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Abstract. Recently several authors considered finite mixture models with semi-/non-

parametric component distributions. Identifiability of such model parameters is generally

not obvious, and when it occurs, inference methods are rather specific to the mixture model

under consideration. In this paper we propose a generalization of the EM algorithm to

semiparametric mixture models. Our approach is methodological and can be applied to

a wide class of semiparametric mixture models. The behavior of the EM type estimators

we propose is studied numerically through several Monte Carlo experiments but also by

comparison with alternative methods existing in the literature. In addition to these numer-

ical experiments we provide applications to real data showing that our estimation methods

behaves well, that it is fast and easy to be implemented.
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1 Introduction

Probability density functions (pdf) of m-component mixture models are defined in
a general setup by

g(x) =

m
∑

j=1

λj fj(x),

m
∑

j=1

λj = 1, x ∈ R
p,

where the unknown mixture proportions λj ≥ 0 and the unknown pdf’s fj have
to be estimated. It is commonly assumed that the fj ’s belong to a parametric
family F = {f(·|ξ), ξ ∈ R

d} indexed by an Euclidean parameter ξ, so that the pdf g
becomes

gθ(x) = g(x|θ) =
m

∑

j=1

λj f(x|ξj) (1)

1
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where θ = (λj , ξj)j=1,...,m ∈ Θ is the Euclidean model parameter. Note that the
Bayesian-like notations g(x|θ) and f(x|ξj) are usually preferred to the classical ones
in this setup, even if the context is not Bayesian (θ is not a random variable), as,
e.g., in the seminal paper of Dempster et al. [7]. We will use the Bayesian notation
when necessary, e.g. when the parameter itself needs subscripts. When the number
of components m is fixed the parametric mixture model of equation (1) has been
well-studied; e.g. Titterington et al. [22], Lindsay [14] and McLachlan and Peel [16]
are general references to the broad literature on this topic.

Nonparametric approaches for mixtures are motivated by the fact that the choice
of a parametric family F may be difficult. However the model (1) can be made
more flexible assuming that the number of components m is unknown; in that case
m has to be estimated, see e.g. Leroux [13], Dacunha-Castelle and Gassiat [6],
Lemdani and Pons [12]. But if the number of components is specified but that
little is known about subpopulations (e.g., tails) another way to make the model
more flexible is to avoid parametric assumption on F . For example, one may state
the model where for j = 1, . . . , m we have fj ∈ F = {continuous pdf on R

p}. Of
course, such a model is very flexible since each component distribution can be itself
a mixture distribution, and obviously, without additional assumptions on F the
resulting model parameter’s are not identifiable. Nevertheless, if training data are
available such models become identifiable, and then, the component distributions
can be estimated nonparametrically, see for example Hall [8], Titterington [21].

Note also that in the nonparametric setup without training data, specific meth-
ods to estimate mixture weights have been developed by Hettmansperger and Tho-
mas [10] and Cruz-Medina and Hettmansperger [5].

Recently, Hall and Zhou [9] looked at p-variate data drawn from a mixture of
two distributions, each having independent nonparametric components, and proved
that under mild regularity assumptions their model is identifiable for p ≥ 3. The
non-identifiability for p ≤ 2 requires to restrain the class of pdf F . For example, for
p = 1, restraining F to the location-shifted symmetric pdf, we obtain the following
semiparametric mixture model:

gϕ(x) = g(x|ϕ) =
m

∑

j=1

λj f(x − µj), x ∈ R, (2)

where the λj ’s, the µj ’s and f ∈ G = {even pdf on R} are unknown. Hence the
model parameter is

ϕ = (θ, f) = ((λj , µj)j=1,...,m, f) ∈ Φ = Θ × G,

where

Θ =







(λj , µj)j=1,...,m ∈ {(0, 1) × R}m;
m

∑

j=1

λj = 1 and µi 6= µj for 1 ≤ i < j ≤ m







.
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See Bordes et al. [2] and Hunter et al. [11] for identifiability results. In [2], for m = 2,
the authors propose an estimator of (θ, f) for m = 2. Because g = Aθf , where Aθ

is an invertible operator from L1(R) to L1(R), and f is an even pdf, they propose
a contrast function for θ that depends only on g. Given a sample of independent
g-distributed random variables they estimate g. Then, replacing g by its estimator
in the contrast function, they propose a minimum contrast estimator for θ, and
then, inverting Aθ and replacing θ by its estimator they obtain an estimator of
the pdf f (which generally is not a pdf because the estimator of g has no reason
to be in the range of the operator Aθ). This method has several limitations. For
example, for m = 3, even if the model is identifiable (see [11]) the operator Aθ

maybe not invertible and then the estimation method fails. On the other hand,
the method cannot be naturally generalized to p-variate data. Furthermore the
numerical computation involved by the method is time consuming which can be
a drawback for large sample size. In [11] an alternative method of estimation is
proposed but it seems that it suffers from similar weakness.

In parametric setup one main problem is the computation of maximum likelihood
(ML) estimates; parameter estimates cannot in general be obtained in closed form
from mixture structures. Conventional algorithms, such as the Newton-Raphson,
have long been known to lead to difficulties; see Lindsay (p.65, [14]). The com-
putational issue has largely been resolved, however, with the development of the
EM algorithm after its formalization by Dempster et al. [7]. See McLachlan and
Krishnan [15] for a detailed account of the EM algorithm. Moreover, in the para-
metric setup, the ML method can be applied easily, which is not longer true in
the semiparametric setup. That is another reason why we propose an alternative
method to estimate parameters of semiparametric mixture models when the number
of components is fixed.

In Section 2 we give a brief description of the EM algorithm in the missing data
setup. In Section 3 we show how to extend this method to the semiparametric setup
by introducing one step of nonparametric estimation of the unknown mixed pdf.
Although this method is applied to model (2), it is worth to mention that it is ex-
tendable to more general semiparametric models provided that they are identifiable.
Because our approach is methodological only (convergence of our estimators has to
be proved) Section 4 is devoted to a Monte Carlo study of the behavior of our esti-
mators. In the same section, several known examples with real data are addressed
while concluding remarks are given in Section 5.

2 Missing data setup and EM algorithm

The methodology we present in this paper involves the representation of the mixture
problem as a particular case of maximum-likelihood estimation (MLE) when the
observations can be viewed as incomplete data. This setup implies consideration of
two sample spaces, the sample space of the (incomplete) observations, and a sample
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space of some “complete” observations, the characterization of which being that the
ML estimation can be performed explicitly at this level, i.e. the MLE based on the
complete-data is in closed form. Reference papers and monographs on this subjects
are, e.g., Dempster et al. [7], Redner and Walker [18], McLachlan and Peel [16] and
references therein. We give below a brief description of this setup in general, with
some details for the parametric mixture of location-shifted pdf (2).

The (observed) data consist in n i.i.d. observations denoted by x = (x1, . . . , xn)
from a pdf g(·|θ). It is common to denote the pdf of the sample by g(·|θ) (the n-fold
product of g(·|θ)), so that we write simply x ∼ g(·|θ). For the m-component mixture
model, g(x|θ) is given by (1).

In the missing data setup, g(·|θ) is called the incomplete-data pdf, and the
associated log-likelihood is

Lx(θ) =
n

∑

i=1

log g(xi|θ).

The (parametric) ML estimation consists in finding θ̂x = argmaxθ∈Θ Lx(θ). Calcu-

lating θ̂x for the mixture model is known to be a difficult problem, and considering
x as an incomplete data resulting from a non-observed complete-data helps.

The associated complete-data is denoted by y = (y1, . . . , yn), with associated pdf
h(y|θ) =

∏n
i=1 h(yi|θ) (there exists a many-to-one mapping from y to x, representing

the loss of information). In the parametric mixture model (1), yi = (xi, zi), where
zi ∈ {1, . . . , m} is the (missing) component allocation associated to the observed xi,
i.e.

(Xi|Zi = j) ∼ f( · |ξj) and P(Zi = j) = λj , j = 1, . . . , m.

The complete-data pdf for one observation is thus

h(y|θ) = h((x, z)|θ) = λzf(x|ξz),

and the associated complete-data log-likelihood is log h(y|θ) =
∑n

i=1 log h(yi|θ). It

is easy to check that for model (1), the complete-data MLE θ̂y based on log h(y|θ)
maximization is easy to find, provided that this being the case for the parametric
family F .

2.1 The EM algorithm for the parametric mixture model

The EM algorithm iteratively maximizes, instead of the observed log-likelihood
Lx(θ), the operator

Q(θ|θt) = E[log h(y|θ)|x, θt],

where θt is the current value at step t. The iteration θt → θt+1 is defined in the
above general setup by
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1. E-step: compute Q(θ|θt)

2. M-step: set θt+1 = argmaxθ∈Θ Q(θ|θt)

The operator Q( · |θt) is an expectation relatively to the distribution k(y|x, θ)
of y given x, for the value θt of the parameter. In the mixture model,

k(y|x, θ) =
n

∏

i=1

k(yi|xi, θ) =
n

∏

i=1

k(zi|xi, θ),

since the (zi|xi), i = 1, . . . , n, are independent. The z are discrete here, and their
distribution is given through the Bayes formula by

k(j|x, θt) = P(Z = j|x, θt) =
λt

jf(x|ξt
j)

∑m
ℓ=1 λt

ℓf(x|ξt
ℓ)

. (3)

In the case of a location-shifted mixture model with pdf (2) and known component
density f , i.e. when the parametric family is F = {f(·|µ) = f(· − µ), µ ∈ R

p}, this
gives

k(j|x, θt) =
λt

jf(x − µt
j)

∑m
ℓ=1 λt

ℓf(x − µt
ℓ)

, j = 1, . . . , m. (4)

Finally, since the component parameters are expectations (i.e. E(X|Z = j) = µj) in
the location-shifted mixture model, the EM algorithm implementation for the itera-
tion θt → θt+1 is given by standard calculations (see, e.g., Redner and Walker [18]):

1. E-step: for i = 1, . . . , n and j = 1, . . . , m, compute k(j|xi, θ
t)

2. M-step: update θt+1 with:

λt+1
j =

1

n

n
∑

i=1

k(j|xi, θ
t) (5)

µt+1
j =

∑n
i=1 k(j|xi, θ

t)xi
∑n

i=1 k(j|xi, θt)
, j = 1, . . . , m. (6)

3 A semiparametric EM algorithm

We consider now on the semiparametric location-shifted mixture model (2), where
the pdf f itself is an unknown, even density, considered as a parameter which has
to be estimated from the data x. One major difference with the methods in Bordes
et al. [2] or Hunter et al. [11] is that our proposed methodology may be applied
for any number m of mixture components, and can naturally be generalized to p-
variate data x ∈ R

p, p ≥ 1 (even if this does not mean that the corresponding
models are identifiable). This approach can also be generalized straightforwardly to



A semiparametric EM algorithm 6

a finite mixture of unknown symmetric densities that differ from location and scale
parameters. However, we describe it for the location-shifted mixture model, since
identifiability has been proved for m = 2 or m = 3 in this case.

If f is unknown the probabilities k(j|xi, θ
t)’s of the missing data conditionally

to the observations, given by (4), are unknown. Hence the operator Q(θ|θt) of
the parametric EM itself is unknown. This is not surprising since the Euclidean
parameter θ alone does not completely characterized the distribution of the data.

The parameter of the semiparametric model is ϕ = (θ, f) ∈ Φ = Θ × F , where
F is the set of continuous even pdf’s over R. In this framework, we still have that
the pdf of the observed and complete data are

gϕ(x) = g(x|ϕ) =
m

∑

j=1

λjf(x − µj)

h(y|ϕ) = h((x, z)|ϕ) = λzf(x − µz),

and, formally, the log-likelihood associated to x for the parameter ϕ is

Lx(ϕ) =
n

∑

i=1

log g(xi|ϕ).

To design an EM-like algorithm which “mimic” the parametric version, we have
to define, for a current value ϕt = (θt, f t) of the parameter at iteration t, the operator

Q(ϕ|ϕt) = E[log h(y|ϕ)|x, ϕt].

As in the parametric case, the expectation is taken with respect to the distribution
of the y given x, for the value ϕt of the parameter:

k(y|x, ϕt) =
n

∏

i=1

k(yi|xi, ϕ
t) =

n
∏

i=1

k(zi|xi, ϕ
t),

where

k(j|x, ϕt) = P(Z = j|x, ϕt) =
λt

jf
t(x − µt

j)
∑m

ℓ=1 λt
ℓf

t(x − µt
j)

, j = 1, . . . , m. (7)

Hence Q(ϕ|ϕt) is given by

Q(ϕ|ϕt) =
n

∑

i=1

m
∑

j=1

k(j|xi, ϕ
t)[log(λj) + log f(xi − µj)]. (8)

For a given initialization ϕ0 = (θ0, f0), a formal EM algorithm for estimating ϕ is
thus
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1. E-step: compute Q(ϕ|ϕt) using (7) and (8);

2. M-step: choose ϕt+1 which maximizes Q(ϕ|ϕt).

The main difficulty to apply the above algorithm is to determine an estimate
f t+1 of f such that ϕt+1 = (θt+1, f t+1) maximizes Q(·|ϕt), since standard nonpara-
metric density estimates do not insure this property. In the next section, we propose
instead an heuristic approach based on the model (location-shifted mixture) and the
parametric EM maximization step.

3.1 Methodology for the semiparametric EM

We focus first on the maximization for the Euclidean part of the parameter. Consider
the parametric mixture model (1), and assume that the complete-data (x, z) are
observed. Denote by {xi : zi = j, i = 1, . . . , n} the sub-sample of the observations
belonging to the jth component. Without any assumption on the common pdf f ,
the MLE of the proportions of the mixture are

λ̂j =

∑n
i=1 Izi=j

n
, j = 1, . . . , m, (9)

(where Izi=j equals 1 when zi = j). Note that in (9), actually only m−1 weights have
to be estimated. Consider further the particular case where the ξj ’s are expectation
parameters, i.e. E(X|Z = j) = ξj (note that this does not require the parametric
pdf f(·|ξ) to be even). Then, the unbiased and consistent estimates of the ξj ’s are
the sub-sample empirical averages

ξ̂j =

∑n
i=1 xiIzi=j

∑n
i=1 Izi=j

, j = 1, . . . , m. (10)

In addition, the ξ̂j ’s given by (10) are the MLEs of the ξj ’s when, e.g., f belongs
to an exponential family with associated sufficient statistic T (x) = x (see, e.g.,
Sundberg [20] and Redner and Walker [18]).

When the z are missing, the MLE on the complete-data has to be replaced by
the parametric EM. Its M-step given by equations (5) and (6), which comes from
direct maximization of Q( · |θt), can be viewed as equations (9) and (10), where each
unknown Izi=j has been replaced by its expectation counterpart, conditionally to
its associated observations xi, and for the current value of the parameter; that is
precisely E(IZi=j |xi, θ

t) = k(j|xi, θ
t) given by (3). This is a well-known property of

EM, which comes from the fact that the formula involving the missing data in the
expectation is linear.

The heuristic approach we suggest to implement the semiparametric EM algo-
rithm is based on this property, since the component parameters are expectations
in the location-shifted semiparametric mixture. The idea is to iteratively:
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1. compute an estimate f t+1 of f , possibly using θt

2. substitute f t+1 in the M-step of the parametric EM (5)–(6) to compute θt+1.

We turn now to the determination of an estimate of f , given the Euclidean pa-
rameter θ or an estimate θt, and using the model assumption, i.e. the fact that
the mixture has an effect only on the location parameter. Then it seems reason-
able to estimate f using a nonparametric density estimate based on all the data x

appropriately “centered back”, by removing the shift of localization for each obser-
vation. In the sequel, we denote by x̃i the ith observation “centered back”, and by
x̃ = (x̃1, . . . , x̃n) the corresponding vector.

Let us first describe the flavor of the method in what can be considered as an
“ideal situation”. Assume that the complete-data y = (x, z) is available, and that
θ is known. Then a consistent estimate of f would be given by the following steps:

1. compute x̃ = (x̃1, . . . , x̃n), where x̃i = xi − µzi
, i = 1, . . . , n

2. compute a kernel density estimate using some kernel K and bandwidth hn,

f̂x̃(u) =
1

nhn

n
∑

i=1

K

(

u − x̃i

hn

)

.

Assume now that the z are missing, but that the true parameter ϕ is known.
The difficulty then is to recover a sample from f be given a sample from gϕ. We
may think of several strategies, which consist intuitively in allocating each observed
xi to a component j, and given this allocation to “recenter” xi by substracting µj

to it. The allocation can only be deduced from the posterior probabilities k(j|xi, ϕ)
given by (7). Then we may think of an “expectation strategy” following the EM
principle:

x̃i = xi −
m

∑

j=1

k(j|xi, ϕ)µj , i = 1, . . . , n.

We may also use the maximum of the posterior probabilities, as it is usually done
in classification algorithms based on EM:

x̃i = xi − µj∗i
, j∗i = argmax

j∈{1,...,m}
k(j|xi, ϕ), i = 1, . . . , n.

Unfortunately, even with ϕ known, none of these strategies return a sample f -
distributed, as it can be checked on simple explicit situations. To recover a sample
from f , we need to simulate the ith allocation according to the posterior probabilities
(k(j|xi, ϕ), j = 1, . . . , m), i.e. from a multinomial distribution of order 1:

S-1: for i = 1, . . . , n, simulate Z(xi, ϕ) ∼ M(1; k(j|xi, ϕ), j = 1, . . . , m);

S-2: set x̃i = xi − µZ(xi,ϕ),
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where Z(x, ϕ) ∈ {1, . . . , m} and µZ(x,ϕ) = µj when Z(x, ϕ) = j. The result below
states that this procedure returns a sample f -distributed, in the multidimensional
situation.

Lemma 1 If X is a sample from the pdf gϕ of the m-components location-shifted
mixture model, then X̃ given by the Stochastic step (S-1 and S-2) above, where ϕ is
known, is a sample from f .

Proof. Since X = (X1, . . . , Xn) is i.i.d. from gϕ, it is enough to check the property
for X ∈ R

p. Let X ∼ gϕ, and X̃ = X − µZ(X,ϕ). For y = (y1, . . . , yp) ∈ R
p, and

µℓ = (µℓ,1, . . . , µℓ,p) ∈ R
p, we denote by

Pϕ(X̃ < y) = Pϕ(X̃1 < y1, . . . , X̃p < yp)

the multidimensional cdf of the random vector X̃. Then

Pϕ(X̃ < y) =

∫

P
(

X − µZ(X,ϕ) < y|X = x
)

gϕ(x) dx

=

∫ m
∑

ℓ=1

P
(

x − µZ(x,ϕ) < y|Z(x, ϕ) = ℓ
)

k(ℓ|x, ϕ)gϕ(x) dx

=
m

∑

ℓ=1

λℓ

∫

I{x1−µℓ,1<y1} × · · · × I{xp−µℓ,p<yp}f(x − µℓ) dx1 . . . dxp

=
m

∑

ℓ=1

λℓPϕ(X1 < y1, . . . , Xp < yp) = F (y),

where F is the cdf of X. �

It appears that this simulation step is analog to the “Stochastic EM” (SEM) sim-
ulation step for the missing data in parametric mixture situations (see, e.g., Celeux
and Diebolt [3]). But the stochastic step was introduced there in an attempt to
accelerate EM’s convergence or to avoid stabilization on saddle points in parametric
mixture situations. This stochastic step has also proved to be useful in situations
where the integral in Q( · |θt) is not in closed form due to specific missing data situ-
ations, preventing the maximization to be worked out explicitly, as in Chauveau [4].
It is also present in the Monte-Carlo EM (MCEM) algorithm of Wei and Tanner [23],
where Q( · |θt) is replaced by its Monte-Carlo approximation based on several simu-
lated realizations of the missing data at each EM step. The interesting point is that
in the present semiparametric situation, this stochastic step is required to recover f
from gϕ.

We may thus make use of this “asymptotic result” (in the sense that, when ϕt

is close to ϕ, the sample X̃ should be approximately f -distributed) to design an
estimate of f at iteration t + 1, when only the current value of the parameter ϕt is
available. The S-step becomes:
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S-1 for i = 1, . . . , n, simulate Zt+1(xi, ϕ
t) ∼ M(1; k(j|xi, ϕ

t), j = 1, . . . , m);

S-2 set x̃t+1
i = xi − µt

Zt+1(xi,ϕt).

It is then possible to compute a kernel density estimate of f based on the centered
data x̃t+1, and, using the symmetric assumption in the model, to symmetrize this
kernel density estimate to obtain an estimate f t+1 of f .

Finally, the step ϕt → ϕt+1 of the semiparametric EM algorithm (SP-EM) is
defined by:

1. E-step: compute k(j|xi, ϕ
t), i = 1, . . . , n, j = 1, . . . , m using (7).

2. S-step:

- for i = 1, . . . , n, draw Zt+1(xi, ϕ
t) ∼ M(1; k(j|xi, ϕ

t), j = 1, . . . , m);

- set x̃t+1
i = xi − µt

Zt+1(xi,ϕt).

3. Nonparametric step: (update of the functional parameter)

- kernel density estimate

f̂x̃t+1(u) =
1

nhn

n
∑

i=1

K

(

u − x̃t+1
i

hn

)

; (11)

- symmetrization

f t+1(u) =
f̂x̃t+1(u) + f̂x̃t+1(−u)

2
. (12)

4. M-step: (parametric EM strategy to update the Euclidean parameter)

λt+1
j =

1

n

n
∑

i=1

k(j|xi, ϕ
t);

µt+1
j =

∑n
i=1 k(j|xi, ϕ

t)xi
∑n

i=1 k(j|xi, ϕt)
, j = 1, . . . , m.

An alternative algorithm may be used, in the flavor of the SEM algorithm,
i.e. taking advantage of the simulated complete-data to compute the MLE of the
Euclidean parameter :
Replace M-step 4 above with:

λt+1
j =

1

n

n
∑

i=1

I{Zt+1

i (xi,ϕt)=j};

µt+1
j =

∑n
i=1 xi I{Zt+1

i (xi,ϕt)=j}
∑n

i=1 I{Zt+1

i (xi,ϕt)=j}

, j = 1, . . . , m.
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Note that this algorithm is well-defined and easy to implement also for mul-
tidimensional models (xi ∈ R

p, p > 1). However, the symmetry condition on f ,
necessary for identifiability in the univariate case, has then to be replaced by other
conditions, as in Hall and Zhou [9]. The corresponding symmetrization (12) in step
3 of the SP-EM algorithm has also to be changed accordingly.

The remaining implementation issue is the definition of the initialization for the
nonparametric part of the parameter. Indeed as usual, EM needs an initial value
θ0 which may be chosen arbitrarily or data-driven (see Section 4.3). But in this
semiparametric case, it also needs a starting value f0, to compute the E-step of the
very first iteration using (7). Since f is assumed symmetric with zero location, we
have to re-center the data once without the availability of the posterior probabilities
(which need an estimate of f to be computed). We suggest to use a nearest-neighbour
(or K-means) approach based on the initial location parameters. For example in
the case of m = 2 components,

x̃0
i = xi − µ0

1I{|xi−µ0
1
|≤|xi−µ0

2
|} − µ0

2I{|xi−µ0
1
|>|xi−µ0

2
|},

and to compute f0 using (11) and (12) as in the general case.

From the theoretical point of view, the sequence of Euclidean parameter (θt)t≥0

is a marginal of a Markov chain, the definition of which depends on the strategy
selected for the M-Step. The asymptotic behavior of this Markov chain is an ongoing
work.

4 Simulation and examples

We applied this SP-EM algorithm on synthetic simulated examples and on real
data cases corresponding to model (2). To compare with competing methods, we
choose to simulate the synthetic models proposed in Bordes et al. [2]. We then
apply the semiparametric EM to the well-known Old Faithful geyser data used in
Hunter et al. [11], and to the rainfall data already used in [2]. All these applications
are location-shifted semiparametric mixtures with two components and univariate
observations.

Computations have been performed with Matlab, using the EM strategy for
the M-step of the semiparametric EM. The needed kernel density estimates (11)
have been computed using the appropriate function (ksdensity) from the Matlab

statistics toolbox, with different but non adaptive settings for the bandwidth hn (see
below).

Standard EM algorithms use for the stopping criterion a distance between two
consecutive iterations, e.g. running EM until ||θt+1 − θt|| ≤ ε. But in our case, the
sequence of Euclidean parameters (θt)t≥0 is a marginal of a Markov chain, so that
pointwise convergence cannot be obtained theoretically (see Celeux and Diebolt [3]).
Instead, we used for the stopping criterion the minimum between the EM criterion
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above, and a fixed, predetermined number of iterations large enough so that the
sequence of Euclidean parameter stabilizes. As it can be seen on the figures, stabi-
lization occurs rather quickly in all the examples we have tried.

All the figures for the detailed runs include six panels. The three top panels show
the sequence of each coordinate (λt, µt

1, µ
t
2) of the Euclidean parameter in solid line,

together with the sequence of empirical means (e.g., s →
∑s

t=1 λt/s in top left
panels) in dashed line. For the simulated cases, the true value is also depicted as
a constant line. The bottom left panel is an histogram of the actual or simulated
data, together with the true pdf in Monte Carlo studies. The bottom middle panel
is a plot of the pdf f estimated via the SP-EM algorithm (in dashed line), against
the true pdf in simulated situations, or against the parametric f estimated by ML
method in the Gaussian mixture model for real data cases (solid line).

4.1 Monte Carlo study from a Gaussian mixture

We have simulated first the two components Gaussian mixture already used for
illustration purpose in [2]. The model is

g(x|ϕ) = λφµ1
(x) + (1 − λ)φµ2

(x),

where φµ is the pdf of the Gaussian N (µ, 1), i.e. f is the pdf of N (0, 1).

The results presented consist first in two detailed sample runs for n = 100 and
n = 300 observations, and true Euclidean parameter θ = (λ = 0.15, µ1 = −1, µ2 =
2). This is the most difficult situation of the three choices in [2], in the sense that
λ is small, so that the pdf g(·|ϕ) is weakly bumped (see Figure 1, bottom right).
It is well known that mixtures are more difficult to estimate when the component
densities overlap, or when the weight of one component is small. For this model,
the bandwidth has been set here close to the minimizer of the mean integrated
square error hn = (4/3n)1/5 (see [2]). The initial Euclidean parameter has been set
arbitrarily to θ0 = (0.5,−1.5, 2.5). Note that only about 7 seconds were necessary to
run using Matlab 50 SP-EM iterations for the n = 300 case on an average computer.

Figure 1 top panels show that SP-EM stabilizes after about 30 iterations for
the three Euclidean parameters. Bottom panels show that the moderate bump of
gϕ has been recovered by the algorithm, even for this rather small sample size, in
comparison with the difficulty of the problem and the fact that both θ and f are
unknown. Figure 2 is provided to show on this particular run the improvement
obtained by increasing the sample size to n = 300. The effect is visible on the noise
of the sequence of the Euclidean parameters (marginals of a markov chain), and on
the recovering of f and gϕ.

We then conduct a Monte Carlo study to compute mean and standard errors
on Monte-carlo replications, on the same settings as those used in [2]. The initial
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Figure 1: Semiparametric EM for the Gaussian mixture, n = 100, θ0 = (0.5,−1.5, 2.5).

Euclidean parameter θ0 has been set here to the true value, to avoid a possible bias
introduced by different starting values among replications, convergence to saddle
points or to estimates corresponding to one empty component (λ close to 0 or 1), or
label switching difficulties, as this is often the case in EM studies (see, e.g., Redner
and Walker [18]). The results are displayed in Table 1. This allows us to compare
our results with [2] and with the MLE of the parametric Gaussian mixture model
given therein. The standard errors are comparable to those obtained by the method
of [2], while the estimates given by the SP-EM are slightly more biased, particularly
the weight of component one (λ) which tends to be under-estimated, even for the
highly bumped model. It is interesting to point out that our estimates are also in
the range of the parametric MLE given in [2].

We finally did a Monte Carlo study to estimate the decreasing behavior of the
standard error of the parameters when n increases, in order to estimate the rate
of convergence. Standard errors computed over replications are then fitted using a
standard Least-Square method to different rates, from log(n)−1 to n−γ for selected
values of γ ∈ (0, 1). Results for the best fitted curves, which correspond clearly to
the rate O(n−1/2), are displayed in Figure 3.
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Figure 2: Semiparametric EM for the Gaussian mixture, n = 300, θ0 = (0.5,−1.5, 2.5).

4.2 Monte Carlo study from a mixture of a trimodal density

We also simulate the 2 components location-shifted mixture of a trimodal pdf, also
proposed as an example in Bordes et al. [2]. The model is

g(x|ϕ) = λf(x − µ1) + (1 − λ)f(x − µ2)

with true parameter θ = (λ = 0.25, µ1 = 0, µ2 = 4), and f being itself a 3 compo-
nents Gaussian mixture depicted in the bottom-middle panel of Figure 4. We just
provide a sample run for a small sample size of n = 100 here, for brevity. Here
again, the SP-EM algorithm stabilizes after a small number of iterations (Figure 4,
top panels), and the estimates are computed over 50 iterations. The reconstruction
of the mixing pdf f (Figure 4, bottom middle panel) is quite good, as well as the
reconstruction of the data pdf gϕ.

4.3 Actual data examples

We choose to apply the SP-EM algorithm on two motivating and known datasets.
In each of these actual situations, the initial Euclidean parameter θ0 has been deter-
mined from the data, by choosing empirically a threshold c between the two bumps
looking at the histogram of the data (bottom left panel of Figures 5 and 6), and
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Table 1: Empirical means and standard error of (λ, µ1, µ2), based on 200 Monte-
Carlo replications of 50 SP-EM iterations; Initial θ = true value = (λ,−1, 2).

n λ λ̄ µ̄1 µ̄2 σ(λ̄) σ(µ̄1) σ(µ̄2)

100 0.15 0.123 -1.069 1.924 0.049 0.540 0.145
200 0.15 0.133 -1.027 1.958 0.035 0.289 0.095

100 0.25 0.226 -0.980 1.905 0.060 0.414 0.172
200 0.25 0.237 -1.009 1.946 0.041 0.194 0.104

100 0.35 0.343 -0.893 1.906 0.062 0.337 0.218
200 0.35 0.344 -0.955 1.960 0.039 0.182 0.111
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Figure 3: plots and O(n−1/2) Least-Square fitting of standard errors for the Gaussian
mixture model, λ = 0.35.

considering that observations xi ≤ c belong to the first component, while observa-
tions xi > c belong to the second component. Then relative component weight and
component mean are computed.

4.3.1 Old Faithful geyser data

The Old Faithful geyser dataset gives measurements in minutes of the eruptions
lengths, and of the time between eruptions. This dataset is included in the standard
R distribution, and has already been used by Hunter et al. [11] as a benchmark for
the location shifted mixture model.

The initial Euclidean parameter θ0 has been determined from the data, by
choosing thresholds c ∈ [60, 70]. Several trials show that the result is not sensi-
tive to the threshold. For the run detailed in Figure 5, the choice c = 65 gives
(λ0 = 0.35, µ0

1 = 54.05, µ0
2 = 79.79). The semiparametric EM stabilizes rather

quickly, since the model is highly bumped, and n is large. The parameter estimates
are computed after 60 iterations. Table 2 shows that our estimates are comparable
to those obtained by [11], and also close to the parametric MLE of the Gaussian
mixture model with equal variances assumption, which is reasonable for these data.
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Figure 4: Semiparametric EM for trimodal pdf f , n = 100, initial value θ0 = (0.5,−1, 3);

estimates are λ̂ = 0.216, µ̂1 = −0.037, µ̂2 = 3.989.

4.3.2 Precipitation data

To compare again with the method in Bordes et al. [2], we apply the SP-EM algo-
rithm to the rainfall data, which give the amount of precipitation in inches for cities
in the US (see McNeil [17]). These data are interesting here since the Gaussian mix-
ture model seems not reasonable in the tails. The threshold for computing the initial
θ0 has been set to c = 26 from the data, and gave (λ0 = 0.243, µ0

1 = 15.182, µ0
2 =

41.206). The bandwidth has been set to 2.5 by trial-and-error, since too large values

Table 2: Parameter estimates for the Old Faithful geyser waiting data, using the normal
homoscedastic mixture approach (NMLE), the semiparametric estimation from [11] (SP),
and the semiparametric EM algorithm (SP-EM).

λ µ1 µ2 σ2

NMLE 0.361 54.61 80.09 34.45

SP 0.352 54.0 80.0

SP-EM 0.359 54.592 80.046
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Figure 5: Semiparametric EM and NMLE for the Old Faithful Geyser waiting time data;
SP-EM estimates are (λ̂ = 0.359, µ̂1 = 54.592, µ̂2 = 80.046).

result in the algorithm emptying one component. The reason for this is that n = 70
is small here, and few observations come from the leftmost component (e.g., 17 ob-
servations for c = 26). The solution founded is rather unstable due to this small
sample size. Figure 6 compares the results obtained with the parametric MLE of
the homoscedastic Gaussian model (NMLE), as given in [2], and the estimates given
by the SP-EM algorithm after 60 iterations. It is interesting to note that, as with
the estimates from [2], the difference with the parametric Gaussian model consist
essentially in the two bumps in the tails of f .

5 Perspectives

The proposed algorithm is fast, computationally simple, and it seems as efficient
as the competing method of Bordes et al. [2]. It potentially works for m > 2
components, multidimensional situations p > 1, i.e. more general mixtures, provided
the model being identifiable. It may also be used in applications using mixtures
with one component known (as this is the case, e.g., in microarray data, see Robin
et al. [19], and Bordes et al. [1]).

Theoretically, we are currently studying the convergence of the simulated Markov
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Figure 6: Semiparametric EM and NMLE for precipitation data; SP-EM estimates are
(λ̂ = 0.213, µ̂1 = 16.12, µ̂2 = 39.983).

chains and their limiting distribution, for the two semiparametric EM algorithms
proposed.
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