
HAL Id: hal-00018223
https://hal.science/hal-00018223v4

Submitted on 14 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dense Linear Algebra over Word-Size Prime Fields: the
FFLAS and FFPACK packages

Jean-Guillaume Dumas, Pascal Giorgi, Clément Pernet

To cite this version:
Jean-Guillaume Dumas, Pascal Giorgi, Clément Pernet. Dense Linear Algebra over Word-Size Prime
Fields: the FFLAS and FFPACK packages. ACM Transactions on Mathematical Software, 2008, 35
(3), pp.19:1-42. �10.1145/1391989.1391992�. �hal-00018223v4�

https://hal.science/hal-00018223v4
https://hal.archives-ouvertes.fr


Dense Linear Algebra over Word-Size Prime

Fields: the FFLAS and FFPACK packages∗

Jean-Guillaume Dumas†

Université de Grenoble

Pascal Giorgi‡

Université de Montpellier

Clément Pernet§

Université de Grenoble

January 14, 2009

Abstract

In the past two decades, some major efforts have been made to reduce ex-
act (e.g. integer, rational, polynomial) linear algebra problems to matrix
multiplication in order to provide algorithms with optimal asymptotic
complexity. To provide efficient implementations of such algorithms one
need to be careful with the underlying arithmetic. It is well known that
modular techniques such as the Chinese remainder algorithm or the p-
adic lifting allow very good practical performance, especially when word
size arithmetic are used. Therefore, finite field arithmetic becomes an
important core for efficient exact linear algebra libraries. In this paper,
we study high performance implementations of basic linear algebra rou-
tines over word size prime fields: specially the matrix multiplication; our
goal being to provide an exact alternate to the numerical BLAS library.
We show that this is made possible by a careful combination of numeri-
cal computations and asymptotically faster algorithms. Our kernel has
several symbolic linear algebra applications enabled by diverse matrix
multiplication reductions: symbolic triangularization, system solving,
determinant and matrix inverse implementations are thus studied.

Keywords: Word size prime fields; BLAS level 1-2-3; Linear Algebra Pack-
age; Winograd’s symbolic Matrix Multiplication; Matrix Factorization; Exact
Determinant; Exact Inverse.

∗This material is based on work supported in part by the Institut de Mathématiques
Appliquées de Grenoble, project IMAG-AHA. This work was mostly done while the second
author was a postdoctoral fellow of the Symbolic Computation Group, D.R. Cheriton School
of Computer Science, University of Waterloo, Canada.

†Laboratoire Jean Kuntzmann, umr CNRS 5224, 51, rue des Mathématiques BP 53 IMAG-
LMC, F38041 Grenoble, France; Jean-Guillaume.Dumas@imag.fr

‡Laboratoire d’Informatique de Robotique et de Microlectronique de Montpellier, umr
CNRS 5506; Pascal.Giorgi@lirmm.fr

§MOAIS (INRIA Rhône-Alpes / CNRS LIG Laboratoire d’Informatique de Grenoble);
Clement.Pernet@imag.fr

1

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9

Author manuscript, published in "ACM Transactions on Mathematical Software 35, 3 (2009) article 19"

http://hal.archives-ouvertes.fr/hal-00018223/fr/
http://hal.archives-ouvertes.fr


Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Finite field arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Ring homomoprphism and delayed reduction . . . . . . . . . . 6

2.2 Recursion materials for arithmetical complexity . . . . . . . . . . . . . 7

3 Matrix multiplication 9
3.1 Cache tuning using BLAS . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Winograd fast algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 A Cascade structure . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Schedule of the algorithm . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Control of the overflow . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Timings and comparison with numerical routines . . . . . . . . . . . . 13

4 Triangular system solving with matrix right/left hand side 14
4.1 The block recursive algorithm . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Delaying reductions globally . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Delaying reductions in the update phase only . . . . . . . . . . . . . . 19
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Finite Field Matrix Factorizations 23
5.1 Triangularizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Performance and comparison with numerical routines . . . . . . . . . . 25
5.3 Comparison with the multiplication . . . . . . . . . . . . . . . . . . . 27

6 Applications 27
6.1 Nullspace basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Triangular multiplications . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2.1 Triangular matrix multiplication . . . . . . . . . . . . . . . . . 28
6.2.2 Upper-lower Triangular matrix multiplication . . . . . . . . . . 28
6.2.3 Upper-Upper Triangular matrix multiplication . . . . . . . . . 29

6.3 Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.1 A × AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.2 Symmetric case . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.3 Triangular case . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Symmetric factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.5.1 Triangular matrix inverse . . . . . . . . . . . . . . . . . . . . . 31
6.5.2 Matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5.3 Symmetric inverse . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5.4 Full-rank Moore-Penrose pseudo-inverse . . . . . . . . . . . . . 31
6.5.5 Rank deficient Moore-Penrose pseudo-inverse . . . . . . . . . . 32
6.5.6 Performances and comparisons with numerical routines . . . . 32

7 Conclusions 35

2

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

A Proof of theorem 3.1 36
A.1 Some properties on the series of the type 2u − v . . . . . . . . . . . . 36
A.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3 Some invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4 Induction for K = 2lq . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.5 Case of an arbitrary k . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.6 Optimality of the bound . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 44

1 Introduction

Finite fields play a crucial role in computational algebra. Indeed, finite fields are
the basic representation used to solve many integer problems. The whole solu-
tions are then gathered via the Chinese remainders or lifted p-adically. Among
those problems are integer polynomial factorization [47], integer system solving
[9, 44], integer matrix normal forms [23] or integer determinant [34]. Finite
fields are of intrinsic use in polynomial linear algebra [26] but also in cryptology
(e.g. large integer factorization [38], discrete logarithm computations [40]) or
for error correcting codes. Moreover, nearly all of these problems involve linear
algebra resolutions. Therefore, a fundamental issue is to implement efficient el-
ementary arithmetic operations and very fast linear algebra routines over finite
fields.

We propose a way to implement the equivalent of the basic BLAS level 1, 2,
and 3 numerical routines (respectively dot product, matrix-vector product and
matrix-matrix product), but over finite fields. We will focus on implementations
over fields with small cardinality, namely not exceeding machine word size, but
with any characteristic (consequently, we do not deal with optimizations for
powers of 2 cardinalities). For instance, we show that symbolic matrix multi-
plication can be as fast as numerical matrix multiplication (see section 3) when
using word size prime fields. Our aim is not to rebuild some specialized routines
for each field instance. Instead, the main idea is to use a very efficient and au-
tomatically tuned numerical library as a kernel (e.g. ATLAS [46]) and to make
some conversions in order to perform an exact matrix multiplication (i.e. with-
out any loss of precision). The efficiency will be reached by performing as few
conversions as possible. Several alternatives to this approach exist: one would
be to implement a core linear algebra with integer arithmetic. Unfortunately,
new architectures focus on numerical arithmetic and therefore by using integer
arithmetic we would lose a factor of 2 or 4 due to the SIMD (single instruction,
multiple data) SSE speed-up of the numerical routines. Note that SSE4 with
some integer support is announced for 2008 and might then change some of this
point of view. Anyway, another feature of our approach is to rely on a large
community of effort for the numerical handling of linear algebra routines. We
want to show in this paper that no real gain could be obtained by trying to
mimic their effort over just using it.

3

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Then, building on this fast numerical blocks, we can use fast matrix multi-
plication algorithms, such as Strassen’s or Winograd’s variant [24, §12]. There,
we use exact computation on a higher level and therefore do not suffer from
instability problems [30].

Many algorithms have been designed to use matrix multiplication in order
to be able to prove an optimal theoretical complexity. In practice those exact
algorithms are only seldom used. This is the case, for example, in many linear
algebra problems such as determinant, rank, inverse, system solution or minimal
and characteristic polynomial. We believe that with our kernel, each one of those
optimal complexity algorithms can also be the most efficient. One goal of this
paper is then to show the actual effectiveness of this belief. In particular we
focus on factorization of matrices of any shape and any rank.

Some of the ideas from preliminary versions of this paper [17], in particular
the BLAS-based matrix multiplication for small prime fields, are now incorpo-
rated into the Maple computer algebra system since its version 8 and also into
the 2005 version of the computer algebra system Magma. Therefore an effort
towards effective reduction has been made [18] in C++ and within Maple by
A. Storjohann[6]. Effective reduction for minimal and characteristic polynomial
were proposed in [20] and A. Steel has reported on similar efforts within his
implementation of some Magma routines.

In this paper, the matrix factorization, namely the exact equivalent of the
LU factorization is thus extensively studied. Indeed, unlike numerical matrices,
exact matrices are very often singular, even more so if the matrix is not square !
Consequently, Ibarra, Moran and Hui have developed generalizations of the LU
factorization, namely the LSP and LQUP factorizations [33]. Then we adapt
this scheme to rank, determinant, inverse (classical or Moore-Penrose), nullspace
computations, etc. There, we will give not only the asymptotic complexity
measures but the constant factor of the dominant term. Most of these terms
will give some constant factor to the multiplication time and we will compare
those theoretical ratios to the efficiency that we achieve in practice. This will
enable us to give a measure of the effectiveness of our reductions (see especially
section 6).

Now, we provide a full C++ package available directly [13] or through the
exact linear algebra library LinBox

1 [16]. Extending the work undertaken by
the authors et al.[41, 17, 4, 25, 14, 18, 20], this paper focuses on matrix multi-
plication with an extended Winograd variant optimizing memory allocation ; on
simultaneous triangular system solving; on matrix factorization and improved
constant factors of complexity for many linear algebra equivalent routines (in-
verse, squaring, upper-lower or upper-upper triangular multiplication, etc.).

The paper is organized as follows. Section 2 introduces some material for the
evaluation of arithmetical costs of recursive algorithms; we also motivate our
choice to represent elements of a finite field; Then section 3 presents efficient
ways to implement matrix multiplication over generic prime fields, including a
study of fast matrix multiplication. Section 4 deals with the matrix multipli-

1www.linalg.org

4

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

cation based simultaneous resolution of n triangular systems. Laslty, section 5
presents implementations of several matrix factorizations and their applications
with a study of complexity and of efficiency in practice.

2 Preliminaries

2.1 Finite field arithmetic

The first task, to implement exact linear algebra routines, is to develop the un-
derlying arithmetic. Indeed, any finite field, except GF (2), do not map directly
to the arithmetical units of nowadays processors and a software emulation is
therefore mandatory. This has been well studied in literature, and we refer to
[14] and references therein for a survey on this topic. Here, we recall the differ-
ent ways of implementing such arithmetic and we will motivate our choice of a
particular one for efficient linear algebra routines.

2.1.1 Implementations

Representation of finite fields elements plays a crucial role in the efficiency of
arithmetic operations. From now on, we will count arithmetic operations in
terms of field operations, that is we will count addition, subtraction, multipli-
cation and division in the arithmetic complexity results.

A usual way to implement prime fields arithmetic is to map the elements of
the field to integers modulo a prime number, defined by its characteristic. From
now on, we will focus on prime fields with characteristic no greater than a word
size (e.g. 32 bits). In this basic case, various representations and arithmetics
can be used:

• Classical representation with integer divisions.
Integers between 0 and p − 1 or between (1 − p)/2 and (p − 1)/2 are
used; additive group operations are done with machine integers operations
followed by a test and a correction; multiplication is followed by machine
remaindering while division is performed via the extended gcd algorithm.

• Montgomery representation.
This representation, proposed in [37], allows to avoid costly machine re-
maindering within the multiplication. A shifted representation is used and
remaindering is replaced by multiplications. Note that others operations,
except the division, stay identical.

• Floating point inverse.
Another idea to reduce remaindering cost in multiplication is to precom-
pute the inverse of the characteristic p within a floating point number.
Therefore, only two floating point multiplications and some rounding are
necessary. However, floating point rounding may induce a ±1 error and
then an adjustment is required, as implemented in Shoup’s NTL library
[43].

5

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

• Discrete logarithm (also called Zech logarithm).
Here, elements are seen as a power of a generator of the multiplicative
group, namely a primitive element. As a consequence, multiplicative group
operations can be performed only by addition or subtraction modulo p−
1. Nevertheless, this representation makes the addition/subtraction more
complicated in the field. In particular, these operations need some table
lookup; see [14, §2.4].

Extension fields, denoted GF (pk), are usually implemented via polynomials
over the prime field Z/pZ modulo an irreducible polynomial of degree k. Thus,
operations in the extension reduce to polynomial arithmetic. An alternative
is to tabulate entries and use the Zech logarithm representation also. As for
prime fields, some representations can be used to avoid the costly remaindering
phase within the multiplication. We will not discuss any implementations over
extension field in this paper. We let the reader refer to [15] for details on
data structures, arithmetic and matrix multiplication over small extension fields.
From now on, when we will refer to finite fields this will mean word-size prime
fields and the extensions for which the trick of [17, §4] is usable.

2.1.2 Ring homomoprphism and delayed reduction

As a primitive tool for implementing linear algebra routines, the efficiency of the
finite field representation needs to be well studied. In [14] the author analyzes
the efficiency of finite field arithmetic according to a chosen representation. It
has been shown that atomic operations (e.g. addition, multiplication) can be
performed more efficiently than with the classic method depending on the ar-
chitecture. In particular, it appears that memory access based implementations
(i.e. discrete logarithm) and floating point based implementations (i.e. floating
point inverse) are more efficient on older architecture such as Ultra Sparc. Nev-
ertheless, with newer architecture such as Pentium III and Pentium 4, integer
machine operations become more efficient and outperform other implementa-
tions, except discrete logarithm for multiplicative group operations.

However, for linear algebra, the primary operation is the succession of two
operations: a multiplication followed by an addition; this operation is commonly
called AXPY (also “fused-mac” or FMA within hardware). This operation
clearly influences the efficiency of vectors dot product which is one of the main
operations of classic linear algebra. However, optimized AXPY atomic operation
is deprecated since one would rather use delayed divisions. This technique
consists in successive multiplications and accumulations without any division.
Divisions intervene either just before an overflow occurs within the hardware
data, or only after a fixed numbers of accumulations.

Indeed, any prime field Zp can be naturally embedded into Z by representing
its elements with an integer of an interval [m, M ], such that M −m = p − 1.
The reverse conversion consists in applying a reduction modulo p to the integer
value.

The ring structure being preserved by these homomorphisms, any ring algo-
rithm over Zp can be transposed into a ring algorithm over Z.

6

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Now the machine integer arithmetic uses a fixed number of bits γ for the
integer representation: γ = 32 for int, γ = 24 (resp. γ = 53) for single (resp.
double) precision floating point values, etc.

Using this approximate integer arithmetic, one has therefore to ensure that
the computation of the integer algorithm will not overflow the representation.
Hence for each integer algorithm, a bound on the maximal computed value has
to be given, depending on m and M .

For example, if the representation is interval is [0, p− 1], one can perform λ
accumulations without any divisions if

λ(p− 1)2 < 2γ ≤ (λ + 1)(p− 1)2 (1)

Note that if signed words are available, a centered representation can be used
(i.e. − p−1

2 ≤ x ≤ p−1
2 for the storage of an element x of the odd prime field)

and the equation 1 becomes

λ

(
p− 1

2

)2

< 2γ−1 ≤ (1 + λ)

(
p− 1

2

)2

(2)

which improves λ by a factor of 2.
Hence, the bottleneck of divisions can be amortized since only

⌈
n
λ

⌉
divisions

will occur in a n-dimensional vector dotproduct.
Contrary to atomic operations, floating point based implementations for

dotproduct tend to be the most efficient on average. In particular, timings
are constant and achieve almost half of the peak of arithmetical unit while the
timings of others implementations drop as soon as the size of the finite field
increases. However, when small primes are used, one can improve these timings
to almost the peak of the machine by using others implementations [14, §3.4].

According to these results and the necessity of genericity, we provide imple-
mentations based on generic finite fields (e.g. use of C++ template mechanism).
However, in this paper, we mainly use a floating point based implementation
for our finite fields arithmetic, called Zpz-double. This choice is principally
motivated by the use of optimized numerical basic linear algebra operations
through the BLAS library. Indeed, one can easily benefit from these libraries by
simply mapping linear algebra operations over finite fields to numeric computa-
tions and delayed divisions. This will be extensively explained in sections 3 and
4. Therefore, the choice of floating point based representations for finite field
elements will be an asset since it will avoid any data conversion. Possibly, we
may use a different finite field implementation in order to compare efficiencies.
There, we will use the notation Zpz-int, meaning a word size integer based im-
plementation. As we will see throughout the rest of the paper, the combination
of BLAS and Zpz-double implementation will allow us to approach numerical
efficiency for linear algebra problems over finite fields.

2.2 Recursion materials for arithmetical complexity

The following two lemmas will be useful to study the constant factor of linear
algebra algorithms compared to matrix multiplication. The first one gives the

7

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

order of magnitude when the involved matrices will be square:

Lemma 2.1. Let m be a positive integer and suppose that

1. T (m) = CT (m
2 ) + amω + ǫ(m), with ǫ(m) ≤ gm2 for some constants

C, a, ω, g.

2. T (1) = e for some constant e.

3. log2(C) < ω.

Then T (m) = O(mω).

Proof. Let t = log2(m). The recursion gives,

T (m) = CtT (1) + amω
1−

(
C
2ω

)t

1− C
2ω

+

t−1∑

i=0

Ciǫ(
m

2i
).

Then, on the one hand, if C 6= 4 this yields T (m) = a2ω

2ω−C
mω + kCt + g′m2,

where g′ < 4g
4−C

and k < T (1)− a2ω

2ω−C
− g′. On the other hand, when C = 4,

we have T (m) = a2ω

2ω−C
mω + k′Ct + gm2 log2(m), where k′ < T (1)− a2ω

2ω−C
. In

both cases, with Ct = mlog2(C), this gives T (m) = a2ω

2ω−C
mω + o(mω).

Now we give the order of magnitude when the matrix dimensions differ:

Lemma 2.2. Let m and n be two positive integers and suppose that

1. T (m, n) =
∑k

i=1 ciT (m
2 , n − di

m
2 ) + amω + bmω−1n + ǫ(m, n), with C =

∑k
i=1 ci, D =

∑k
i=1 cidi, 2 < ω and ǫ(m, n) ≤ gm2 + hmn .

2. T (1, F ) ≤ eF for a constant e.

3. log2(C) < ω − 1

Then T (m, n) = O(mω + mω−1n).

Proof. As in the preceding lemma, we use the recursion and geometric sums to
get

T (m, n) =

k∑

i1=1

ci1 . . .

k∑

it=1

cit
T (1, n− f(d1, . . . , dt, m))+

mω

(

a
1−

(
C
2ω

)t

1− C
2ω

− bD
1−

(
C

2ω−1

)t

1− C
2ω−1

)

+ bmω−1n
1−

(
C

2ω−1

)t

1− C
2ω−1

+

k∑

i1=1

ci1H(m/2, n− dim/2) . . .+

k∑

i1=1

ci1 . . .

k∑

it=1

cit
H(1, n− f(d1, . . . , dt, m))

(3)

8

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Thus, we get

αmω + βmω−1n ≤ T (m, n) ≤ αmω + βmω−1n + CtT (1, n) +
t∑

i=1

CiH(
m

2i
, n).

The last term is bounded by gm2 1−( C
4 )

t

1−C
4

+ fmn
1−(C

2 )
t

1−C
2

when C 6= 4 and C 6= 2.

In this case CtT (1, n) +
∑t

i=1 CiH(m
2i , n) ≤ mlog2(C)

(

(e + 2g
C−2 )n + 4g

C−4

)

=

O(mω + mω−1n). When C = 2, a supplementary log2(m) factor arises in the
small factors, but the order of magnitude is preserved since log2(C) + 1 = 2 <
ω.

These two lemmas are useful in the following sections where we solve (e.g.suppose
T (m) = αmω in a recurring relation for α) to get the actual constant of the
dominant term. Thus, when we give an equality on complexities, this equality
means that the dominant terms of both complexities are equal. In particular,
some lower order terms may differ.

3 Matrix multiplication

We propose a design for a matrix multiplication kernel routine over a word-size
finite field, based on the three following features:

1. delayed modular redution, as explained section 2.1.2,

2. cache tuning and floating point arithmetic optimizations using BLAS,

3. Strassen-Winograd fast algorithm.

3.1 Cache tuning using BLAS

In most of the modern computer architecture, a memory access to the RAM is
more than one hundred times slower than an arithmetic operation. To circum-
vent this slowdown, the memory is structured into two or three levels of cache
acting as buffers to reduce the number of accesses to the RAM and reuse as
much as possible the buffered data. This approach is only valid if the algorithm
involves many computations with local data.

In linear algebra, matrix multiplication is the better suited operation for
cache optimization: it is the first basic operation, for which the time complexity
O(n3) is an order of magnitude higher than the space complexity O(n2). Fur-
thermore it plays such a central role in linear algebra, that every other algorithm
will take advantage of the tuning of this kernel routine.

These considerations have driven the development of basic linear algebra
subroutines (BLAS) [11, 46] for numeric computations. One of its main achieve-
ment is the level 3 set of routines, based on a highly tuned matrix multiplication
kernel.

9

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

For computations on a word-size finite field, a similar approach could be
developed, e.g. following [29] for block decomposition. Instead, we propose
to simply wrap these numerical routines to form the integer algorithm of the
delayed modular approach of the previous section. This will enable to take
benefit from both the efficiency of the floating point arithmetic and the cache
tuning of the BLAS libraries. Furthermore relying on the generic BLAS inter-
face makes it possible to benefit from the large variety of optimizations for all
existing architectures and ensures a long term efficiency thanks to the much
larger development effort existing for numerical computations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

M
fo

p
s
 

Matrix order

Matrix multiplication over Z/65521Z on a XEON, 3.6 GHz

GOTO::dgemm FFLAS::classic FFLAS::fgemm long-block-40 long-noblock

Figure 1: Blocking classical matrix multiplication, on a Xeon, 3.6GHz.

Figure 1 shows the advantage of this method (FFLAS::classic) compared to
two other implementations: the naive algorithm (long-noblock), and a hand-
made cache tuned implementation, based on block decomposition of the input
matrices, so that each block product could be performed locally in the L2 cache
memory (long-block-40, for a block dimension 40). The graph compares the
computation speed in millions of field operations per seconds (Mfops) for differ-
ent matrix orders. As a comparison we also provide the computation speed of
the equivalent numerical BLAS routine dgemm. This approach improves on the
efficiency of the two other methods over a finite field and the overhead of the
modular reductions is limited. Finally, the (FFLAS::fgemm) implementation is
the most efficient thanks to the combination of numerical computations and a
fast matrix multiplication algorithm which is discussed in the next section.

3.2 Winograd fast algorithm

The third feature of this kernel is the use of a fast matrix multiplication algo-
rithm. We will focus on Winograd’s variant [24, algorithm 12.1] of Strassen’s

10

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

algorithm [45]. We denote by MM(n) the dominant term of the arithmetic
complexity of the matrix multiplication. The value of MM(n) thus reflects the
choice of algorithm, e.g. MM(n) = 2n3 for the classical algorithm, and mean
that the actual complexity of the classical algorithm is 2n3 + O(n2). We also
denote by ω the asymptotic exponent of MM(n), it is thus 3 for the classical
algorithm, log2(7) ≈ 2.807354922 for the Strassen-Winograd variant, and the
best known exponent is about 2.375477 by [7].

In [30] Winograd’s variant is discarded for numerical computations because
of its bad stability and despite its better running time. In [35] aggregation-
cancellation techniques of [36] are also compared. They also give better stability
than the Winograd variant but worse running time. For exact computation,
stability is no longer an issue and Winograd’s faster variant is thus preferred.

3.2.1 A Cascade structure

Asymptotically, this algorithm improves on the number of arithmetic operations
required for matrix multiplication from MM(n) = 2n3 to MM(n) = 6n2.8074.
But for a given n, the total number of arithmetic operations can be reduced
by switching after a few recursive levels of Winograd’s algorithm to the classic
algorithm. Table 1 compares the number of arithmetic operations depending on
the matrix order and the number of recursive levels.

Recursive levels of Winograd’s algorithm
n Classic 1 2 3 4 5 6
4 112 144 214
8 960 1024 1248 1738
16 7936 7680 8128 9696 13126
32 64512 59392 57600 60736 71712 95722
64 520192 466944 431104 418560 440512 517344 685414

Table 1: Number of arithmetic operations in the multiplication of two n × n
matrices

This phenomenon is amplified by the fact that additions in classic matrix
multiplication are cheaper than the ones in Winograd algorithm since they take
advantage of the cache optimization of the BLAS routine. As a consequence,
the optimal number of recursive levels depends on the architecture and must
be determined experimentally. It can be described by a simple parameter: the
matrix order w for which one recursive level is as fast the classic algorithm.
Then the number of levels l is given by the formula

l =
⌊

log2

n

w

⌋

+ 1.

11

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

3.2.2 Schedule of the algorithm

We based our implementation of Winograd’s algorithm on two different sched-
ules. For the operation C ← A × B we use that of [12, Fig. 1] and for the
extended C ← αA×B +βC, that of [32, Fig. 6] that we recall in table 2. More
details about tasks scheduling and memory efficient variants of Winograd’s al-
gorithm can be found in [21].

# operation loc. # operation loc.
1 S1 = A21 + A22 X1 12 S4 = A12 − S2 X1

2 T1 = B12 −B11 X2 13 T4 = T2 −B21 X2

3 P5 = αS1T1 X3 14 C12 = αS4B22 + C12 C12

4 C22 = P5 + βC22 C22 15 U5 = U2 + C12 C12

5 C12 = P5 + βC12 C12 16 P4 = αA12T4 − βC21 C21

6 S2 = S1 −A11 X1 17 S3 = A11 −A21 X1

7 T2 = B22 − T1 X2 18 T3 = B22 −B12 X2

8 P1 = αA11B11 X3 19 U3 = αS3T3 + U2 X3

9 C11 = P1 + βC11 C11 20 U7 = U3 + C22 C22

10 U2 = αS2T2 + P1 X3 21 U6 = U3 − C21 C21

11 U1 = αA12B21 + C11 C11

Table 2: Schedule for operation C ← αA×B + βC with 3 temporaries

3.2.3 Control of the overflow

Since Winograd’s algorithms will be used with delayed modular reductions, one
has to ensure that any intermediate computation will fit in the underlying fixed-
size integer representation being used. Indeed, intermediate values can become
large in this algorithm, and the former bound for the dot-product no-longer
holds.

The main result of this section is that, in the worst case, the largest in-
termediate computation occurs during the recursive computation of the sixth
recursive product P6 (see appendix A). This result generalizes [17, theorem 3.1]
for the computation of AB + βC.

Theorem 3.1. Let A ∈ Z
m×k, B ∈ Z

k×n C ∈ Z
m×n be three matrices and

β ∈ Z with mA ≤ ai,j ≤ MA, mB ≤ bi,j ≤ MB and mC ≤ ci,j ≤ MC .
Moreover, suppose that 0 ≤ −mA ≤ MA, 0 ≤ −mB ≤ MB, 0 ≤ −mC ≤ MC ,
MC ≤MB and |β| ≤MA, MB. Then every intermediate value z involved in the
computation of A×B+βC with l (l ≥ 1) recursive levels of Winograd algorithm
satisfy:

|z| ≤

(
1 + 3l

2
MA +

1− 3l

2
mA

)(
1 + 3l

2
MB +

1− 3l

2
mB

)⌊
k

2l

⌋

Moreover, this bound is optimal.

12

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

The proof is given in appendix A.
Using a positive integer representation of the prime field elements (integers

between 0 and p− 1), the following corollary holds:

Corollary 3.2 (Positive modular representation). Using the same notations,
with ai,j , bi,j , ci,j , β ∈ [0 . . . p− 1], we have

|z| ≤

(
1 + 3l

2

)2 ⌊
k

2l

⌋

(p− 1)2

Instead, using a balanced representation (integers between − p−1
2 and p−1

2 ),
this bound can be improved:

Corollary 3.3 (Balanced modular representation). Using the same notations
with ai,j , bi,j , ci,j , β ∈ [− p−1

2 . . . p−1
2 ], we have

|z| ≤

(
3l

2

)2 ⌊
k

2l

⌋

(p− 1)
2

Corollary 3.4. One can compute l recursive levels of Winograd algorithm with-
out modular reduction over integers of γ bits as long as k < kWinograd where

kWinograd =

(

2γ+2

((1 + 3l)(p− 1))
2 + 1

)

2l

for a positive modular representation and

kWinograd =

(

2γ+2

(3l(p− 1))
2 + 1

)

2l

for a balanced modular representation.

3.3 Timings and comparison with numerical routines

This section presents experiments of our implementation of the matrix multi-
plication kernel described above.

The experiments use two different BLAS library: the automatically tuned
BLAS ATLAS [46], and the BLAS by Kazushige Goto [28] refered to as GOTO.
We used the gcc compiler version 4.1 on the Xeon machine and the icc compiler
version 9.0 on the Itanium. We recall that dgemm refers to the BLAS matrix
multiplication routine over double precision floating point numbers. Similarly,
we named our routine over a word-size finite field fgemm.

The tables 3 and 4 report timings obtained for both exact and numeric ma-
trix multiplication. First the comparison shows that the exact computation over
a word size finite field (modulo 65521 on these tables) can reach a similar range
of efficiency as the numerical computation. For increasing matrix dimensions,
the exact computation becomes even more efficient (see also figure 1), thanks

13

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.38s 2.73s 8.59s 36.34s 95.21 134.03s 190.21s 258.08
dgemm 0.37s 2.98s 10.02s 46.10s 126.38s 188.97s 267.83s 368.30s

A
T

L
A

S

fgemm
dgemm

1.02 0.92 0.86 0.79 0.75 0.71 0.71 0.70

fgemm 0.36s 2.53s 7.95s 33.44s 87.46s 124.86s 177.25s 238.00s
dgemm 0.34s 2.65s 8.90s 41.01s 112.31s 167.20s 237.16s 325.62s

G
O

T
O

fgemm
dgemm

1.05 0.96 0.89 0.82 0.78 0.75 0.75 0.73

Table 3: Comparison between fgemm and dgemm on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.46s 3.22s 10.14s 42.28s 110.64s 163.53s 225.08s 296.56s
dgemm 0.45s 3.49s 11.45s 53.12s 144.45s 215.53s 305.21s 419.00s

A
T

L
A

S

fgemm
dgemm

1.01 0.92 0.89 0.80 0.77 0.76 0.74 0.71

fgemm 0.43s 2.99s 9.35s 39.21s 104.07s 152.12s 209.22s 277.32s
dgemm 0.40s 3.18s 10.61s 48.88s 133.75s 200.11s 283.94s 390.37s

G
O

T
O

fgemm
dgemm

1.06 0.94 0.88 0.80 0.78 0.76 0.74 0.71

Table 4: Comparison between fgemm and dgemm on Itanium2, 1.3GHz

to the use of Winograd’s algorithm (improvement factor between 13% and 29%
for dimension 10 000).

These experiments also show the advantage of relying on a generic interface
for numerical BLAS: the exact computation will directly take advantage of the
improvements of the best numerical routine. This appears when comparing
GOTO and ATLAS on these two target architecture, where GOTO is about
10% faster.

4 Triangular system solving with matrix right/left

hand side

We now discuss the implementation of solvers for triangular systems with matrix
right hand side (or equivalently left hand side). The resolution of such systems
plays a central role in many linear algebra problems, e.g. it is the second main
operation in block Gaussian elimination after matrix multiplication as will be
recalled in section 5.1. This operation is commonly named trsm in the BLAS
convention. In the following, we will consider without loss of generality the
resolution of an upper triangular system with matrix right hand side, i.e. the

14

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

operation B ← U−1B, where U is m×m upper triangular and B is m× n.
Following the approach of the BLAS numerical routine, our implementation

is based on a block recursive algorithm to reduce the computation to matrix
multiplications.

Now similarly to our approach with matrix multiplication, the design of our
implementation also focuses on delaying the modular reductions as much as
possible. As will be shown in section 4.2, delaying the whole resolution leads to
a quick growth in the size of coefficients. Therefore we also present in section
4.3 another way of delaying these modular reductions. We lastly present how
to combine these two techniques within a multi-cascade algorithm.

4.1 The block recursive algorithm

Algorithm trsm recalls the block recursive algorithm.

Algorithm 1: trsm (A, B)

Data: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n.
Result: X ∈ Z/pZ

m×n such that AX = B.
begin

if m = 1 then
X := A−1

1,1 ×B

else
/* splitting matrices into two blocks of sizes

⌊
m
2

⌋
and

⌈
m
2

⌉

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

*/

X2 :=trsm (A3, B2)
B1 := B1 −A2X2

X1 :=trsm (A1, B1)

end

Lemma 4.1. Algorithm trsm is correct and the leading term of its arithmetic
complexity over Z/pZ is

TRSM(m, n) =
1

2ω−1 − 2

⌈ n

m

⌉

MM(m)

This complexity is m2n using classic matrix multiplication.

15

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Proof. Extending the previous notation MM (n), we denote by MM (m,k,n) the
cost of multiplying a m×k by a k×n matrices. The cost function TRSM(m, n)
satisfies the following equation:

TRSM(m, n) = 2TRSM(
m

2
, n) + MM(

m

2
,
m

2
, n).

Let t = log2(m). Although the algorithm works for any n, we restrict the
complexity analysis to the case where m ≤ n for the sake of simplicity. We then
have:

TRSM(m, n) = 2TRSM(
m

2
, n) +

1

2ω−1

⌈ n

m

⌉

MM(m)

= 2tTRSM(1, n) +
1

2ω−1

⌈ n

m

⌉

MM(m)
1−

(
2

2ω−1

)t

1− 2
2ω−1

.

As TRSM(1, n) = 2n and
(
2ω−1

)t
= mω−1, we obtain the expected complexity

TRSM(m, n) = 1
2ω−1−2

⌈
n
m

⌉
MM(m) +O(m2 + mn).

4.2 Delaying reductions globally

As for matrix multiplication, the delayed computation relies on the fact that
ring operations over the finite field can be replaced by ring operations over Z

using the ring homomorphisms described in section 2.1.2. However, triangular
system resolutions involve, in the general case, field operations: the divisions by
the diagonal elements of the triangular matrix. Therefore this technique is only
valid with unit diagonal matrices.

In the general case, the triangular matrix is made unit diagonal by the
following factorization: A = DU , where D is diagonal and U is unit diagonal
upper triangular. Then the system UX = D−1B only involves ring operations
and can be solved over Z. This normalization leads to an additional cost of
O(mn) arithmetic operations (see [18] for more details).

Now the integer computation with a fixed sized arithmetic (e.g. the floating
point arithmetic) is exact as long as all intermediate results of the computation
do not exceed the bit capacity of the representation. Therefore we now propose
bounds on the values computed by the algorithm over Z.

Theorem 4.2. Let T ∈ Z
n×n be a unit diagonal upper triangular matrix and

b ∈ Z
n, with m ≤ Ti,j ≤ M and m ≤ bi ≤ M and m ≤ 0 ≤ M . Let x =

(xi)i∈[1...n] ∈ Z
n be the solution of the system Tx = b. Then ∀ k ∈ [0 . . . n− 1] :

{
−uk ≤ xn−k ≤ vk for k even,
−vk ≤ xn−k ≤ uk for k odd

with {
uk = M−m

2 (M + 1)k − M+m
2 (M − 1)k,

vk = M−m
2 (M + 1)k + M+m

2 (M − 1)k.

16

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Proof. First note the following relations:

∀k







uk ≤ vk

−muk ≤ Mvk

−mvk ≤ Muk

The third one comes from

Muk + mvk =
M2 −m2

2
((M + 1)k − (M − 1)k) ≥ 0.

The proof is now an induction on k, following the system resolution order. The
initial case k = 0 correspond to the first step: xn = bn, leading to

−u0 = m ≤ xn ≤M = v0.

Suppose now that the inequalities hold for k ∈ [0 . . . l] and prove them for
k = l + 1. If l is odd, l + 1 is even.

xn−l−1 = bn−l−1 −

n
X

j=n−l

Tn−l−1,jxj

≤ M +

l−1

2
X

i=0

max(Mu2i,−mv2i) + max(Mv2i+1,−mu2i+1)

≤ M

0

B

@
1 +

l−1

2
X

i=0

u2i + v2i+1

1

C

A

≤ M

0

B

@
1 +

l−1

2
X

i=0

M − m

2
(M + 2)(M + 1)2i +

M + m

2
(M − 2)(M − 1)2i

1

C

A

≤ M

„

1 +
M − m

2
(M + 2)

(M + 1)l+1 − 1

(M + 1)2 − 1
+

M + m

2
(M − 2)

(M − 1)l+1 − 1

(M − 1)2 − 1

«

≤
M − m

2
(M + 1)l+1 +

M + m

2
(M − 1)l+1 = vl+1.

Similarly,

xn−l−1 ≥ m −

l−1

2
X

i=0

max(Mv2i,−mu2i) + max(Mu2i+1,−mv2i+1)

≥ m − M

l−1

2
X

i=0

v2i + u2i+1

≥ m − M

l−1

2
X

i=0

M − m

2
(M + 2)(M + 1)2i −

M + m

2
(M − 2)(M − 1)2i

≥ m − M

„

M − m

2
(M + 2)

(M + 1)l+1 − 1

(M + 1)2 − 1
−

M + m

2
(M − 2)

(M − 1)l+1 − 1

(M − 1)2 − 1

«

≥
M − m

2
(M + 1)l+1 −

M + m

2
(M − 1)l+1 = ul+1.

17

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

For l even, a similar proof leads to

−vl+1 ≤ xn−l−1 ≤ ul+1.

Corollary 4.3. Using the notation of theorem 4.2,

|x| ≤
M −m

2
(M + 1)n−1 +

M + m

2
(M − 1)n−1.

Moreover this bound is optimal.

Proof. The sequence (vk) is increasing and always greater than (uk). Thus
∀ k ∈ [0 . . . n− 1] |xn−k| ≤ uk ≤ vk ≤ vn−1.

Now the vector x = (xi)i∈[1...n] ∈ Z
n such that ∀ k ∈ [0 . . . n−1] |xn−k| = vk

satisfies the system Tx = b with

T =










. . .
. . .

. . .
. . .

. . .

1 M m M
1 M m

1 M
1










, b =










...
m
M
m
M










Therefore the bound is reached.

The following corollaries apply this result to the positive and balanced mod-
ular representations.

Corollary 4.4 (Positive modular representation). For 1 ≤ i, j ≤ n, if Ti,j, bi ∈
[0 . . . p− 1], then

|x| ≤
p− 1

2
(pn−1 + (p− 1)n−1).

Corollary 4.5 (Balanced modular representation). For 1 ≤ i, j ≤ n, if Ti,j, bi ∈
[− p−1

2 . . . p−1
2 ], then

|x| ≤
p− 1

2

(
p + 1

2

)n−1

.

Remark 4.6. The balanced modular representation improves the bound by a
factor of 2n−1.

As a consequence, one can solve a unit diagonal triangular system of dimen-
sion n using arithmetic operations with integers stored on γ bits if

p− 1

2
(pn−1 + (p− 1)n−1) < 2γ (4)

for a positive representation and

p− 1

2

(
p + 1

2

)n

< 2γ (5)

18

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

for a balanced representation.
For instance, using the double floating point representation (53 bits of man-

tissa) the maximal dimension of the system is 34 (resp. 52) for a positive (resp.
balanced) representation of Z3. For larger fields, this maximal dimension be-
comes quickly very small: with p = 1001, n ≤ 5 (resp. n ≤ 6) for a positive
(resp. balanced) representation.

In the following, we will denote by tdel(p, γ) the maximum dimension for the
resolution with delayed modular reductions. This dimension is small, and this
approach can therefore only be used as a terminal case of the recursive block
algorithm. This first cascade algorithm is characterized by the threshold tdel.
For efficiency, we used in our implementation the BLAS routine trsm to perform
the delayed computation over Z. Despite the small dimension of the blocks, we
will see in section 4.4 that this approach can slightly improve the efficiency of
the computation when the finite field is small.

4.3 Delaying reductions in the update phase only

The block recursive algorithm consists in several matrix multiplications of differ-
ent dimensions. In most cases, the matrix multiplications are done over Z with
a modular reduction on the result only. But part of these result matrices will be
accumulated to other matrix multiplications in later computations. Therefore
these intermediate modular reductions could be delayed even more by allowing
to accumulate these results over Z as much as possible.

This technique can be applied within the former cascade algorithm, to pro-
duce a double cascade structure. The key idea is to split the matrices at two lev-
els as shown on figure 2: a fine grain splitting with the dimension tdel of the pre-

U =
i

i B 1..i−1

B i

V X

X i

1..i−1

Figure 2: Splitting for the double cascade trsm algorithm

vious section, and a coarse grain splitting with the dimension tupdate such that all
recursive calls of dimension lower than tupdate can let the matrix multiplication
updates accumulate without modular reductions. Choosing tupdate = kWinograd

(from corrolary 3.4) will ensure this property. To adjust together the dimensions
of the two block decompositions, we set tsplit = ⌊tWinograd/tdel⌋ tdel.

Algorithm 2 is a loop on every block of column dimension tupdate. For each
of them, the triangular system is solved using algorithm 3 and the update is

19

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Algorithm 2: trsm-rec-BLAS-delayed :

Data: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n

Result: X ∈ Z/pZ
m×n s.t. AX = B

begin
Compute tdel from equation (4 or 5)
Compute tWinograd from corrolary (3.4)
tsplit = ⌊tWinograd/tdel⌋ tdel

foreach block column of A of dimension m× tsplit of the form





Vi

Ui

0





do
Xi = trsm-partial-delayed(Ui, Bi)
Xi = Xi mod p
B1...i−1 = B1...i−1 − ViXi

B1...i−1 = B1...i−1 mod p

return X
end

Algorithm 3: trsm-partial-delayed

Data: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n, m must be lower than tupdate

Result: X ∈ Z/pZ
m×n s.t. AX = B

begin
if m ≤ ndel then

B = B mod p
X = dtrsm(A, B) ; /* the BLAS routine */

X = X mod p
else

/* (splitting of the matrix into blocks of dimension
⌊

m
2

⌋
and

⌈
m
2

⌉
) */

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

X2 := trsm-partial-delayed(A3, B2)
B1 := B1 −A2X2 ; /* without modular reduction */

X1 := trsm-partial-delayed(A1, B1)

return X
end

20

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

performed by a matrix multiplication over Z followed by a modular reduction.
Algorithm 3 is simply the cascade algorithm of the previous section: the block
recursive algorithm 1 with the fully delayed algorithm as a terminal case. The
matrix multiplication updates are performed over Z without any reduction of
the result, since the threshold tupdate allows to accumulate them.

4.4 Experiments

We now compare three implementations of the trsm routine over a word size
finite field:

Pure recursive (Pure-Rec): Simply algorithm 1,

Recursive-BLAS (Rec-BLAS): The cascade algorithm formed by the recursive
algorithm and the BLAS routine dtrsm as a terminal case. It differs from
algorithm 3 by the fact that the matrix multiplication B1 := B1 − A2X2

is always followed by a modular reduction.

Recursive-BLAS-Delayed (Rec-BLAS-Delayed): algorihtm 2.

We compare these three variants over finite fields with different cardinalities,
so as to make the parameters tdel and tupdate vary as in the following table:

p ⌈log2 p⌉ tdel tupdate

5 3 23 2 147 483 642
1 048 583 20 2 8190
8 388 617 23 2 126

In the experiments of figure 3, the matrix B is square (m = n). One can
first notice the gain provided by the use of the first cascade with the delayed
dtrsm routine by comparing the curves rec-BLAS and pure-rec for p = 5.
This advantage shrinks when the characteristic gets larger, since tdel = 2 for
p = 1 048 583 or p = 8 388 61.

Now the introduction of the coarse grain splitting, delaying the reductions
in the update phase improves by up to 500 Mfops the computation speed. This
gain is similar for p = 5 and p = 1 048 583 since in both cases n < tupdate and
there is therefore no modular reduction between the matrix multiplications.

Lastly for p = 8 388 617, the speed drops down since more reductions are re-
quired. The variants pure-rec and rec-BLAS are penalized by their dichotomic
splitting, creating too many modular reductions after each matrix multiplica-
tion. Now rec-BLAS-delayed has the best efficiency since the double cascade
structure minimizes the number of reductions.

We now give a comparison of this implementation with the equivalent routine
of the original BLAS dtrsm. As for matrix multiplication in section 3.3, we com-
pare the routines according to two different BLAS implementations (i.e. ATLAS
and GOTO) and two different architectures. Nevertheless, we do not present
the results with ATLAS on Xeon architecture due to the surprisingly poor ef-
ficiency of ATLAS dtrsm during our tests. In the following, ftrsm denotes

21

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

M
fo

ps
 

n

TRSM over Z/5Z on a P4−3.2Ghz

Pure−rec
Rec−BLAS

Rec−BLAS−Delayed

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

M
fo

ps
 

n

TRSM over Z/1048583Z on a P4−3.2Ghz

Pure−rec
Rec−BLAS

Rec−BLAS−Delayed

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

M
fo

ps
 

n

TRSM over Z/8388617Z on a P4−3.2Ghz

Pure−rec
Rec−BLAS

Rec−BLAS−Delayed

Figure 3: Comparison of the trsm variants for p = 5, 1 048 583, 8 388 617, on a
Pentium4-3,2Ghz-1Go

22

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

the trsm routine over 16-bits prime field (i.e. Z65521) using the ZpZ-double

implementation.

n 1000 2000 3000 5000 7000 8000 9000 10000

ATLAS ftrsm 0.37s 1.93s 5.73s 23.63s 62.50s 91.67s 121.84s 166.74s

ftrsm 0.25s 1.66s 5.08s 21.47s 55.95s 80.77s 111.57s 150.81s
dtrsm 0.17s 1.35s 4.50s 20.64s 56.19s 83.85s 119.18s 163.33s

G
O

T
O

ftrsm
dtrsm

1.47 1.23 1.13 1.04 1.00 0.96 0.94 0.92

Table 5: Timings of triangular solver with matrix hand side on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

ftrsm 0.34s 2.28s 7.11s 30.26s 77.43s 112.01s 158.00s 214.31s
dtrsm 0.26s 1.95s 6.37s 28.60s 76.44s 113.78s 161.19s 219.31s

A
T

L
A

S

ftrsm
dtrsm

1.31 1.17 1.12 1.06 1.01 0.98 0.98 0.98

ftrsm 0.30s 2.00s 6.23s 26.67s 68.22s 104.32s 137.96s 192.37s
dtrsm 0.21s 1.61s 5.36s 24.59s 67.35s 100.42s 142.43s 195.79s

G
O

T
O

ftrsm
dtrsm

1.43 1.24 1.16 1.08 1.01 1.04 0.97 0.98

Table 6: Timings of triangular solver with matrix hand side on Itanium2,
1.3GHz

Tables 5 and 6 show that our implementation of exact trsm solving is not far
from numerical performances. Moreover, on our Xeon architecture, with GOTO
BLAS, we are able to achieve even better performances than numerical solving
for matrices of dimension greater than 7 000.

The good performance of our implementation is mostly achieved with the
efficient reduction to fast matrix multiplication and the double cascade struc-
ture. Figure 4 shows the ratio of the computation time of our trsm compared
with matrix multiplication routine. According to lemma 4.1, this ratio is 1/2
with ω = 3 and 2/3 with ω = log2 7. In practice, our implementation only
performs a few recursive calls of Winograd’s algorithm, and the ratio appears
to be between 0.5 and 0.666 as soon as the dimension is large enough, showing
the good efficiency of the reduction to matrix multiplication.

5 Finite Field Matrix Factorizations

We now come to one of the major interest of linear algebra over finite field:
matrix multiplication based algorithms. The classical block Gaussian elimina-
tion is one of the most common algorithm to achieve a reduction to matrix
multiplication [45]. Nevertheless, our main concern here is the singularity of

23

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

ra
tio

Matrix dimension

ratio of triangular system solving with matrix right hand side / matrix multiplication

FFLAS/FFPACK (GOTO)
Theoretical ratio for Full Recursive Winograd

BLAS/LAPACK  (GOTO)
Theoretical ratio for Classical Multiplication

Figure 4: Comparing triangular system solving with matrix multiplication on a
Xeon, 3.6GHz

the matrices since we want to derive efficient algorithms for most problems (e.g.
rank or nullspace). One approach there is then to use a triangular form of the
input matrix. Hence, matrix triangularization algorithm plays a central role for
this approach. In this section we focus on practical implementations of triangu-
larization in order to efficiently deal with rank profile, unbalanced dimensions,
memory management, recursive thresholds, etc. In particular we demonstrate
the efficiency of matrix multiplication reduction in practice for many linear al-
gebra problems.

5.1 Triangularizations

The classical block LDU or LUP factorizations (see [1]) can not be used due to
their restriction to non-singular case. Instead one would rather use the LQUP
factorization of [33]. We here propose a fully in-place variant and analyze its
behaviour.

The LQUP factorization is a generalization of the well known block LUP
factorization for the singular case [5]. Let A be a m × n matrix, we want to
compute the quadruple < L, Q, U, P > such that A = LQUP . The matrix L

is lower triangular, P and Q are permutation matrices and U is a rank r upper
triangular matrix with its r first rows non-zero.

The algorithm with best known complexity computing this factorization uses
a divide and conquer approach and reduces to matrix multiplication [33]. Let
us describe briefly the behavior of this algorithm.

The algorithm is recursive: first, it splits A in halves and performs a recursive
call on the top half. After some row permutations, It thus gives the T , Y and

24

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

L1 blocks of figure 5, together with some row permutations stored in Q. Then,
after some column permutations ([XZ] = [A21A22]P ), the algorithm computes
G such that GT = X via trsm, replaces X by zeroes and eventually updates
Z = Z −GY . The third step is a recursive call on Z, followed by an update of
Q. We let the readers refer e.g. to [3, (2.7c)] for further details.

Furthermore, our implementation of LQUP also uses the trick proposed in
[18, §4.2], namely storing L in its compressed form L̃.

This triangularization is thus fully in-place.

Z

Y

X

1

T
L
~

GG

Figure 5: Principle of the LQUP factorization

Lemma 5.1. The dominant term of the time complexity of algorithm LQUP
with m ≤ n is

LQUP(m, n) =

(⌈ n

m

⌉ 1

2ω−1 − 2
−

1

2ω − 2

)

MM(m).

The latter is nm2 − 1
3m3 with classical multiplication.

Proof. Lemma 2.2 ensures that the cost is O(mω + nmω−1). We thus just
have to look for the constant factors. Then we write LQUP(m, n) = αmω +
βnmω−1 = LQUP(m/2, n)+TRSM(m/2, r)+R(m/2, r, n−r)+LQUP(m/2, n−
r), where r is the rank of the first m/2 rows. This gives αmω + βnmω−1 =

α(m/2)ω +βn(m/2)ω−1 + 1
2ω−1−2

⌈
m
2r

⌉
MM(r) +

⌈
m(n−r)

2r2

⌉

MM(r) +α(m/2)ω +

β(n − r)(m/2)ω−1. With m ≤ n, the latter is maximal for r = m/2, and
then, writing MM(x) = Cωxω, we identify the coefficient on both sides: β =

β
2ω−1 + Cω

2ω−1 + β
2ω−1 , and α = 2 α

2ω −
β
2ω −Cω

2ω−6
2ω(2ω−4) . Solving for β and α gives

the announced terms.

5.2 Performance and comparison with numerical routines

Fast matrix multiplication routine of section 3.2 allowed us to speed up ma-
trix multiplication as well as triangular system solving. These improvements
are of great interest since they directly improve efficiency of triangularization.
We now compare our exact triangularization over finite field with numerical tri-
angularization provided within LAPACK library [2]. In particular, we use an
optimized version of this library provided by ATLAS software in which we use
two different BLAS kernel: ATLAS and GOTO.

25

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.32s 1.84s 4.89s 19.34s 48.94s 73.86s 97.50s 131.11s
dgetrf 0.17s 1.19s 3.83s 16.90s 45.32s 67.44s 94.83s 130.15s

A
T

L
A

S

lqup
dgetrf

1.88 1.55 1.28 1.14 1.08 1.10 1.03 1.01

lqup 0.25s 1.52s 4.47s 17.93s 44.54s 67.88s 89.63s 119.65s
dgetrf 0.15s 1.03s 3.33s 14.84s 39.58s 58.61s 82.89s 113.47s

G
O

T
O

lqup
dgetrf

1.67 1.48 1.34 1.21 1.13 1.16 1.08 1.05

Table 7: Performance of matrix triangularization (for Z/65521Z and floats) on
a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.38s 2.20s 6.36s 25.22s 61.64s 89.74s 127.43s 163.68s
dgetrf 0.20s 1.47s 4.61s 20.26s 53.57s 79.37s 111.66s 152.42s

A
T

L
A

S

lqup
dgetrf

1.85 1.50 1.38 1.25 1.15 1.13 1.14 1.07

lqup 0.34s 2.00s 5.81s 23.11s 56.80s 83.90s 113.66s 150.82s
dgetrf 0.16s 1.17s 3.80s 17.07s 46.18s 69.00s 97.56s 134.01s

G
O

T
O

lqup
dgetrf

2.21 1.72 1.53 1.35 1.23 1.22 1.16 1.13

Table 8: Performance of matrix triangularization (for Z/65521Z and floats) on
Itanium2-1.3GHz

Tables 7 and 8 show efficiency obtained with our exact triangularization
based on fast matrix multiplication and the one obtained with numerical compu-
tation. There, “dgetrf” computes a floating point LU factorization of a general
m× n matrix using partial pivoting with row interchanges. Exact computation
is done in the prime field of integers modulo 65521. We are now mostly able
to reach the speed of numerical computations. More precisely, we are able to
compute the triangularization of a 10 000× 10 000 matrix over a finite field in
about 2 minutes on a Xeon 3.6GHz architecture. This is only 5% slower than
the best numerical computation.

We could have expected that our speed would have been even better than
numerical approach since we take advantage of Strassen-Winograd’s multipli-
cation while numerical computations are not. However, in practice we do not
fully benefit from fast matrix multiplication since we work at most with matri-
ces of half dimension of the input matrix due to the recursive structure of the
algorithm. Then, the number of Winograd calls is at least one less than within
matrix multiplication routines. In our tests, it appears that we only use 3 calls
on our Xeon architecture and 1 call on the Itanium2 architecture according to
matrix multiplication threshold. This explains the better performance on the

26

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Xeon compared to numerical routines than the Itanium2 architecture.
Note also that in order to take even more into account data locality one can

develop a version of LQUP where blocks are maintained as square as possible.
Indeed, as soon as the RAM is full, data locality becomes more important
than memory saves. The TURBO method [22] addresses this issue. A first
implementation of TURBO has been studied in [18, §4.5] and it reveals to be
the fastest for large matrices, despite its bigger memory demand [18, Figure 6].
This is advocating further uses of recursive blocked data formats and of more
recursive levels of TURBO.

5.3 Comparison with the multiplication

The LQUP factorization and the trsm routines reduce to matrix multiplication
as we have seen in the previous sections. Theoretically, as classic matrix mul-
tiplication requires 2n3 − n2 arithmetic operations, the factorization, requiring
at most 2

3n3 arithmetic operations, could be computed in about 1
3 of the time.

However, when Winograd fast matrix multiplication algorithm is used this ratio
becomes 2

5 . Figure 6 shows that the experimental behavior of the factorization
is not very far from this theoretical ratio.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

ra
tio

Matrix dimension

ratio of matrix triangularization / matrix multiplication

FFLAS/FFPACK (ATLAS)
FFLAS/FFPACK (GOTO)

Theoretical ratio for Full Recursive Winograd
BLAS/LAPACK  (ATLAS)
BLAS/LAPACK  (GOTO)

Theoretical ratio for Classical Multiplication

Figure 6: Comparing matrix triangularization with matrix multiplication on a
Xeon, 3.6GHz

6 Applications

In this section, we use our matrix multiplication, matrix factorization and matrix
solvers as basic routines to perform other linear algebra routines. For instance,

27

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

from the two routines (i.e. LQUP and trsm), one can also directly derive several
other algorithms, e.g.:

• The rank is the number of non-zero rows in U .

• The determinant is the product of the diagonal elements of U (stopping
whenever a zero is encountered).

In the following, we first give the theoretical complexities with explicit con-
stant terms. These constants depend on the kind of matrix multiplication used
(fast or classical). In order to validate our approach we then compare this
theoretical ratios to some experimental ones.

6.1 Nullspace basis

Computing a right nullspace basis with the LQUP factorization is immediate
on a m × n full rank matrix, where m ≤ n: if U = [U1U2], the matrix U−1

1 U2

completed with identity matrix yields a basis for the nullspace of A.
This requires NS(m; n) = LQUP (m; n) + TRSM(m; n−m). which gives

NS(m; n) = (
⌈ n

m

⌉ 2

2ω−1 − 2
−

1

2ω − 2
)MM(m) (6)

The latter is (m2n − 1
3m3) + (n −m)m2 = 2m2n − 4

3m3 with classical multi-
plication. One can notice that computing a right nullspace of the transposed of
the input matrix yields a left nullspace basis.

6.2 Triangular multiplications

6.2.1 Triangular matrix multiplication

To perform the multiplication of a triangular matrix by a dense matrix via a
block decomposition in halves, one requires four recursive calls and two dense
matrix-matrix multiplications. The cost is thus TRMM(n) = 4TRMM(n/2)+
2MM(n/2), solving for TRMM(n) = αMM(n) yields

TRMM(n) =
1

2ω−1 − 2
MM(n). (7)

The latter is n3 with classical multiplication.

6.2.2 Upper-lower Triangular matrix multiplication

The block multiplication of a lower triangular matrix by an upper triangular
matrix is

[
A1 A2

A4

]

×

[
B1

B3 B4

]

=

[
A1B1 + A2B3 A2B4

A4B3 A4B4

]

28

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

The cost is thus UTLT(n) = 2UTLT(n/2)+2TRMM(n/2)+MM(n/2), solving
for UTLT(n) = αMM(n) yields

UTLT(n) =
2ω

(2ω − 4)(2ω − 2)
MM(n). (8)

The latter is 2
3n3 with classical multiplication.

6.2.3 Upper-Upper Triangular matrix multiplication

Now the block version is even simpler (of course the lower lower multiplication
is similar):

[
A1 A2

A4

]

×

[
B1 B2

B4

]

=

[
A1B1 A1B2 + A2B4

A4B4

]

The cost is thus UTUT(n) = 2UTUT(n/2) + 2TRMM(n/2), which yields

UTUT(n) =
4

(2ω − 4)(2ω − 2)
MM(n). (9)

The latter is 1
3n3 with classical multiplication.

6.3 Squaring

6.3.1 A×AT

Suppose we want to compute A times its transpose, even with a diagonal in the
middle. The block version is
»

A1 A2

A3 A4

–

×

»

D1

D4

–

×

»

AT
1 AT

3

AT
2 AT

4

–

=

»

A1D1A
T
1 + A2D4A

T
2 A1D1A

T
3 + A2D4A

T
4

A3D1A
T
1 + A4D4A

T
2 A3D1A

T
3 + A4D4A

T
4

–

Since ADAT is symmetric, the lower left and upper right are just transpose
of one another. The other corners (upper left and lower right) are computed via
recursive calls. Thus the arithmetic cost of this special product is AAT (n) =
4AAT (n/2) + 2MM(n/2) + 3ADD(n/2) + 2(n/2)2

Ignoring the cost of the three additions and the diagonal multiplications,
this yields

AAT (n) =
2

2ω − 4
MM(n). (10)

The latter is n3 with classical multiplication. One can note that when A is
rectangular with m ≤ n the cost extends to

AAT (m; n) =
⌈ n

m

⌉ 2

2ω − 4
MM(m). (11)

29

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

6.3.2 Symmetric case

When A is already symmetric, and if the diagonal is unitary, the constant factor
decreases. Indeed, in this case A2 = AT

3 and then one of the four recursive calls
is saved. Also one of the remaining three recursive calls is a call to a non
symmetric AAT . Therefore the cost is now: SymAAT (n) = 2SymAAT (n/2)+
AAT (n/2) + 2MM(n/2), once again ignoring n2. This yields

SymAAT (n) =
2(2ω − 3)

(2ω − 4)(2ω − 2)
MM(n). (12)

The latter is 5
6n3 with classical multiplication.

6.3.3 Triangular case

We here view the explicit computation of LT DL for instance as a special case
of upper-lower triangular matrix multiplication, but where both matrices are
symmetric of one another. We also show that we can add an extra diagonal
factor in the middle at a negligible cost. Consider then
[

L1

L3 L4

]

×

[
D1

D4

]

×

[
LT

1 LT
3

LT
4

]

=

[
L1D1L

T
1 L1D1L

T
3

L3D1L
T
1 L3D1L

T
3 + L4D4L

T
4

]

Thus it requires two recursive calls, a call to AAT (with a diagonal in the
middle) only one call to TRMM as both lower-left and upper-right corners are
transpose of one another. This yields

LTL(n) =
4

(2ω − 4)(2ω − 2)
MM(n). (13)

The latter is 1
3n3 with classical multiplication.

6.4 Symmetric factorization

For the sake of simplicity, we here consider the LU factorization of a generic
rank profile symmetric n× n matrix A. We could describe how to perform this
decomposition with the permutation and the possible rank deficiency in the
blocks, but we here only analyze the cost of such a LDLT factorization. The

idea is that one can recursively decompose A =

[
A1 A2

AT
2 A4

]

=

[
L1

G L2

]

×
[

D1

D2

]

×

[
LT

1 GT

LT
2

]

. Well, this requires a recursive call to compute L1

and D1 ; a TRSM to compute G such that L1D1G
T = A2 ; an AAT to compute

GD1G
T and a recursive call to compute L2D2L

T
2 = A4 −GD1G

T . The cost is
thus LDLT (n) = 2LDLT (n/2) + TRSM(n/2) + AAT (n/2), which yields

LDLT (n) =
4

(2ω − 4)(2ω − 2)
MM(n). (14)

The latter is 1
3n3 with classical multiplication.

30

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

6.5 Matrix inverse

6.5.1 Triangular matrix inverse

To invert a triangular matrix via a block decomposition, one requires two re-
cursive calls and two triangular matrix multiplications.

[
A1 A2

A4

]−1

=

[
A−1

1 −A−1
1 A2A

−1
4

A−1
4

]

The cost is thus INVT(n) = 2INVT(n/2) + 2TRMM(n/2) which yields

INVT(n) =
2

2ω − 2
TRMM(n) =

4

(2ω − 4)(2ω − 2)
MM(n). (15)

The latter is 1
3n3 with classical multiplication.

6.5.2 Matrix inverse

To invert a dense matrix, one needs to compute an LQUP decomposition, then
to invert L and permute it with Q−1. A TRSM is then required to solve UX =
Q−1L−1. Applying P−1 to X yields the inverse. The cost is then INV (n) =
LQUP (n) + INVT(n) + TRSM(n). This gives

INV (n) =
3× 2ω

(2ω − 4)(2ω − 2)
MM(n). (16)

The latter is INV (n) = 2n3 with classical multiplication.

6.5.3 Symmetric inverse

If A is symmetric, one can decompose it into a LDLT factorization instead of
the LU . Therefore, its inverse is then only one INV T for both L−1 and L−T

followed by an LTL. The cost is then SymINV (n) = LDLT (n) + INVT(n) +
LTL(n) which yields

SymINV (n) =
12

(2ω − 2)(2ω − 4)
MM(n). (17)

The latter is SymINV (n) = n3 with classical multiplication.

6.5.4 Full-rank Moore-Penrose pseudo-inverse

A is a rectangular full rank m×n matrix. We suppose, without loss of genericity,
that m ≤ n. The Moore-Penrose inverse of A is thus A† = AT (AAT )−1, see
e.g. [42] and references therein. Computing the Moore-Penrose inverse is then
just a LDLT decomposition of the symmetric matrix AAT , followed by two
rectangular system solvings:

MPINV (m; n) = AAT (m; n) + LDLT (m) + 2TRSM(m; n).

31

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

The cost is then

MPINV (m; n) =

(⌈ n

m

⌉ 6

2ω − 4
+

4

(2ω − 2)(2ω − 4)

)

MM(m) (18)

The latter is 3m2n + 1
3m3 with classical multiplication. This correspond e.g. to

the normal equations numerical resolution [27, algorithm 5.3.1].

6.5.5 Rank deficient Moore-Penrose pseudo-inverse

In this case, one needs to compute a full-rank decomposition of A. This is done
by performing the LQUP decomposition of A and if A is of rank r, selecting

the first r columns of L (call them Lr =

[
L1

G

]

) and the first r rows U (call

them Ur = [U1|Y ]), forgetting the permutation P . We have A = LrUr and we
modify the formula [39, (7)] as follows:

A† =

[
I

Y T U−T
1

]
(
(L1 + L−T

1 GT G)(U1 + Y Y T U−1
1 )
)−1

[I|L−T
1 GT ]. (19)

We note W = (L1 + L−T
1 GT G)(U1 + Y Y T U−1

1 ). We compute W by two squar-
ings, two TRSM and a classical matrix multiplication. We perform a reversed
LU decomposition on W to get W = UwLw. Now we compute LT

1 Uw and
LwUT

1 by upper-upper triangular multiplication and H = (LT
1 Uw)−1GT and

Z = Y T (LwUT
1 )−1 by two TRSM. Now, A† =

[
W−1 L−1

w H
ZU−1

w ZH

]

. W−1 is two

triangular inverses and an upper lower product. ZH is a rectangular multipli-
cation and the last two blocks are obtained by two triangular solvings.

MPINVr(m; n) = LQUP(m; n)+AAT (r; m−r)+AAT (r; n−r)+3TRSM(r, m−r)

+ 3TRSM(r, n− r) + MM(r) + LQUP(r) + 2UTUT(r) + 2INVT(r) + UTLT(r)

+ R(n− r; r; m− r) (20)

The latter is 2rmn+2r2m+2r2n+m2n− 1
3m3− 4

3r3 with classical multiplication.
To get an idea, numerical computations based on the Cholesky factorization of
AAT presented in [8] as faster than SVD or QR or iterative methods would
require 3m2n + 2r2m + 3r3 flops.

6.5.6 Performances and comparisons with numerical routines

As for triangular system solving and matrix triangularization, we now com-
pare performances of matrix inversion for triangular and dense matrices with
numerical computation and with matrix multiplication. Our comparison with
numerical computation is still based on LAPACK library with two different
BLAS kernel (i.e. ATLAS and GOTO). We do not present the result of trian-
gular matrix inversion over our Xeon architecture according to the bad behavior
of “dtrsm” function which is the main routine used by LAPACK for triangular

32

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

matrix inversion. Our base field is the prime field of integers modulo 65521 using
a Zpz-double representation and we use fast matrix multiplication of section
3.2.

n 1000 2000 3000 5000 7000 8000 9000 10000

ATLAS tri. inv 0.11s 0.70s 2.17s 9.21s 24.21s 35.53s 49.95s 68.26s

tri. inv 0.10s 0.62s 1.90s 8.00s 20.97s 30.77s 43.38s 58.98
dtrtri 0.18s 1.04s 2.90s 10.97s 26.85s 38.57s 52.93s 70.95s

G
O

T
O

tri.inv
dtrtri

0.56 0.60 0.66 0.73 0.78 0.80 0.82 0.83

Table 9: Timings of triangular matrix inversion on a Xeon, 3.6GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

tri. inv 0.19s 1.03s 3.02s 11.91s 31.71s 44.43s 61.37s 82.55s
dtrtri 0.08s 0.58s 2.55s 11.39s 30.50s 44.52s 63.34s 85.19s

A
T

L
A

S

tri.inv
dtrtri

2.25 1.77 1.18 1.05 1.04 1.00 0.97 0.97

tri. inv 0.15s 0.85s 2.47s 10.10s 26.10s 38.29s 53.65s 72.74s
dtrtri 0.08s 0.61s 1.96s 8.77s 23.68s 35.73s 49.84s 69.10s

G
O

T
O

tri.inv
dtrtri

1.90 1.40 1.26 1.15 1.10 1.07 1.08 1.05

Table 10: Timings of triangular matrix inversion on Itanium2, 1.3GHz

Tables 9 and 10 illustrate the performances of our exact triangular matrix
inversion regarding performances of LAPACK routine “dtrtri”. Results show
that our exact computations tend to catch up with the numerical ones and
even outperform them on Itanium2 with ATLAS for large matrices (dimension
greater than 8000).

One can notice that the implementation of triangular matrix inversion pro-
vided by GOTO is quite efficient compare to ATLAS, and thus lead our exact
computation to be more efficient but not better than numerical ones. Here
again, this demonstrates that exact triangular matrix inversion over finite field
is not much more costly than its numerical counterpart.

Now, Tables 11 and 12 provide the same comparisons for dense matrix in-
version. For numerical computation references we use the routine “dgetri” in
combination with the factorization routine “dgetrf” to yield matrix inverse. On
both architecture with ATLAS BLAS kernel, exact computations become the
most efficient when matrix dimension is getting larger. Numerical computation
is only better than exact on the Itanium 2 architecture with GOTO BLAS ker-
nel. In this particular application, the benefit of fast matrix multiplication is
important since it allows to outperform numerical performances.

As shown in previous section, matrix inversion algorithms reduce to matrix

33

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

n 1000 3000 5000 7000 8000 9000 10000

inverse 0.75s 13.57s 54.52s 141.19s 206.26s 285.19s 385.35s
dgetrf+dgetri 0.69s 16.94s 80.83s 222.07s 368.66s 531.29s 761.28s

A
T

L
A

S

inverse
dgetrf+dgetri

1.09 0.80 0.67 0.64 0.56 0.54 0.51

inverse 0.63s 11.82s 48.56s 125.30s 179.17s 256.12s 343.91s
dgetrf+dgetri 0.55s 13.02s 58.36s 159.21s 232.30s 328.55s 450.46s

G
O

T
O

inverse
dgetrf+dgetri

1.15 0.91 0.83 0.79 0.77 0.78 0.76

Table 11: Timings of matrix inversion on a Xeon, 3.6GHz

n 1000 3000 5000 7000 8000 9000 10000

inverse 1.01s 17.27s 69.24s 173.21s 256.67s 353.02s 483.08s
dgetrf+dgetri 0.60s 14.29s 66.08s 184.74s 276.09s 393.62s 541.37s

A
T

L
A

S

inverse
dgetrf+dgetri

1.67 1.21 1.05 0.94 0.93 0.90 0.89

inverse 0.85s 14.92s 61.00s 153.78s 226.68s 313.84s 422.78s
dgetrf+dgetri 0.47s 11.45s 51.33s 139.00s 207.36s 293.02s 402.72s

G
O

T
O

inverse
dgetrf+dgetri

1.80 1.30 1.19 1.11 1.09 1.07 1.05

Table 12: Timings of matrix inversion on Itanium2, 1.3GHz

multiplication. Figures 7 and 8 show the correlation between matrix inversion
performances and matrix multiplication performances; triangular and dense case
are studied.

According to section 6.5.1, the ratio of triangular matrix inversion and ma-
trix multiplication is 4/(2ω − 4)(2ω − 2); which gives a theoretical ratio of
1/6 when classic matrix multiplication is used. However this ratio increase
to ≈ 0.267 when Winograd fast matrix multiplication is used (i.e. ω = log2 7).
Since our matrix multiplication routine is using fast matrix multiplication, the
asymptotic behavior of this ratio should tend to the latter. However we observe
in practice that our performances are beyond this ratio. This is due to the
hybrid matrix multiplication which uses both Winograd and classic algorithms.
So the practical ratio obtained here is really close to the theoretical one since it
should asymptotically lie between 0.2674 and 0.166.

From section 6.5.2 one can express the ratio between dense matrix inver-
sion and matrix multiplication as respectively 1 with classic algorithm and 1.4
with Winograd algorithm. In practice we observe that dense matrix inversion
ratio is just above the asymptotic behavior of Winograd based inversion. This
certainly could be explained by the number of different algorithms involved in
this application. In particular it involves three different reductions to matrix
multiplications; which may be of a little influence on the final performances.
Moreover, we do not take into account memory effect which can play a crucial

34

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

ra
ti
o

Matrix dimension

ratio of triangular matrix inversion / matrix multiplication

FFLAS/FFPACK (ATLAS)
FFLAS/FFPACK (GOTO)

Theoretical ratio for Full Recursive Winograd
BLAS/LAPACK  (GOTO)

Theoretical ratio for Classical Multiplication

Figure 7: Comparing triangular matrix
inversion with matrix multiplication on
a Xeon, 3.6GHz

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

ra
ti
o

Matrix dimension

ratio of matrix inversion / matrix multiplication

FFLAS/FFPACK (ATLAS)
FFLAS/FFPACK (GOTO)

Theoretical ratio for Full Recursive Winograd
BLAS/LAPACK  (ATLAS)
BLAS/LAPACK  (GOTO)

Theoretical ratio for Classical Multiplication

Figure 8: Comparing matrix inversion
with matrix multiplication on a Xeon,
3.6GHz

role in performances as already demonstrated by ATLAS software with opti-
mized BLAS [46]. In our test we used a naive approach which leads us to use
2n2 elements in memory. Decreasing this memory will certainly allow us to get
better performances. In particular, it is not known yet how to perform matrix
inversion in place using a reduction to matrix multiplication.

7 Conclusions

We have achieved the goal of approaching the efficiency of the numerical linear
algebra library but for word-size prime fields. We showed that exact computa-
tion can benefit from Winograd fast matrix multiplication algorithm and then
even leads to outperform the efficiency of the well known BLAS and LAPACK
libraries.

This performance is achieved through efficient reduction to matrix multi-
plication where we took care of minimizing the ratio and also by reusing the
numerical computation as much as possible. We also showed that from our
routines one can easily implement efficient algorithms for many linear algebra
problems (e.g. null-space, generalized inverse, etc.). Note that approximate
timings for these algorithms can be derived from the timings provided with our
main routines.

One can try to design block algorithms where the blocks fit in the cache
of a specific machine to reach very good efficiency. By reusing BLAS library
this has been proven to be almost useless for matrix multiplication in [17] and
we think we proved here that this is not mandatory also for any dense linear
algebra routine. Therefore, using recursive block algorithms, efficient numerical
BLAS and fast matrix multiplication algorithms one can approach the numerical
performance or even surpass them over some finite fields. Moreover, long range
efficiency and portability are warranted as opposed to every day tuning. Except
for small matrices where the conversions increase slightly the running time, and

35

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

except for the LQUP transform, we have shown that all our exact routines can
be faster than their numerical counterparts.

Besides, the exact equivalent of stability constraints for numerical compu-
tations is coefficient growth. Therefore, whenever possible, we computed and
improved theoretical bounds on this growth (e.g. bounds 4.5 and 3.3). Those
optimal bounds enable further uses of the BLAS routines.

Further developments include:
• The main case where our wrapping of BLAS is insufficient is for very small
matrices where benefits of BLAS are limited and fast algorithms are not useful.
Here, a design using the finite field directly might improve the speed.
• More generally, a Self-adapting Software [10] would allow to provide hybrid
implementations with best empirical thresholds.
• The technique of wrapping BLAS becomes useless when finite fields are
larger than the corresponding bound of feasibility (e.g. p > 226 for matrix
multiplication). At a non negligible price the Chinese remainder algorithm
could be used to authorize the use of BLAS. Optimizing this scheme would then
be an interesting way to provide similar results for larger finite fields.
• Finally, extending the out of core versions by more recursive data format and
the building of a parallel library is promising. Also, in the case of parallelism, our
all-recursive approach enables a very efficient “sequential-first” parallelization
as shown e.g. in [19] for triangular system solving.

A Proof of theorem 3.1

Consider the natural block decomposition
[
C11 C12

C21 C22

]

=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

,

where A11 and B11 have respectively dimension m/2× k/2 and k/2× n/2.
To bound the intermediate values in the computation of l recursive levels

of Winograd’s algorithm, we will show that the worst case occurs in the com-
putation of one of the intermediaite products. We will first consider the case
K = 2lq and then generalize the result for every K. To end the proof we will
provide an instance of a computation for which the bound is attained.

A.1 Some properties on the series of the type 2u− v

Consider the series defined recursively by:






ul+1 = 2ul − vl

vl+1 = 2vl − ul

u0 ≤ 0
v0 ≥ 0

Since {
ul+1 + vl+1 = ul + vl = · · · = u0 + v0

vl+1 − ul+1 = 3(vl − ul) = · · · = 3l+1(v0 − u0)

36

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

It comes {

ul = u0
(1+3l)

2 + v0
(1−3l)

2

vl = v0
(1+3l)

2 + u0
(1−3l)

2

Thus, the following properties hold:

ul ≤ 0 and vl ≥ 0 (21)

ul is decreasing and vl is increasing (22)

vl > −ul if v0 > −u0 (23)

Now define vA and vB, two series of the type v by setting uA
0 = mA, vA

0 =
MA, uB

0 = mB and vB
0 = MB.

Let us also define tj = 1+3j

2 and sj = 1−3j

2 . Thus tj +sj = 1 and tj−sj = 3j .
The following property holds:

(2MA −mA)tj + (2mA −MA)sj = MAtj+1 + mAsj+1 = vA
j+1 (24)

A.2 Notations

Let

bl =

(
1 + 3l

2
MA +

1− 3l

2
mA

)(
1 + 3l

2
MB +

1− 3l

2
mB

)⌊
K

2l

⌋

.

The serie (bl)l>0 is increasing since (22).
Winograd’s implementation, see e.g. [32, 21], uses the following intermediate

computations

P1 = A11 ×B11

P2 = A12 ×B21 + βC11

P3 = (A12 + A11 −A21 −A22)×B22

P4 = A22 × (B22 + B11 −B21 −B12) + β(C22 − C12 − C21)

P5 = (A21 + A22)× (B12 −B11) + βC12

P6 = (A21 + A22 −A11)× (B22 + B11 −B12)

P7 = (A11 −A21)× (B22 −B12) + β(C22 − C12)

C11 = U1 = P2 + P1

U2 = (A21 + A22 −A11)× (B22 −B12) + (A21 + A22)×B11

U3 = A22 × (B22 −B12) + (A21 + A22)×B11 + β(C22 − C12)

U4 = (A21 + A22)×B22 + A11 × (B12 −B22) + βC12

C12 = U5 = U4 + P3

C21 = U6 = U3 − P4

C22 = U7 = U3 + P5

37

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

Remark that the result of the computation is independent of the algorithm
and is always bounded by Kmax(|mA|, |MA|)max(|mB |, |MB|)+βmax(|mC |, |MC |) ≤
(K + 1)MAMB. Now this value is always smaller than b1 for k ≥ 1 and also
smaller than bl ∀l ≥ 1. Therefore, the coefficients of the blocks U1, U5, U6 and
U7 always satisfy the bound. Now if the remaining 9 intermediate computations
are bounded by bl, we will be done.

We will prove that the largest intermediate value always occurs in the com-
putation of P6. Consider l recursive levels indexed by j: j = l is the first
splitting of the matrices into four blocks and j = 0 corresponds to the last level
where the product is done by a classic matrix multiplication algorithm. The
recursive algorithm can be seen as a back and forth process: the splitting is
done from j = l to j = 0 and then the multiplications are done from j = 0 to
j = l.

We also define the following notations:

• M j,k
mA,MA,mB ,MB ,mC ,MC

(X) is an upper bound on the intermediate com-
putations of X = A×B+βC with j recursive levels and mA ≤ ai,j ≤MA,
mB ≤ bi,j ≤ MB and mC ≤ ci,j ≤ MC . k is the common dimension of A
and B

• M j,k
mA,MA,mB ,MB ,mC ,MC

= maxX M j,k
mA,MA,mB ,MB ,mC ,MC

(X).

• M(X) k
2j+1 for M j+1,k

mA,MA,mB ,MB ,mC ,MC
(X).

The following formulas correspond to the seven recursive calls:

M j+1,k
mA,MA,mB ,MB ,mC ,MC

=

max


















M(P1) = M
j, k

2

mA,MA,mB ,MB ,0,0

M(P2) = M
j, k

2

mA,MA,mB ,MB ,mC ,MC

M(P3) = M
j, k

2

2mA−2MA,2MA−2mA,mB ,MB ,0,0

M(P4) = M
j, k

2

mA,MA,2mB−2MB ,2MB−2mB ,mC−2MC ,MC−2mC

M(P5) = M
j, k

2

2mA,2MA,mB−MB ,MB−mB ,mC ,MC

M(P6) = M
j, k

2

2mA−MA,2MA−mA,2mB−MB ,2MB−mB ,0,0

M(P7) = M
j, k

2

mA−MA,MA−mA,mB−MB ,MB−mB ,mC−MC ,MC−mC


















(25)
Moreover, the classic algorithm is used for j = 0:

M0,k
mA,MA,mB ,MB ,mC ,MC

= max





MAMBk + βMC

−mAMBk − βmC

−MAmBk − βmC



 (26)

A.3 Some invariants

Lemma A.1. The following invariants hold in every recursive call:

1. 0 ≤ −mA ≤MA, 0 ≤ −mB ≤MB, 0 ≤ −mC ≤MC

38

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

2. mC ≥ mB and MC ≤MB

3. MC −mC ≤MB −mB

Proof. From equation (25), one gets invariants (1) and (2). Then invariant (3)
is a consequence of (1) and (2).

A.4 Induction for K = 2lq

Let IHj be the following induction hypothesis:
If the invariants of section A.3 are satisfied then

M j,k
mA,MA,mB ,MB ,mC ,MC

= [vA
j ][vB

j ]
k

2j
.

Suppose that the previous invariants are satisfied and that IHj is true. We
will prove that the maximum of (25) is reached during the computation of P6

to show that IHj+1 is satisfied.
The conditions on mA, MA, mB and MB are satisfied for every recursive

call. We can therefore apply IHj to every product X ∈ {P1, P2, P3, P4, P5, P6}
in order to compare M(X) with M(P6).

• For P1 = A11 ×B11:

M(P6)−M(P1) = [(2MA −mA)tj + (2mA −MA)sj ]×

[(2MB −mB)tj + (2mB −MB)sj ]− vA11

j vB11

j

= vA
j+1v

B
j+1 − vA11

j vB11

j

≥ vA
j+1v

B
j+1 − vA

j vB
j

And since vA and vB are increasing and positive, we have M(P6) ≥M(P1).

• For P2 = A12 ×B21 + βC11: with the same argument M(P6) ≥M(P2).

• For P3 = (A12 + A11 −A21 −A22)×B22:

M(P6)−M(P3) = vA
j+1v

B
j+1 − vA11+A12−A21−A22

j vB22

j

= vA
j+1v

B
j+1 − [(2MA − 2mA)tj + (2mA − 2MA)sj ]v

B
j

= vA
j+1v

B
j+1 − (vA

j+1 −mAtj −MAsj)v
B
j (24)

= vA
j+1[v

B
j+1 − vB

j ]− uA
j vB

j

≥ vA
j+1[v

B
j+1 − vB

j ]− vA
j+1v

B
j (23)

≥ vA
j+1[v

B
j+1 − 2vB

j ]

≥ vA
j+13

j[MB −mB] ≥ 0

39

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

• For P4 = A22 × (B22 + B11 −B21 −B12) + β(C22 − C12 − C21): with the
same argument,

M(P6)−M(P4) = vA
j+1v

B
j+1 − vA22

j vB22+B11−B12−B21

j ≥ 0

• For P5 = (A21 + A22)× (B12 −B11) + βC12:

M(P6)−M(P5) = vA
j+1v

B
j+1 − vA21+A22

j vB12−B11

j

= vA
j+1v

B
j+1 − 2vA

j

[
vB

j − uB
j

]

=
[
2vA

j − uA
j

]
vB

j+1 − vA
j

[
vB

j+1 − uB
j

]

= vA
j vB

j+1 − uA
j vB

j+1 + vA
j uB

j

= vA
j

[
vB

j+1 + uB
j

]
− uA

j vB
j+1

= vA
j

[
2vB

j

]
− uA

j vB
j+1

and since uA
j ≤ 0 ≤ vA

j , vB
j , vB

j+1 it comes M(P6)−M(P5) ≥ 0.

• For P7 = (A11 −A21)× (B22 −B12) + β(C22 − C12): using P5,

M(P5)−M(P7) = vA21+A22

j vB12−B11

j − vA11−A21

j vB22−B12

j

= [2MAtj + 2mAsj − (MA −mA)tj − (mA −MA)sj ]×

[(MB −mB)tj + (mB −MB)sj ]

= [(MA + mA)(tj + sj)] [(MB −mB)(tj − sj)]

≥ 0

The coefficients of the blocks U1, U5, U6 and U7 are bounded by kMAMB +
βMC and are therefore smaller than the ones in P6.

Lastly, we must control the size of the coefficients in U2 = P1 + P6, U3 =
U2 + P7 and U4 = U2 + P7.

• For U2 = (A21 + A22 −A11)× (B22 −B12) + (A21 + A22)×B11:

∀x ∈ U2, |x| ≤ max





(2MA −mA)(MB −mB) + 2MAMB

(−2mA + MA)(MB −mB)− 2mAMB

(−2mA + MA)(MB −mB)− 2MAmB



k/2j

(27)
Now 2MA−mA−(−2mA+MA) = MA +mA ≥ 0 and 0 ≤ −mA ≤MA, so
the 27 simplifies into ∀x ∈ U2, |x| ≤ (2MA −mA)(MB −mB) + 2MAMB.

M(P6)−M(U2) ≥ (2MA −mA)(2MB −mB)− (2MA −mA)(MB −mB)

−2MAMB

= (2MA −mA)(MB)− 2MAMB

= −mAMB ≥ 0

40

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

• For U3 = A22× (B22−B12)+ (A21 + A22)×B11 + β(C22−C12): with the
same argument

∀x ∈ U3, |x| ≤ max





(MA(MB −mB) + 2MAMB)k/2j + |β|(MC −mC)
(MA(MB −mB)− 2mAMB)k/2j + |β|(MC −mC)
(MA(MB −mB)− 2MAmB)k/2j + |β|(MC −mC)



k/2j

The max is always equal to its first argument, and since k/2j ≥ 1, β ≤
MA −mA and MC −mC ≤MB −mB, we have:

|x| ≤ (MA(MB −mB) + 2MAMB)k/2j + β(MC −mC)

≤ (2MA −mA)(MB −mB) + 2MAMB)k/2j

≤ M(U2) ≤M(P6)

• For U4 = (A21 + A22)× B22 + A11 × (B12 − B22) + βC12: with the same
argument as for U3,

∀x ∈ U4, |x| ≤ (MA(MB −mB) + 2MAMB)k/2j + |β|MC

Since MC ≤MB −mB, −mA ≤MA and −mB ≤MB, we have

M(U4) ≤M(U3) ≤M(P6).

Finally M j+1,k
mA,MA,mB,MB

= M(P6)
k

2j+1 = vA
j+1v

B
j+1

k
2j+1 , and IHj+1 is satis-

fied.

For the initialization of the induction (j = 1), the products of the blocks are
done by the classical algorithm. From (25) and (26), one gets:

M1,k
mA,MA,mB ,MB ,mC ,MC

(P1) = MAMBk/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P2) = MAMBk/2 + |β|MC

M1,k
mA,MA,mB ,MB ,mC ,MC

(P3) = 2(MA − mA)MBk/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P4) = 2MA(MB − mB)k/2 + |β|(2MC − mC)

M1,k
mA,MA,mB ,MB ,mC ,MC

(P5) = 2MA(MB − mB)k/2 + |β|MC

M1,k
mA,MA,mB ,MB ,mC ,MC

(P6) = (2MA − mA)(2MB − mB)k/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P7) = (MA − mA)(MB − mB)k/2 + |β|(MC − mC)

M1,k
mA,MA,mB ,MB ,mC ,MC

(U2) = (2MA − mA)(MB − mB)k/2 + 2MAMBk/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(U3) = MA(MB − mB)k/2 + 2MAMBk/2 + |β|(MC − mC)

M1,k
mA,MA,mB ,MB ,mC ,MC

(U4) = 2MAMBk/2 + MA(MB − mB)k/2 + |β|MC

Again, we will prove that M1,k
mA,MA,mB ,MB ,mC ,MC

(P6) reaches the highest value,
using invariants of section A.3, and the fact that |β| ≤MA, MB and k ≥ 2.

It is straightforward for P1 and P2.

41

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

• For P3:

M1,k
mA,...(P6) − M1,k

mA,...(P3) = ((2MA − mA)(2MB − mB) − 2(MA − mA)MB)k/2

= (2MAMBk − (2MA − mA)mB)k/2 ≥ 0

• For P4: Since −|β|(2MC −mC) ≥ −MA(2MB −mB), we have

M1,k
mA,...(P6) − M1,k

mA,...(P4) = ((2MA − mA)(2MB − mB) − 2MA(MB − mB))k/2

−|β|(MC − 2mC)

≥ (MA − mA)(2MB − mB) − 2MA(MB − mB)

= mA(mB − 2MB) ≥ 0

• For P5: M1,k
mA,MA,mB,MB ,mC,MC

(P5) ≤M1,k
mA,MA,mB,MB ,mC,MC

(P4)

• For P7:

M1,k
mA,...(P6) − M1,k

mA,...(P7) = ((2MA − mA)(2MB − mB)

−(MA − mA)(MB − mB)k/2 − |β|(MC − mC)

≥ MA(2MB − mB) + (MA − mA)MB − MA(MB − mB)

≥ (2MA − mA)MB ≥ 0

• For U2, U3, U4: using the same argument as for the case of arbitrary j.

IH1 is then satisfied.

A.5 Case of an arbitrary k

Let l be such that 2ld ≤ k < 2l(d+1) ( d =
⌊

k
2l

⌋
). A dynamic peeling technique

[31] is used to deal with odd dimensions: at each recursive level, the largest
blocks with even dimensions at the top left hand corner of the input matrices
are multiplied using Winograd’s algorithm. Then an optional rank 1 update is
applied, with the odd dimensions.

These updates are using matrix-vector products, dot products and tensor
products. Every intermediate result during these computations are therefore
bounded in absolute value by kMAMB + |β|MC ≤ (k + 1)MAMB

We show now that this bound is always under the one of Winograd’s algo-
rithm.

∀l ≥ 1 2l(d + 1)MAMB ≤ vA
l vB

l

⌊
k

2l

⌋

(since (k + 1)MAMB ≤ 2l(d + 1)MAMB).

• For l = 1, the inequation is satisfied: 2MAMB(d+1) ≤ (2MA−mA)(2MB−
mB)d (since d ≥ 1)

42

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

• Let us suppose that it is satisfied for l ≥ 1 and prove it for l + 1:

vA
l+1v

B
l+1

⌊
k

2l+1

⌋

= [(2MA −mA)tl + (2mA −MA)sl]

× [(2MB −mB)tl + (2mB −MB)sl]d

≥ 2[MAtl + mAsl][MBtl + mBsl]2d

≥ vA
l vB

l

⌊
k

2l

⌋

≥ 2(2lMAMB(2d + 1))

≥ 2l+1MAMB(d + 1))

By induction, the bound of section A.4 is valid for any k.

A.6 Optimality of the bound

We simply build a sequence of square matrices Al and Bl of order 2l for which l
recursive calls to Winograd’s algorithm will involve intermediate results equals
to the bound.

Let (Al)l∈N∗ and (Bl)l∈N∗ be recursively defined as follows:






A1 =

[
mA 0
MA MA

]

, B1 =

[
MB mB

0 MB

]

Al+1 =

[
Al 0
Al Al

]

, Bl+1 =

[
Bl Bl

0 Bl

]

where Ai,j = MA + mA −Ai,j and Bi,j = MB + mB −Bi,j .
Since at each recursive level, the computation of P6 = (A21 + A22 −A11)×

(B22 +B11−B12) involves the largest possible intermediate values, let us define:

S(Al) = (Al)2,1 + (Al)2,2 − (Al)1,1 = 2Al−1 −Al−1 = 3Al−1 − Jl−1

where Jk is the square matrix of order 2k whose coefficients are all equals to
MA + mA.

Moreover S(Jk) = Jk−1. Thus, applying P6 l times recursively, since S is
linear:

S(S(. . . (S(Al)))) = Sl(Al) = 3l−1S(A1)−

(
l−2∑

k=0

3k

)

J1

Then S(A1) = 2MA −mA and J1 = MA + mA imply:

Sl(Al) = 3l−1(2MA −mA)−
3l−1 − 1

3− 1
(MA + mA) =

1 + 3l

2
MA +

1− 3l

2
mA.

The same holds for Bl:

Sl(Bl) =
1 + 3l

2
MB +

1− 3l

2
mB

43

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

The order of Al and Bl is k = 2l, so
⌊

k
2l

⌋
= 1. Therefore, the computation

of Al×Bl with l recursive levels of Winograd’s algorithm involves intermediate
values equals to vAl

l vBl

l

⌊
k
2l

⌋
. This proves the optimality of the bound.

Note that this bound is unchanged for computations of the type A×B+βC.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[3] Dario Bini and Victor Pan. Polynomial and Matrix Computations, Volume
1: Fundamental Algorithms. Birkhauser, Boston, 1994.

[4] Morgan Brassel, Pascal Giorgi, and Clement Pernet. LUdivine: A sym-
bolic block LU factorisation for matrices over finite fields using blas, April
2003. Poster, http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/

FFLAS/FFLAS Download/ludivine poster eccad2003.ps.gz.

[5] James R. Bunch and John E. Hopcroft. Triangular factorization and inver-
sion by fast matrix multiplication. Mathematics of Computation, 28:231–
236, 1974.

[6] Zhuliang Chen and Arne Storjohann. Effective reductions to matrix mul-
tiplication, July 2003. ACA’2003, 9th International Conference on Appli-
cations of Computer Algebra, Raleigh, North Carolina State University,
USA.

[7] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[8] Pierre Courrieu. Fast computation of Moore-Penrose inverse matrices. Neu-
ral Information Processing - Letters and Reviews, 8(2):25–29, August 2005.

[9] John D. Dixon. Exact solution of linear equations using p-adic expansions.
Numerische Mathematik, 40:137–141, 1982.

[10] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software
and automatic tuning of heuristics. Lecture Notes in Computer Science,
2660:759–770, January 2003.

[11] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set
of level 3 Basic Linear Algebra Subprograms. Transactions on Mathematical
Software, 16(1):1–17, March 1990. http://doi.acm.org/10.1145/77626.
79170.

44

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

[12] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. Gemmw: A
portable level 3 blas winograd variant of strassen’s matrix-matrix multiply
algorithm. Journal of Computational Physics, 110:1–10, 1994.

[13] Jean-Guillaume Dumas, , Pascal Giorgi, and Clément Pernet. FFLAS-
FFPACK: Finite field linear algebra subroutine/package. Software, http:
//ciel.ccsd.cnrs.fr/ciel-00000025, February 2006.

[14] Jean-Guillaume Dumas. Efficient dot product over finite fields. In Vic-
tor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Pro-
ceedings of the seventh International Workshop on Computer Algebra in
Scientific Computing, Yalta, Ukraine, pages 139–154. Technische Univer-
sität München, Germany, July 2004.

[15] Jean-Guillaume Dumas. Q-adic transform revisited. Technical Re-
port 0710.0510 [cs.SC], ArXiv, October 2007. http://hal.archives-
ouvertes.fr/hal-00173894.

[16] Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi,
Bradford Hovinen, Erich Kaltofen, B. David Saunders, Will J. Turner,
and Gilles Villard. LinBox: A generic library for exact linear algebra. In
Arjeh M. Cohen, Xiao-Shan Gao, and Nobuki Takayama, editors, Proceed-
ings of the 2002 International Congress of Mathematical Software, Beijing,
China, pages 40–50. World Scientific Pub, August 2002.

[17] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field
linear algebra subroutines. In Teo Mora, editor, Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, Lille,
France, pages 63–74. ACM Press, New York, July 2002.

[18] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Fi-
nite field linear algebra package. In Jaime Gutierrez, editor, Proceedings
of the 2004 International Symposium on Symbolic and Algebraic Computa-
tion, Santander, Spain, pages 119–126. ACM Press, New York, July 2004.

[19] Jean-Guillaume Dumas, Clément Pernet, and Jean-Louis Roch. Adaptive
triangular system solving. In Challenges in Symbolic Computation Soft-
ware, October 2006. Dagstuhl Seminar proceedings 06271, paper 770.

[20] Jean-Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient
computation of the characteristic polynomial. In Manuel Kauers, editor,
Proceedings of the 2005 International Symposium on Symbolic and Alge-
braic Computation, Beijing, China, pages 140–147. ACM Press, New York,
July 2005.

[21] Jean-Guillaume Dumas, Clément Pernet, and Wei Zhou. Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication algorithm. Tech-
nical report, arXiv:0707.2347v2, August 2007. http://arxiv.org/abs/

0707.2347v2.

45

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

[22] Jean-Guillaume Dumas and Jean-Louis Roch. On parallel block algo-
rithms for exact triangularizations. Parallel Computing, 28(11):1531–1548,
November 2002.

[23] Jean-Guillaume Dumas, B. David Saunders, and Gilles Villard. On effi-
cient sparse integer matrix Smith normal form computations. Journal of
Symbolic Computations, 32(1/2):71–99, July–August 2001.

[24] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 1999.

[25] Pascal Giorgi. From blas routines to finite field exact linear algebra solu-
tions, July 2003. ACA’2003, 9th International Conference on Applications
of Computer Algebra, Raleigh, North Carolina State University, USA.

[26] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the com-
plexity of polynomial matrix computations. In Rafael Sendra, editor,
Proceedings of the 2003 International Symposium on Symbolic and Alge-
braic Computation, Philadelphia, Pennsylvania, USA, pages 135–142. ACM
Press, New York, August 2003.

[27] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hop-
kins Studies in the Mathematical Sciences. The Johns Hopkins University
Press, Baltimore, MD, USA, third edition, 1996.

[28] Kazushige Goto and Robert van de Geijn. On reducing tlb misses in matrix
multiplication. Technical Report TR-2002-55, University of Texas, Novem-
ber 2002. FLAME working note #9.

[29] F. Gustavson, A. Henriksson, I. Jonsson, and B. Kaagstroem. Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms. Lec-
ture Notes in Computer Science, 1541:195–206, 1998.

[30] Nicholas J. Higham. Exploiting fast matrix multiplication within the level
3 BLAS. Trans. on Mathematical Software, 16(4):352–368, December 1990.

[31] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna
Tsao, and Thomas Turnbull. Implementation of Strassen’s algorithm for
matrix multiplication. In ACM, editor, Supercomputing ’96 Conference
Proceedings: November 17–22, Pittsburgh, PA, New York, NY 10036, USA
and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996.
ACM Press and IEEE Computer Society Press. http://doi.acm.org/10.
1145/369028.369096.

[32] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna
Tsao, and Thomas Turnbull. Strassen’s algorithm for matrix multiplica-
tion : Modeling analysis, and implementation. Technical report, Center for
Computing Sciences, November 1996. CCS-TR-96-17.

46

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

[33] Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the
fast LUP matrix decomposition algorithm and applications. Journal of
Algorithms, 3(1):45–56, March 1982.

[34] Erich Kaltofen and Gilles Villard. On the complexity of computing deter-
minants. Computational Complexity, 13(3-4):91–130, 2005.

[35] Igor Kaporin. The aggregation and cancellation techniques as a practical
tool for faster matrix multiplication. Theoretical Computer Science, 315(2-
3):469–510, 2004.

[36] Julian Laderman, Victor Pan, and Xuan-He Sha. On practical algorithms
for accelerated matrix multiplication. Linear Algebra Appl., 162–164:557–
588, 1992.

[37] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, April 1985.

[38] Peter L. Montgomery. A block Lanczos algorithm for finding dependen-
cies over gf(2). In Louis C. Guillou and Jean-Jacques Quisquater, editors,
Proceedings of the 1995 International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Saint-Malo, France, volume 921 of
Lecture Notes in Computer Science, pages 106–120, May 1995.

[39] Ben Noble. A method for computing the generalized inverse of a matrix.
SIAM Journal on Numerical Analysis, 3(4):582–584, December 1966.

[40] Andrew M. Odlyzko. Discrete logarithms: The past and the future. De-
signs, Codes, and Cryptography, 19:129–145, 2000.

[41] Clément Pernet. Implementation of Winograd’s matrix multipli-
cation over finite fields using ATLAS level 3 BLAS. Techni-
cal Report RR011122, Laboratoire Informatique et Distribution, July
2001. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS/

FFLAS Download/FFLAS technical report.ps.gz.

[42] B. D. Saunders. Black box methods for least squares problems. In Bernard
Mourrain, editor, ISSAC 2001: July 22–25, 2001, University of Western
Ontario, London, Ontario, Canada: proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, pages 297–302, 2001.

[43] Victor Shoup. NTL 5.3: A library for doing number theory, 2002.
www.shoup.net/ntl.

[44] Arne Storjohann. The shifted number system for fast linear algebra on
integer matrices. Journal of Complexity, 21(4):609–650, 2005.

[45] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

47

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9



Prime Field Linear Algebra J-G. dumas, P. Giorgi, C. Pernet

[46] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated em-
pirical optimizations of software and the ATLAS project. Parallel Comput-
ing, 27(1–2):3–35, January 2001. http://www.netlib.org/utk/people/

JackDongarra/PAPERS/atlas pub.pdf.

[47] Hans Zassenhaus. A remark on the Hensel factorization method. Mathe-
matics of Computation, 32(141):287–292, January 1978.

48

ha
l-0

00
18

22
3,

 v
er

si
on

 4
 - 

14
 J

an
 2

00
9


