used to calculate the mutual
inductance is exposed in section 3.1.

Let us consider the highpass structure presented in section 3.2. We obtain
for the first line of matrix L:

(L)1 = (114.8466 , −35.6413 , −5.2178 , −2.0846 , −1.2385 , −0.9086 ,
−0.7579 ,−0.6890 , −0.6688 , −0.6890 , −0.7579 , −0.9086 ,
−1.2385 , −2.0846 ,−5.2178 , −35.6413).

Thus

N∑

m=1

(
La

1,m − La
1,m

)
= 10.5511× 10−9 > 0, (41)

N∑

m=1

(
La

1,m + La
1,m

)
= 10.9671× 10−9 > 0. (42)

With Eq. [42] and Eq. [42] we check that the expressions in Eq. [15] and Eq.
[30] are well defined.

In our numerical simulation, the resistance Ra and Rb are calculated with
the formula:

R = ̺
L

S
with





L the conductor length in m,
S its section in m2,
̺ its electrical resistivity in Ωm.

(43)

We have used the resistivity of copper, that is ̺ = 1.712× 10−8 Ωm. Then the
computed characteristic values are:

τCR = 1.283 × 10−5 > 0, ∆CR = −2.026× 1018 < 0,

τAR = 1.234 × 10−5 > 0, ∆AR = −2.106× 1018 < 0.

We have also calculated the different τj and ∆j :

(τ0, ..., τN−1) = 10−4 × (0.123 , 0.147 , 0.105 , 0.081 , 0.067 , 0.059 ,
0.054 , 0.052 , 0.051 , 0.052 , 0.054 , 0.059 , 0.067 , 0.081 , 0.105 , 0.147).

(44)

(∆0, ..., ∆N−1) = −1018 × (2.106 , 1.016 , 0.639 , 0.457 , 0.359 , 0.304 ,
0.271 , 0.254 , 0.249 , 0.254 , 0.271 , 0.304 , 0.359 , 0.457 , 0.639 , 1.016).
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In conclusion all the hypotheses of section 2.2 are true: Eq. [16], Eq. [17], Eq.
[24], Eq. [25], Eq. [31], and Eq. [32]. In particular, as a consequence of Eq.
[24], the expression of ωk in Eq. [27] is correctly defined.

We remark in Eq. [44] that: ∀ 1 6 k 6 N−1, τN−k = τk. It is a consequence
of the symmetry satisfied by the eigenvalues λR

k and λL
k . Indeed, an immediate

consequence of Eq. [21] is that:

∀ 1 6 k 6 N − 1, λR
N−k = λR

k , (45)

∀ 1 6 k 6 N − 1, λL
N−k = λL

k . (46)

By using the relation L1,m+1 = L1,N−m+1, we obtain:

∀ 1 6 k 6 N − 1, λL
N−k = λL

k . (47)

We deduce from Eq. [46] and Eq. [47] that:

∀ 1 6 k 6 N − 1, λL
k ∈ R and λL

N−k = λL
k ,

so τN−k = λL
N−k/λR

N−k = λL
k /λR

k = τk. We verify from Eq. [22] that λC
N−k = λC

k

so ωN−k = ωk and an N leg birdcage coil has N/2 + 2 resonant frequencies:
N/2 associated to k = 1, ..., N/2, ωAR = ω0 and ωCR.

3.4 Validation of the sinusoidal approximation

To check that the sinusoidal approximation usually assumed in the literature is
reasonable or not, we consider a spin-echo sequence. The emission time of the
radiofrequency field is approximately T = π/(4π × 10−6ω1) = 0.496 ms long.
Since T/τ1 = 33.755, the sinusoidal approximation is reasonable. To illustrate
this, we represent in Fig. 4 the transient term and the complete courant ι2
associated to the pulsation ω1. Clearly the total current converges quickly to

A B

Figure 4: Transient (a) and total (b) current on [0 , T ]

the oscillating term. In conclusion we have shown that Eq. [48] and Eq. [49]
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are “good approximation” of Eq. [18] and Eq. [33] where





ω2L




I1

...
IN


+ iωR




I1

...
IN


− C




I1

...
IN


 = −iω




E2 − E1

...
E1 − EN


+ 2iω




V1

...
VN


 ,

J1 = I1,
∀ 1 6 n 6 N, Vn = Wn,

(48)




ω2 L̃




I1

...
IN


+ iωR̃




I1

...
IN


− C̃




I1

...
IN


 = −iω




E2 − E1

...
E1 − EN


 ,

−
[
ω2

N∑

k=1

(La
1,k + La

1,k) + iωRa − 1

Ca

]
N∑

n=1

In = iω
N∑

n=1

Vn,

J1 = I1 −
2

N

N∑

n=1

In,

∀ 1 6 n 6 N, Vn = −Wn.

(49)

4 B1 field computation

From the previous sections, we know precisely the electric current in the birdcage
coil conductors. Then we are able to compute the magnetic field patterns. Its
expression outside the conductors is given by the Biot-Savart formula. To have
in hand an efficient algorithm to compute the magnetic field, we still need to
develop the different integrals. In particular the integrals coming from the
endring segments contain elliptic integrals. A detailed analysis is given in [13].
All the results presented here are obtained with that method in the case of the
first lowpass birdcage coil with 16 legs.

The diagrams in Fig. 5 refer to the magnetic field patterns in the plane
perpendicular to the birdcage axis in its middle. In order to verify the magnetic

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A B

Figure 5: Module of B1 field for mode 1 (a) and mode 8 (b)
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field homogeneity and to justify the choice of the mode 1 in MRI, we plot the
mode 1 field and the mode 8 field along the y axis on Fig. ??. We remark that
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Figure 6: Module of B1 field for mode 1 (a) and mode 8 (b)

only the field associated to the mode 1 is not zero at the center of the birdcage
coil. It is the only one with energy and homogeneity property in the center.
That is why it is precisely the one used in MRI.

Remarque 4.1 We plot only the mode 1 and the mode 8 because they are the

two ones with the best homogeneity properties.

On Fig. 7.a we have plotted the mode 1 magnetic field pattern in the plane of
equation y = 0 containing the birdcage axis. We see the field still homogeneous
at the center of the birdcage coil. More precisely, Fig. 7.b shows that in the
area defined by a z coordinate between −L/8 = −0.016 cm and L/8 the mode
1 field is homogeneous.
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Figure 7: Norm of B1 field for mode 1
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5 Conclusion

We have developed a circuit based model to describe a birdcage coil with high
accuracy. The analytic equations obtained for resonant frequencies and the
corresponding radiofrequency field computation give a precise representation of
the complete resonant spectrum and of the magnetic field pattern inside the
coil. Moreover we give a rigorous and complete mathematical analysis of the
model. We show also how the sinusoidal approximation is valid. We have
compared our results with respect to experimental data and their are in good
agreement. Finally we have developed reliable quadrature rules to compute the
mutual inductances. All these results and much more can be found in the work
[13].
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[13] P. Boissoles, Problèmes mathématiques et numériques issus de l’imagerie
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