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Kinetics of phase ordering of nematic liquid crystals confined in porous media

Vlad Popa-Nita and Doru-Cosmin Constantin
Faculty of Physics, University of Bucharest, P. O. Bor MG-11, Bucharest 76900, Romania
(Dated: February 1, 1999)

Employing a time-dependent Ginzburg-Landau model, we investigate the influence of a random
field on the phase ordering kinetics of nematic liquid crystals. We find that in the scaling régime
the effect of random field (slowing down the growth of nematic) dominates over initial conditions
for spatial dimensionality d < 2 whereas for d > 2 the random field has all its effect in the ”initial-
growth” régime. In this last case the mere confinement of liquid crystals is insufficient to produce

slow growth of the nematic order.

PACS numbers: PACS: 64.60.Cn; 64.70.Md; 68.10.Jy

Recently many studies have been devoted to liquid
crystals confined to randomly interconnected networks
of pores [1]. Such systems raise fundamental issues,
such as the effect of finite size and quenched disorder
on phase transitions, orientational order, elastic proper-
ties, and director field. The simplest liquid crystal state
is the nematic phase where the molecules exhibit only
orientational long-range order and no translational long-
range order. The isotropic (with neither orientational
nor translational long-range order) to nematic transi-
tion of thermotropic liquid crystals embedded in various
kinds of porous media (aerogels, Vycor glass, controlled
porous glass, Anapore and Nucleopore membranes) has
been experimentally investigated [2]. The most impor-
tant rezults inferred from these studies are the following.
(i) The bulk isotropic-nematic phase transition temper-
atures are shifted down a few degrees and in some cases
the character of transition changes. (ii) Even at temper-
atures far above the bulk isotropic-nematic phase tran-
sition temperature there exists a weak residual nematic
ordering. Connsequently, the corresponding phase is of-
ten called paranematic rather then isotropic. (iii) Monte
Carlo simulations [3] show that in some cases the nematic
order is replaced by a quasi-long-range nematic (usually
called speronematic) phase. (iv) The random preferen-
tial orientation of liquid crystals along the pore surface
(whose normal changes direction randomly over a per-
sistence length) influences the dynamics of the isotropic
to nematic phase transition only in the ”initial-growth”
rgime. In the late stage of the dynamics, mere confine-
ment of the liquid crystals is insufficient to produce slow
growth of the nematic domains [4].

Following de Gennes’ ideas [5], the theoretical ap-
proaches [6, 7] used for the explanation of properties
and behavior of confined liquid crystals are based on
random-field-type models. In a previous paper [8], which
we denote henceforth as I, we have extended the ran-
dom anisotropy nematic spin model [6] to consider the
effect of competition between the strength of the random
orienting field and the elastic constant on the isotropic-
nematic phase transition. In the limit of relative low
randomness the existence of a triple point was predicted.
For relatively large randomness we have found a reduced
temperature at the transition, together with a first or-

der phase transition which ends at a tricritical point, be-
yond which the transition becomes continuous. We have
used this model to obtain the domain wall solutiions of
the time-dependent Ginzburg-Landau (TDGL) equation.
The random orienting field leads to smaller velocity of the
interface and to larger interface width.

When a system is quenched from a high-temperature
disordered phase to a lower temperature where its or-
dered phase is thermodynamically favored, it evolves in
time toward the latter (phase-ordering process). It has
been well established that in the late stages of order-
ing a scaling régime is entered, characterized by a single
time-dependent length scale L(t), such that the domain
structure is independent of time when lengths are scaled
by L(t) [9].

In this paper, following Filipe et al. [10], we study
the random field effect on the phase-ordering dynamics
of a nematic liquid crystal in a porous medium when
its isotropic liquid precursor is cooled quickly to a tem-
perature where the nematic phase is thermodynamically
stable and the isotropic one is metastable (supercooled).

The order parameter for a nematic liquid crystal is a
traceless symmetric second-rank tensor [11] Q;;(7,t) =
Q(7,t)(3n;n; — 0;5)/2 where the unit vector 7 is the
scalar (non-conserved) order parameter. In the prob-
lem we consider, we shall suppose 7 to be fixed in space
and time, so that the relevant physics is given by Q(7,t).
The Landau-de Gennes free energy functional appropri-
ate to random anisotropy nematic model is given by
F[Q1 = [(fo+ fr+[c)dV where fs, f- and f. are the bulk,
random and elastic parts of the energy density, respec-
tively. The symmetry-allowed expression for f; is given
by fo = a(T—-T*)Tr(Q*) — BTr(Q®)+C[Tr(Q?)]* where
T* is the bulk undercooled temperature limit. The ele-
ment of randomness comes in when one permits the direc-
tor axis 77 to point in arbitrary directions and to change
significantly over a spacial scale R,. Using Imry-Ma real-
space domain arguments [12] (see also I), f, is given by
fr = =D(Rg/R,)~%/?Q where Rg is the characteris-
tic scale of change of the order parameter. The final
term f. comes from the elastic free energy density, f. =
L1(0:Q;1)%/2 + L2(8:Qi5)%/2 = 3LQ*R,” /4 where Ly
and L, are elastic constants and L = 3L1/2+ Ly /4. This
term must be included because the random anisotropy is



causing the local orientation to wander in space on Rg.
We note that the ratio of disorder to elastic constant is
defined by the non-dimensional parameter A = DR2/L.
Introducing a new length scale § = (R, —R2)'/2 and scal-
ing the variables in the following way Q = 6CQ/B,T =
24a(T — T*)C/B%*,L = 12CL/B?R2,¢ = ¢/R,,D =
96C2D/B?, f = 242C3f/B*, A = 8CA/B, eliminating
overbars, and minimizing the free energy density with
respect to £ we obtain

fr=-DQ+ (r+ 1) Q~20°+ Q" when Q <34/4

A
(1)
the free energy density corresponding to the paranematic
phase and

27

—2—56DA3Q’2 +7Q%-2Q*+ Q" when Q >3A/4

(2)
the free energy density corresponding to the sperone-
matic phase.

We take the dynamics to be given by TDGL equation
with the following dimensionless form 8Q /0t — V2Q =
—f'(@Q). We choose an appropriate form of the free
energy density which interpolates between fp valid for

z — o0 and fg valid for z — —oo (see paper I),

fs=

f= TQ2_2Q3+Q4+%(’01 +fu2)+%(u1 —vs) tanhg 3)

where v; = —DQ + DQ?/A is the free energy density
generated by the random field for the paranematic phase,
vy = 27DA3Q~2/256 is the corresponding form for the
speronematic phase, and w is the characteristic thickness
of the interface.

Considering that the system allows an isothermal base
state in which the speronematic and paranematic phases
are separated by a planar interface of finite width which
propagates with velocity ¢ into the paranematic phase,
we look for solutions of the form Q(g,t) = Q(g — ct) =
Q(g'), where g is a coordinate normal to the interface.
The TDGL equation yields Q" +cQ' = f'(Q), subject to
boundary conditions Q(—oc) = Qs and Q(0) = Qp.
This ordinary differential equation has the solutionn
QR(g") = [Qs+Qp—(Qs—Qp) tanh ¢’ /w]/2 with the char-
acteristic thickness of the interface w = \/5/ (Qs — Qp)
and its velocity ¢ = 3v2(Qs+Qp—1)—v2D/A(Qs—Qp)
(see I). Thus the kinetics of nematic domain growth is
slowed down by the random field.

In the ”Gaussian closure” schemes a new field m(7, t)
is introduced, which varies smoothly on the domain scale
and whose zeros defines the positions of the walls. Gen-
eralizing Mazenko approximation [13] (see also [10]), the
transformation ¢)(m) is defined by the flat moving inter-
face profile function which satisfies Q" (m) + cQ'(m) =
f'(@) with boundary conditions Q(—o0) = Qs and

Q(00) = Qp. With this choice, rewriting TDGL equation
in terms of m, gives [14]

om _ oy Q'(m)

ot Q'(m)

The principal role of the double-well ” potential” f(Q)
is to establish and maintain well-defined interfaces. It
follows that the detailed form of f(Q) is irrelevant to the
large-scale structure. Following Bray and Humayun [15],
we choose Q(m) to satisfy Q" (m) = —m@Q'(m) which
is equivalent to a particular form of the potential [10].
Locating the center of the wall at m = 0, we obtain
the wall profile function Q(m) = [Qs + Qp — (Qs —
Qp)erf(m/v/2)]/2. After Fourier transformation, Eq.
(4) becomes

(1= |VmP)—c @

6m,—c‘(t)
ot

where a(t) = 1 — (| Vm [?). Considering the initial
conditions for m to be Gaussian distributed, with zero
mean and correlator (in Fourier space) (mz(0)my, (0)) =
A(2m)48(k + k') (d is spatial dimensionality) and solv-
ing Eq. (5) for £ # 0 components of m, one finds
mz(t) = mz(0)(t/to) 2/ *exp(—k2t) where t52)/* =
dA/4(8m)%? [10] from which the two-time correlator in
real space follows immediately

= [k + a(t)]mg(t) — 0z 5 (5)

Co(1,2) = (m(1)m(2))

_4\/t1t2< Aty t )‘”4
- d (t1 +t2)2

X exp (-ﬁ) 6)

where 1 and 2 are usual shorthand for space-time points
(F1,t1) and (72,t2), and r =| 7 — 7 |. In the scal-
ing régime (t — o0), the correlation function of the
field @ is obtained as C(1,2) = [(Qs + Qp)? + (Qs —
Qp)?sin' v]/4 where v is the normalized correlator

3 Co(1,2) [ 4tt
7(172) - \/Co(o,tl)C()(O,tz) B ((tl +t2)2)

(i) O

which for equal times (t; = t» = t) simplifies to y(1,2) =
exp(—r?/8t).

Thus, the kE # 0 components of m are unchanged by the
velocity or equivalently by the random field. In this case
the well-depths of the ”potential” f(Q) are equal, the
only driving force is interface curvature which generates
the well-known t'/2 growth law [9].

To solve Eq. (5) for k = 0 components of m, we allow
for a uniform bias in the initial state, taking Gaussian ini-
tial conditions for m with nonzero mean (m(7,0)) = myg



and only short-ranged correlations <m(7’°’, 0)m/(0, 0)> =

<m(F, 0)m(d, 0)> — (m(F,0))* = A§(F). Solving Eq. (5),
we obtain the average value of m(7,t)

to

(m(7,t)) = mo (i> B - c/t: t=Fa (8)

and also the previous expressions (6) and (7) for the con-
nected pair correlator Co(1,2) and normalized correlator
v respectively.

The average (expectation) value and the relative fluc-
tuation of the order parameter () are given by

B o
(Q) =5(Qs+Qp)—5(Qs QP)ef( 2[00(0,t)+1]>

(9)
and respectively

((Q?) —(@)*)!/?

Q)
_ [1 —erf? ((m) /\/W)] v
95£3e — ext ((m) /1/2[Co(0,1) +1])

(10)
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where Cy(0,t) = (m?)_ = (m?) — (m)* = 4t/d. In the
scaling régime the argument of the error function is given
by (m) /+/2Co(0,t). The bias myg in the initial Gaussian
conditions gives a contribution of order ¢t4/* for any d,
but the contribution from velocity (or equivalently from
the random field) is t'/2 for d < 2, t'/2Int/to for d = 2,
and t%* for d > 2. Thus, for large ¢, the velocity (ran-
dom field) dominates over mg for d < 2 (continues to
have an effect at late times), whereas for d > 2 the ran-
dom field has all its effect in the ”initial-growth” régime
(times of order tp). These results are similar with those
obtained in [4] and [10]. The two main approximations
used in this paper involve the consideration of a scalar
order parameter and the decoupling of the temperature
field. Nematic liquid crystals are described by a noncon-
served traceless symmetric tensor field. The presence of
the inversion symmetry (7 — —7) means that, in ad-
dition to the monopole defects of the O(3) model, the
nematic also possesses stable % string defects in which
the director rotates through 7 on encircling the string.
The presence of such defects generates a k=% structure
factor tail at large kL(t) [9]. The thermal coupling (in-
cluding the effect of latent heat emission at the interface)
can have profound consequences [16].
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