A connectedness theorem for real spectra of polynomial rings

Abstract : Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on R^n can be obtained from the polynomial ring R[x_1,...,x_n] by iterating the operations of maximum and minimum. The purpose of this paper is twofold. First, we state a new conjecture, called the Connectedness conjecture, which asserts the existence of connected sets in the real spectrum of R[x_1,...,x_n] satisfying certain conditions. We prove that the Connectedness conjecture implies the Pierce-Birkhoff conjecture. Secondly, we construct a class of connected sets in the real spectrum which, though not in itself enough for the proof of the Pierce-Birkhoff conjecture, is the first and simplest example of the sort of connected sets we really need, and which constitutes a crucial step on the way to a proof of the Pierce-Birkhoff conjecture in dimension greater than 2, to appear in a subsequent paper.
Type de document :
Article dans une revue
manuscripta mathematica, Springer Verlag, 2009, 128, pp.505-547
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00018052
Contributeur : Daniel Schaub <>
Soumis le : lundi 16 juillet 2007 - 12:13:28
Dernière modification le : mardi 11 septembre 2018 - 15:18:14
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:39:36

Fichiers

connex.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François Lucas, James Madden, Daniel Schaub, Mark Spivakovsky. A connectedness theorem for real spectra of polynomial rings. manuscripta mathematica, Springer Verlag, 2009, 128, pp.505-547. 〈hal-00018052v2〉

Partager

Métriques

Consultations de la notice

256

Téléchargements de fichiers

195